1
|
Zhao Z, Tang X, Chen Y, Tao J, Polat M, Yang Z, Yang L, Wang M, Liang S, Zhang K, Zhang Y, Zhang C, Wang L, Wang Y, Konnerth A, Jia H, Xiong W, Liao X, Li SC, Chen X. A parallel tonotopically arranged thalamocortical circuit for sound processing. Neuron 2025:S0896-6273(25)00222-3. [PMID: 40239654 DOI: 10.1016/j.neuron.2025.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/25/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
The perception of the sensory world in mammals requires information flow from the thalamus to the cortex. Although the first-order sensory thalamus and its surrounding nuclei are considered the major hub for feedforward thalamocortical transmission, it remains unknown whether any other thalamic input could also contribute to this transmission. We found a thalamic region, the basal region of the ventromedial nucleus of the thalamus (bVM), that sends dense, tonotopically arranged projections to auditory cortex (AuC) fields. Silencing these AuC-projecting neurons severely impaired the mouse's ability to discriminate sound frequencies. These projections exhibited strong frequency-tuning preferences that matched the cortical tonotopic map. Moreover, bVM inputs were excitatory and primarily terminated on neuron-derived neurotrophic factor-positive interneurons in cortical layer 1. Silencing these inputs significantly reduced sound-evoked responses of AuC neurons. Our results reveal a non-canonical, tonotopically arranged thalamic input to cortical layer 1 that contributes to sound processing, in parallel to the classic auditory thalamocortical pathway.
Collapse
Affiliation(s)
- Zhikai Zhao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China; Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 400038, China.
| | - Xiaojing Tang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China; LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Yiheng Chen
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 400038, China
| | - Jie Tao
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning 530004, China
| | - Mahiber Polat
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Zhiqi Yang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 400038, China
| | - Linhan Yang
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning 530004, China
| | - Meng Wang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Shanshan Liang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 400038, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 400038, China
| | - Yun Zhang
- LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Chunqing Zhang
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Lina Wang
- LFC Laboratory and State Key Laboratory of Science and Technology on Aerospace Intelligence Control, Beijing Aerospace Automatic Control Institute, Beijing 100854, China
| | - Yanjiang Wang
- LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China; Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Arthur Konnerth
- Institute of Neuroscience and Munich Cluster for Systems Neurology, Technical University Munich, 80802 Munich, Germany
| | - Hongbo Jia
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning 530004, China; Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China.
| | - Sunny C Li
- LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China; NewLight Neuroscience Unit, Chongqing 400064, China.
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 400038, China; LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| |
Collapse
|
2
|
Kazanovich I, Itzhak S, Resnik J. Experience-driven development of decision-related representations in the auditory cortex. EMBO Rep 2025; 26:84-100. [PMID: 39528730 PMCID: PMC11723978 DOI: 10.1038/s44319-024-00309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Associating sensory stimuli with behavioral significance induces substantial changes in stimulus representations. Recent studies suggest that primary sensory cortices not only adjust representations of task-relevant stimuli, but actively participate in encoding features of the decision-making process. We sought to determine whether this trait is innate in sensory cortices or if choice representation develops with time and experience. To trace choice representation development, we perform chronic two-photon calcium imaging in the primary auditory cortex of head-fixed mice while they gain experience in a tone detection task with a delayed decision window. Our results reveal a progressive increase in choice-dependent activity within a specific subpopulation of neurons, aligning with growing task familiarity and adapting to changing task rules. Furthermore, task experience correlates with heightened synchronized activity in these populations and the ability to differentiate between different types of behavioral decisions. Notably, the activity of this subpopulation accurately decodes the same action at different task phases. Our findings establish a dynamic restructuring of population activity in the auditory cortex to encode features of the decision-making process that develop over time and refines with experience.
Collapse
Affiliation(s)
- Itay Kazanovich
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
- Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Shir Itzhak
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
- Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Jennifer Resnik
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
- Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
| |
Collapse
|
3
|
Wang S, Gao H, Ueoka Y, Ishizu K, Funamizu A. Global neural encoding of behavioral strategies in mice during perceptual decision-making task with two different sensory patterns. iScience 2024; 27:111182. [PMID: 39524342 PMCID: PMC11550577 DOI: 10.1016/j.isci.2024.111182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/03/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
When a simple model-free strategy does not provide sufficient outcomes, an inference-based strategy estimating a hidden task structure becomes essential for optimizing choices. However, the neural circuitry involved in inference-based strategies is still unclear. We developed a tone frequency discrimination task in head-fixed mice in which the tone category of the current trial depended on the category of the previous trial. When the tone category was repeated, the mice continued using the default model-free strategy, as well as when the tone was randomly presented, to bias choices. In contrast, when the tone was alternated, the default strategy gradually shifted to a hybrid of model-free and inference-based strategies, although we did not observe distinct strategy changes. Brain-wide electrophysiological recording suggested that the neural activity of the frontal and sensory cortices, hippocampus, and striatum was correlated with the reward expectation in different task conditions, suggesting the global encoding of multiple strategies in the brain.
Collapse
Affiliation(s)
- Shuo Wang
- Institute for Quantitative Biosciences, the University of Tokyo, Laboratory of Neural Computation, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-2, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Huayi Gao
- Institute for Quantitative Biosciences, the University of Tokyo, Laboratory of Neural Computation, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-2, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yutaro Ueoka
- Institute for Quantitative Biosciences, the University of Tokyo, Laboratory of Neural Computation, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kotaro Ishizu
- Institute for Quantitative Biosciences, the University of Tokyo, Laboratory of Neural Computation, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Akihiro Funamizu
- Institute for Quantitative Biosciences, the University of Tokyo, Laboratory of Neural Computation, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-2, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
4
|
Cole N, Harvey M, Myers-Joseph D, Gilra A, Khan AG. Prediction-error signals in anterior cingulate cortex drive task-switching. Nat Commun 2024; 15:7088. [PMID: 39154045 PMCID: PMC11330528 DOI: 10.1038/s41467-024-51368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Task-switching is a fundamental cognitive ability that allows animals to update their knowledge of current rules or contexts. Detecting discrepancies between predicted and observed events is essential for this process. However, little is known about how the brain computes cognitive prediction-errors and whether neural prediction-error signals are causally related to task-switching behaviours. Here we trained mice to use a prediction-error to switch, in a single trial, between responding to the same stimuli using two distinct rules. Optogenetic silencing and un-silencing, together with widefield and two-photon calcium imaging revealed that the anterior cingulate cortex (ACC) was specifically required for this rapid task-switching, but only when it exhibited neural prediction-error signals. These prediction-error signals were projection-target dependent and were larger preceding successful behavioural transitions. An all-optical approach revealed a disinhibitory interneuron circuit required for successful prediction-error computation. These results reveal a circuit mechanism for computing prediction-errors and transitioning between distinct cognitive states.
Collapse
Affiliation(s)
- Nicholas Cole
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Matthew Harvey
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Dylan Myers-Joseph
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Aditya Gilra
- Machine Learning Group, Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
- Department of Computer Science, The University of Sheffield, Sheffield, UK
| | - Adil G Khan
- Centre for Developmental Neurobiology, King's College London, London, UK.
| |
Collapse
|
5
|
Haimson B, Gilday OD, Lavi-Rudel A, Sagi H, Lottem E, Mizrahi A. Single neuron responses to perceptual difficulty in the mouse auditory cortex. SCIENCE ADVANCES 2024; 10:eadp9816. [PMID: 39141740 PMCID: PMC11323952 DOI: 10.1126/sciadv.adp9816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Perceptual learning leads to improvement in behavioral performance, yet how the brain supports challenging perceptual demands is unknown. We used two photon imaging in the mouse primary auditory cortex during behavior in a Go-NoGo task designed to test perceptual difficulty. Using general linear model analysis, we found a subset of neurons that increased their responses during high perceptual demands. Single neurons increased their responses to both Go and NoGo sounds when mice were engaged in the more difficult perceptual discrimination. This increased responsiveness contributes to enhanced cortical network discriminability for the learned sounds. Under passive listening conditions, the same neurons responded weaker to the more similar sound pairs of the difficult task, and the training protocol by itself induced specific suppression to the learned sounds. Our findings identify how neuronal activity in auditory cortex is modulated during high perceptual demands, which is a fundamental feature associated with perceptual improvement.
Collapse
Affiliation(s)
- Baruch Haimson
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Omri David Gilday
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amichai Lavi-Rudel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Eran Lottem
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Macedo-Lima M, Hamlette LS, Caras ML. Orbitofrontal cortex modulates auditory cortical sensitivity and sound perception in Mongolian gerbils. Curr Biol 2024; 34:3354-3366.e6. [PMID: 38996534 PMCID: PMC11303099 DOI: 10.1016/j.cub.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/25/2024] [Accepted: 06/12/2024] [Indexed: 07/14/2024]
Abstract
Sensory perception is dynamic, quickly adapting to sudden shifts in environmental or behavioral context. Although decades of work have established that these dynamics are mediated by rapid fluctuations in sensory cortical activity, we have a limited understanding of the brain regions and pathways that orchestrate these changes. Neurons in the orbitofrontal cortex (OFC) encode contextual information, and recent data suggest that some of these signals are transmitted to sensory cortices. Whether and how these signals shape sensory encoding and perceptual sensitivity remain uncertain. Here, we asked whether the OFC mediates context-dependent changes in auditory cortical sensitivity and sound perception by monitoring and manipulating OFC activity in freely moving Mongolian gerbils of both sexes under two behavioral contexts: passive sound exposure and engagement in an amplitude modulation (AM) detection task. We found that the majority of OFC neurons, including the specific subset that innervates the auditory cortex, were strongly modulated by task engagement. Pharmacological inactivation of the OFC prevented rapid context-dependent changes in auditory cortical firing and significantly impaired behavioral AM detection. Our findings suggest that contextual information from the OFC mediates rapid plasticity in the auditory cortex and facilitates the perception of behaviorally relevant sounds.
Collapse
Affiliation(s)
| | | | - Melissa L Caras
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
7
|
Ma T, Hermundstad AM. A vast space of compact strategies for effective decisions. SCIENCE ADVANCES 2024; 10:eadj4064. [PMID: 38905348 PMCID: PMC11192086 DOI: 10.1126/sciadv.adj4064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/15/2024] [Indexed: 06/23/2024]
Abstract
Inference-based decision-making, which underlies a broad range of behavioral tasks, is typically studied using a small number of handcrafted models. We instead enumerate a complete ensemble of strategies that could be used to effectively, but not necessarily optimally, solve a dynamic foraging task. Each strategy is expressed as a behavioral "program" that uses a limited number of internal states to specify actions conditioned on past observations. We show that the ensemble of strategies is enormous-comprising a quarter million programs with up to five internal states-but can nevertheless be understood in terms of algorithmic "mutations" that alter the structure of individual programs. We devise embedding algorithms that reveal how mutations away from a Bayesian-like strategy can diversify behavior while preserving performance, and we construct a compositional description to link low-dimensional changes in algorithmic structure with high-dimensional changes in behavior. Together, this work provides an alternative approach for understanding individual variability in behavior across animals and tasks.
Collapse
Affiliation(s)
- Tzuhsuan Ma
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ann M. Hermundstad
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
8
|
Oesch LT, Ryan MB, Churchland AK. From innate to instructed: A new look at perceptual decision-making. Curr Opin Neurobiol 2024; 86:102871. [PMID: 38569230 PMCID: PMC11162954 DOI: 10.1016/j.conb.2024.102871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Understanding how subjects perceive sensory stimuli in their environment and use this information to guide appropriate actions is a major challenge in neuroscience. To study perceptual decision-making in animals, researchers use tasks that either probe spontaneous responses to stimuli (often described as "naturalistic") or train animals to associate stimuli with experimenter-defined responses. Spontaneous decisions rely on animals' pre-existing knowledge, while trained tasks offer greater versatility, albeit often at the cost of extensive training. Here, we review emerging approaches to investigate perceptual decision-making using both spontaneous and trained behaviors, highlighting their strengths and limitations. Additionally, we propose how trained decision-making tasks could be improved to achieve faster learning and a more generalizable understanding of task rules.
Collapse
Affiliation(s)
- Lukas T Oesch
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Michael B Ryan
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States. https://twitter.com/NeuroMikeRyan
| | - Anne K Churchland
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.
| |
Collapse
|
9
|
Mittelstadt JK, Kanold PO. Orbitofrontal cortex conveys stimulus and task information to the auditory cortex. Curr Biol 2023; 33:4160-4173.e4. [PMID: 37716349 PMCID: PMC10602585 DOI: 10.1016/j.cub.2023.08.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 08/21/2023] [Indexed: 09/18/2023]
Abstract
Auditory cortical neurons modify their response profiles in response to numerous external factors. During task performance, changes in primary auditory cortex (A1) responses are thought to be driven by top-down inputs from the orbitofrontal cortex (OFC), which may lead to response modification on a trial-by-trial basis. While OFC neurons respond to auditory stimuli and project to A1, the function of OFC projections to A1 during auditory tasks is unknown. Here, we observed the activity of putative OFC terminals in A1 in mice by using in vivo two-photon calcium imaging of OFC terminals under passive conditions and during a tone detection task. We found that behavioral activity modulates but is not necessary to evoke OFC terminal responses in A1. OFC terminals in A1 form distinct populations that exclusively respond to either the tone, reward, or error. Using tones against a background of white noise, we found that OFC terminal activity was modulated by the signal-to-noise ratio (SNR) in both the passive and active conditions and that OFC terminal activity varied with SNR, and thus task difficulty in the active condition. Therefore, OFC projections in A1 are heterogeneous in their modulation of auditory encoding and likely contribute to auditory processing under various auditory conditions.
Collapse
Affiliation(s)
- Jonah K Mittelstadt
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Ying R, Hamlette L, Nikoobakht L, Balaji R, Miko N, Caras ML. Organization of orbitofrontal-auditory pathways in the Mongolian gerbil. J Comp Neurol 2023; 531:1459-1481. [PMID: 37477903 PMCID: PMC10529810 DOI: 10.1002/cne.25525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Sound perception is highly malleable, rapidly adjusting to the acoustic environment and behavioral demands. This flexibility is the result of ongoing changes in auditory cortical activity driven by fluctuations in attention, arousal, or prior expectations. Recent work suggests that the orbitofrontal cortex (OFC) may mediate some of these rapid changes, but the anatomical connections between the OFC and the auditory system are not well characterized. Here, we used virally mediated fluorescent tracers to map the projection from OFC to the auditory midbrain, thalamus, and cortex in a classic animal model for auditory research, the Mongolian gerbil (Meriones unguiculatus). We observed no connectivity between the OFC and the auditory midbrain, and an extremely sparse connection between the dorsolateral OFC and higher order auditory thalamic regions. In contrast, we observed a robust connection between the ventral and medial subdivisions of the OFC and the auditory cortex, with a clear bias for secondary auditory cortical regions. OFC axon terminals were found in all auditory cortical lamina but were significantly more concentrated in the infragranular layers. Tissue-clearing and lightsheet microscopy further revealed that auditory cortical-projecting OFC neurons send extensive axon collaterals throughout the brain, targeting both sensory and non-sensory regions involved in learning, decision-making, and memory. These findings provide a more detailed map of orbitofrontal-auditory connections and shed light on the possible role of the OFC in supporting auditory cognition.
Collapse
Affiliation(s)
- Rose Ying
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, 20742
- Department of Biology, University of Maryland, College Park, Maryland, 20742
- Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland, 20742
| | - Lashaka Hamlette
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Laudan Nikoobakht
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Rakshita Balaji
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Nicole Miko
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Melissa L. Caras
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, 20742
- Department of Biology, University of Maryland, College Park, Maryland, 20742
- Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
11
|
Schaffner J, Bao SD, Tobler PN, Hare TA, Polania R. Sensory perception relies on fitness-maximizing codes. Nat Hum Behav 2023:10.1038/s41562-023-01584-y. [PMID: 37106080 PMCID: PMC10365992 DOI: 10.1038/s41562-023-01584-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/09/2023] [Indexed: 04/29/2023]
Abstract
Sensory information encoded by humans and other organisms is generally presumed to be as accurate as their biological limitations allow. However, perhaps counterintuitively, accurate sensory representations may not necessarily maximize the organism's chances of survival. To test this hypothesis, we developed a unified normative framework for fitness-maximizing encoding by combining theoretical insights from neuroscience, computer science, and economics. Behavioural experiments in humans revealed that sensory encoding strategies are flexibly adapted to promote fitness maximization, a result confirmed by deep neural networks with information capacity constraints trained to solve the same task as humans. Moreover, human functional MRI data revealed that novel behavioural goals that rely on object perception induce efficient stimulus representations in early sensory structures. These results suggest that fitness-maximizing rules imposed by the environment are applied at early stages of sensory processing in humans and machines.
Collapse
Affiliation(s)
- Jonathan Schaffner
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Sherry Dongqi Bao
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Philippe N Tobler
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Todd A Hare
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, Zurich, Switzerland.
| | - Rafael Polania
- Neuroscience Center Zurich, Zurich, Switzerland.
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Abstract
Neural mechanisms of perceptual decision making have been extensively studied in experimental settings that mimic stable environments with repeating stimuli, fixed rules, and payoffs. In contrast, we live in an ever-changing environment and have varying goals and behavioral demands. To accommodate variability, our brain flexibly adjusts decision-making processes depending on context. Here, we review a growing body of research that explores the neural mechanisms underlying this flexibility. We highlight diverse forms of context dependency in decision making implemented through a variety of neural computations. Context-dependent neural activity is observed in a distributed network of brain structures, including posterior parietal, sensory, motor, and subcortical regions, as well as the prefrontal areas classically implicated in cognitive control. We propose that investigating the distributed network underlying flexible decisions is key to advancing our understanding and discuss a path forward for experimental and theoretical investigations.
Collapse
Affiliation(s)
- Gouki Okazawa
- Center for Neural Science, New York University, New York, NY, USA;
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Roozbeh Kiani
- Center for Neural Science, New York University, New York, NY, USA;
- Department of Psychology, New York University, New York, NY, USA
| |
Collapse
|
13
|
Zhang N, Xu NL. Reshaping sensory representations by task-specific brain states: Toward cortical circuit mechanisms. Curr Opin Neurobiol 2022; 77:102628. [PMID: 36116166 DOI: 10.1016/j.conb.2022.102628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/12/2022] [Accepted: 08/15/2022] [Indexed: 01/10/2023]
Abstract
Perception is internally constructed by integrating brain states with external sensory inputs, a process depending on the topdown modulation of sensory representations. A wealth of earlier studies described task-dependent modulations of sensory cortex corroborating perceptual and behavioral phenomena. But only with recent technological advancements, the underlying circuit-level mechanisms began to be unveiled. We review recent progress along this line of research. It begins to be appreciated that topdown signals can encode various types of task-related information, ranging from task engagement, and category knowledge to decision execution; these signals are transferred via feedback pathways originating from distinct association cortices and interact with sensory cortical circuits. These plausible mechanisms support a broad range of computations from predictive coding to inference making, ultimately form dynamic percepts and endow behavioral flexibility.
Collapse
Affiliation(s)
- Ningyu Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ning-Long Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
14
|
Klein-Flügge MC, Bongioanni A, Rushworth MFS. Medial and orbital frontal cortex in decision-making and flexible behavior. Neuron 2022; 110:2743-2770. [PMID: 35705077 DOI: 10.1016/j.neuron.2022.05.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022]
Abstract
The medial frontal cortex and adjacent orbitofrontal cortex have been the focus of investigations of decision-making, behavioral flexibility, and social behavior. We review studies conducted in humans, macaques, and rodents and argue that several regions with different functional roles can be identified in the dorsal anterior cingulate cortex, perigenual anterior cingulate cortex, anterior medial frontal cortex, ventromedial prefrontal cortex, and medial and lateral parts of the orbitofrontal cortex. There is increasing evidence that the manner in which these areas represent the value of the environment and specific choices is different from subcortical brain regions and more complex than previously thought. Although activity in some regions reflects distributions of reward and opportunities across the environment, in other cases, activity reflects the structural relationships between features of the environment that animals can use to infer what decision to take even if they have not encountered identical opportunities in the past.
Collapse
Affiliation(s)
- Miriam C Klein-Flügge
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK; Department of Psychiatry, University of Oxford, Warneford Lane, Headington, Oxford OX3 7JX, UK.
| | - Alessandro Bongioanni
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
15
|
Francis NA, Mukherjee S, Koçillari L, Panzeri S, Babadi B, Kanold PO. Sequential transmission of task-relevant information in cortical neuronal networks. Cell Rep 2022; 39:110878. [PMID: 35649366 PMCID: PMC9387204 DOI: 10.1016/j.celrep.2022.110878] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/28/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Cortical processing of task-relevant information enables recognition of behaviorally meaningful sensory events. It is unclear how task-related information is represented within cortical networks by the activity of individual neurons and their functional interactions. Here, we use two-photon imaging to record neuronal activity from the primary auditory cortex of mice during a pure-tone discrimination task. We find that a subset of neurons transiently encode sensory information used to inform behavioral choice. Using Granger causality analysis, we show that these neurons form functional networks in which information transmits sequentially. Network structures differ for target versus non-target tones, encode behavioral choice, and differ between correct versus incorrect behavioral choices. Correct behavioral choices are associated with shorter communication timescales, larger functional correlations, and greater information redundancy. In summary, specialized neurons in primary auditory cortex integrate task-related information and form functional networks whose structures encode both sensory input and behavioral choice. Francis et al. find that, as mice perform an auditory discrimination task, cortical neurons form functional networks in which task-relevant information transmits sequentially between neurons. Network structures encode behavioral choice, and correct behavioral choices are associated with shorter communication timescales, larger functional correlations, and greater information redundancy between neurons.
Collapse
Affiliation(s)
- Nikolas A Francis
- Department of Biology & Brain and Behavior Institute, University of Maryland, College Park, MD 20742, USA
| | - Shoutik Mukherjee
- Department of Electrical and Computer Engineering & Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Loren Koçillari
- Laboratory of Neural Computation, Istituto Italiano di Tecnologia, Rovereto 38068, Italy; Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, D-20251 Hamburg, Germany
| | - Stefano Panzeri
- Laboratory of Neural Computation, Istituto Italiano di Tecnologia, Rovereto 38068, Italy; Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, D-20251 Hamburg, Germany.
| | - Behtash Babadi
- Department of Electrical and Computer Engineering & Institute for Systems Research, University of Maryland, College Park, MD 20742, USA.
| | - Patrick O Kanold
- Department of Biology & Brain and Behavior Institute, University of Maryland, College Park, MD 20742, USA; Department of Biomedical Engineering & Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Han X, Xu J, Chang S, Keniston L, Yu L. Multisensory-Guided Associative Learning Enhances Multisensory Representation in Primary Auditory Cortex. Cereb Cortex 2021; 32:1040-1054. [PMID: 34378017 DOI: 10.1093/cercor/bhab264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/12/2022] Open
Abstract
Sensory cortices, classically considered to represent modality-specific sensory information, are also found to engage in multisensory processing. However, how sensory processing in sensory cortices is cross-modally modulated remains an open question. Specifically, we understand little of cross-modal representation in sensory cortices in perceptual tasks and how perceptual learning modifies this process. Here, we recorded neural responses in primary auditory cortex (A1) both while freely moving rats discriminated stimuli in Go/No-Go tasks and when anesthetized. Our data show that cross-modal representation in auditory cortices varies with task contexts. In the task of an audiovisual cue being the target associating with water reward, a significantly higher proportion of auditory neurons showed a visually evoked response. The vast majority of auditory neurons, if processing auditory-visual interactions, exhibit significant multisensory enhancement. However, when the rats performed tasks with unisensory cues being the target, cross-modal inhibition, rather than enhancement, predominated. In addition, multisensory associational learning appeared to leave a trace of plastic change in A1, as a larger proportion of A1 neurons showed multisensory enhancement in anesthesia. These findings indicate that multisensory processing in principle sensory cortices is not static, and having cross-modal interaction in the task requirement can substantially enhance multisensory processing in sensory cortices.
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai) School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Jinghong Xu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai) School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Song Chang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai) School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Les Keniston
- Department of Physical Therapy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Liping Yu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai) School of Life Sciences, East China Normal University, Shanghai 200062, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| |
Collapse
|