1
|
Sahoo B, Snyder AC. Neural Dynamics in Extrastriate Cortex Underlying False Alarms. J Neurosci 2025; 45:e1733242025. [PMID: 40164510 PMCID: PMC12079754 DOI: 10.1523/jneurosci.1733-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/14/2025] [Accepted: 03/15/2025] [Indexed: 04/02/2025] Open
Abstract
The unfolding of neural population activity can be described as a dynamical system. Stability in the latent dynamics that characterize neural population activity has been linked with consistency in animal behavior, such as motor control or value-based decision-making. However, whether such characteristics of neural dynamics can explain visual perceptual behavior is not well understood. To study this, we recorded V4 populations in two male monkeys engaged in a non-match-to-sample visual change-detection task that required sustained engagement. We measured how the stability in the latent dynamics in V4 might affect monkeys' perceptual behavior. Specifically, we reasoned that unstable sensory neural activity around dynamic attractor boundaries may make animals susceptible to taking incorrect actions when withholding action would have been correct ("false alarms"). We made three key discoveries: (1) greater stability was associated with longer trial sequences; (2) false alarm rate decreased (and response times slowed) when neural dynamics were more stable; and (3) low stability predicted false alarms on a single-trial level, and this relationship depended on the position of the neural activity within the state space, consistent with the latent neural state approaching an attractor boundary. Our results suggest the same outward false alarm behavior can be attributed to two different potential strategies that can be disambiguated by examining neural stability: (1) premeditated false alarms that might lead to greater stability in population dynamics and faster response time and (2) false alarms due to unstable sensory activity consistent with misperception.
Collapse
Affiliation(s)
- Bikash Sahoo
- Brain & Cognitive Sciences, University of Rochester, Rochester, NY 14627
| | | |
Collapse
|
2
|
Sit TPH, Feord RC, Dunn AWE, Chabros J, Oluigbo D, Smith HH, Burn L, Chang E, Boschi A, Yuan Y, Gibbons GM, Khayat-Khoei M, De Angelis F, Hemberg E, Hemberg M, Lancaster MA, Lakatos A, Eglen SJ, Paulsen O, Mierau SB. MEA-NAP: A flexible network analysis pipeline for neuronal 2D and 3D organoid multielectrode recordings. CELL REPORTS METHODS 2024; 4:100901. [PMID: 39520988 PMCID: PMC11706071 DOI: 10.1016/j.crmeth.2024.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Microelectrode array (MEA) recordings are commonly used to compare firing and burst rates in neuronal cultures. MEA recordings can also reveal microscale functional connectivity, topology, and network dynamics-patterns seen in brain networks across spatial scales. Network topology is frequently characterized in neuroimaging with graph theoretical metrics. However, few computational tools exist for analyzing microscale functional brain networks from MEA recordings. Here, we present a MATLAB MEA network analysis pipeline (MEA-NAP) for raw voltage time series acquired from single- or multi-well MEAs. Applications to 3D human cerebral organoids or 2D human-derived or murine cultures reveal differences in network development, including topology, node cartography, and dimensionality. MEA-NAP incorporates multi-unit template-based spike detection, probabilistic thresholding for determining significant functional connections, and normalization techniques for comparing networks. MEA-NAP can identify network-level effects of pharmacologic perturbation and/or disease-causing mutations and thus can provide a translational platform for revealing mechanistic insights and screening new therapeutic approaches. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Timothy P H Sit
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK; Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Rachael C Feord
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Alexander W E Dunn
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Jeremi Chabros
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - David Oluigbo
- Department of Neurology, Brigham & Women's Hospital, Boston, MA 02115, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hugo H Smith
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Lance Burn
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Elise Chang
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Alessio Boschi
- Department of Neurology, Brigham & Women's Hospital, Boston, MA 02115, USA; Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Yin Yuan
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - George M Gibbons
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK; John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, CB2 0PY Cambridge, UK
| | - Mahsa Khayat-Khoei
- Department of Neurology, Brigham & Women's Hospital, Boston, MA 02115, USA
| | | | - Erik Hemberg
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martin Hemberg
- Gene Lay Institute for Immunology and Inflammation, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Madeline A Lancaster
- MRC Laboratory for Molecular Biology, University of Cambridge, CB2 0QH Cambridge, UK
| | - Andras Lakatos
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, CB2 0PY Cambridge, UK; Cambridge University Hospitals, Cambridge Biomedical Campus, CB2 0QQ Cambridge, UK
| | - Stephen J Eglen
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB3 0WA Cambridge, UK
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Susanna B Mierau
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK; Department of Neurology, Brigham & Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Stan PL, Smith MA. Recent Visual Experience Reshapes V4 Neuronal Activity and Improves Perceptual Performance. J Neurosci 2024; 44:e1764232024. [PMID: 39187380 PMCID: PMC11466072 DOI: 10.1523/jneurosci.1764-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Recent visual experience heavily influences our visual perception, but how neuronal activity is reshaped to alter and improve perceptual discrimination remains unknown. We recorded from populations of neurons in visual cortical area V4 while two male rhesus macaque monkeys performed a natural image change detection task under different experience conditions. We found that maximizing the recent experience with a particular image led to an improvement in the ability to detect a change in that image. This improvement was associated with decreased neural responses to the image, consistent with neuronal changes previously seen in studies of adaptation and expectation. We found that the magnitude of behavioral improvement was correlated with the magnitude of response suppression. Furthermore, this suppression of activity led to an increase in signal separation, providing evidence that a reduction in activity can improve stimulus encoding. Within populations of neurons, greater recent experience was associated with decreased trial-to-trial shared variability, indicating that a reduction in variability is a key means by which experience influences perception. Taken together, the results of our study contribute to an understanding of how recent visual experience can shape our perception and behavior through modulating activity patterns in the mid-level visual cortex.
Collapse
Affiliation(s)
- Patricia L Stan
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Matthew A Smith
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
4
|
Wu S, Huang C, Snyder AC, Smith MA, Doiron B, Yu BM. Automated customization of large-scale spiking network models to neuronal population activity. NATURE COMPUTATIONAL SCIENCE 2024; 4:690-705. [PMID: 39285002 PMCID: PMC12047676 DOI: 10.1038/s43588-024-00688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Understanding brain function is facilitated by constructing computational models that accurately reproduce aspects of brain activity. Networks of spiking neurons capture the underlying biophysics of neuronal circuits, yet their activity's dependence on model parameters is notoriously complex. As a result, heuristic methods have been used to configure spiking network models, which can lead to an inability to discover activity regimes complex enough to match large-scale neuronal recordings. Here we propose an automatic procedure, Spiking Network Optimization using Population Statistics (SNOPS), to customize spiking network models that reproduce the population-wide covariability of large-scale neuronal recordings. We first confirmed that SNOPS accurately recovers simulated neural activity statistics. Then, we applied SNOPS to recordings in macaque visual and prefrontal cortices and discovered previously unknown limitations of spiking network models. Taken together, SNOPS can guide the development of network models, thereby enabling deeper insight into how networks of neurons give rise to brain function.
Collapse
Affiliation(s)
- Shenghao Wu
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA
- Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Chengcheng Huang
- Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C Snyder
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Matthew A Smith
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Brent Doiron
- Department of Statistics, University of Chicago, Chicago, IL, USA
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Byron M Yu
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
- Neural Basis of Cognition, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Heller CR, Hamersky GR, David SV. Task-specific invariant representation in auditory cortex. eLife 2024; 12:RP89936. [PMID: 39172655 PMCID: PMC11341091 DOI: 10.7554/elife.89936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Categorical sensory representations are critical for many behaviors, including speech perception. In the auditory system, categorical information is thought to arise hierarchically, becoming increasingly prominent in higher-order cortical regions. The neural mechanisms that support this robust and flexible computation remain poorly understood. Here, we studied sound representations in the ferret primary and non-primary auditory cortex while animals engaged in a challenging sound discrimination task. Population-level decoding of simultaneously recorded single neurons revealed that task engagement caused categorical sound representations to emerge in non-primary auditory cortex. In primary auditory cortex, task engagement caused a general enhancement of sound decoding that was not specific to task-relevant categories. These findings are consistent with mixed selectivity models of neural disentanglement, in which early sensory regions build an overcomplete representation of the world and allow neurons in downstream brain regions to flexibly and selectively read out behaviorally relevant, categorical information.
Collapse
Affiliation(s)
- Charles R Heller
- Neuroscience Graduate Program, Oregon Health and Science UniversityPortlandUnited States
| | - Gregory R Hamersky
- Neuroscience Graduate Program, Oregon Health and Science UniversityPortlandUnited States
| | - Stephen V David
- Otolaryngology, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
6
|
Horrocks EAB, Rodrigues FR, Saleem AB. Flexible neural population dynamics govern the speed and stability of sensory encoding in mouse visual cortex. Nat Commun 2024; 15:6415. [PMID: 39080254 PMCID: PMC11289260 DOI: 10.1038/s41467-024-50563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Time courses of neural responses underlie real-time sensory processing and perception. How these temporal dynamics change may be fundamental to how sensory systems adapt to different perceptual demands. By simultaneously recording from hundreds of neurons in mouse primary visual cortex, we examined neural population responses to visual stimuli at sub-second timescales, during different behavioural states. We discovered that during active behavioural states characterised by locomotion, single-neurons shift from transient to sustained response modes, facilitating rapid emergence of visual stimulus tuning. Differences in single-neuron response dynamics were associated with changes in temporal dynamics of neural correlations, including faster stabilisation of stimulus-evoked changes in the structure of correlations during locomotion. Using Factor Analysis, we examined temporal dynamics of latent population responses and discovered that trajectories of population activity make more direct transitions between baseline and stimulus-encoding neural states during locomotion. This could be partly explained by dampening of oscillatory dynamics present during stationary behavioural states. Functionally, changes in temporal response dynamics collectively enabled faster, more stable and more efficient encoding of new visual information during locomotion. These findings reveal a principle of how sensory systems adapt to perceptual demands, where flexible neural population dynamics govern the speed and stability of sensory encoding.
Collapse
Affiliation(s)
- Edward A B Horrocks
- Institute of Behavioural Neuroscience, University College London, London, WC1V 0AP, UK.
| | - Fabio R Rodrigues
- Institute of Behavioural Neuroscience, University College London, London, WC1V 0AP, UK
| | - Aman B Saleem
- Institute of Behavioural Neuroscience, University College London, London, WC1V 0AP, UK.
| |
Collapse
|
7
|
Stan PL, Smith MA. Recent visual experience reshapes V4 neuronal activity and improves perceptual performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.27.555026. [PMID: 37693510 PMCID: PMC10491105 DOI: 10.1101/2023.08.27.555026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Recent visual experience heavily influences our visual perception, but how this is mediated by the reshaping of neuronal activity to alter and improve perceptual discrimination remains unknown. We recorded from populations of neurons in visual cortical area V4 while monkeys performed a natural image change detection task under different experience conditions. We found that maximizing the recent experience with a particular image led to an improvement in the ability to detect a change in that image. This improvement was associated with decreased neural responses to the image, consistent with neuronal changes previously seen in studies of adaptation and expectation. We found that the magnitude of behavioral improvement was correlated with the magnitude of response suppression. Furthermore, this suppression of activity led to an increase in signal separation, providing evidence that a reduction in activity can improve stimulus encoding. Within populations of neurons, greater recent experience was associated with decreased trial-to-trial shared variability, indicating that a reduction in variability is a key means by which experience influences perception. Taken together, the results of our study contribute to an understanding of how recent visual experience can shape our perception and behavior through modulating activity patterns in mid-level visual cortex.
Collapse
|
8
|
Fortunato C, Bennasar-Vázquez J, Park J, Chang JC, Miller LE, Dudman JT, Perich MG, Gallego JA. Nonlinear manifolds underlie neural population activity during behaviour. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.18.549575. [PMID: 37503015 PMCID: PMC10370078 DOI: 10.1101/2023.07.18.549575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
There is rich variety in the activity of single neurons recorded during behaviour. Yet, these diverse single neuron responses can be well described by relatively few patterns of neural co-modulation. The study of such low-dimensional structure of neural population activity has provided important insights into how the brain generates behaviour. Virtually all of these studies have used linear dimensionality reduction techniques to estimate these population-wide co-modulation patterns, constraining them to a flat "neural manifold". Here, we hypothesised that since neurons have nonlinear responses and make thousands of distributed and recurrent connections that likely amplify such nonlinearities, neural manifolds should be intrinsically nonlinear. Combining neural population recordings from monkey, mouse, and human motor cortex, and mouse striatum, we show that: 1) neural manifolds are intrinsically nonlinear; 2) their nonlinearity becomes more evident during complex tasks that require more varied activity patterns; and 3) manifold nonlinearity varies across architecturally distinct brain regions. Simulations using recurrent neural network models confirmed the proposed relationship between circuit connectivity and manifold nonlinearity, including the differences across architecturally distinct regions. Thus, neural manifolds underlying the generation of behaviour are inherently nonlinear, and properly accounting for such nonlinearities will be critical as neuroscientists move towards studying numerous brain regions involved in increasingly complex and naturalistic behaviours.
Collapse
Affiliation(s)
- Cátia Fortunato
- Department of Bioengineering, Imperial College London, London UK
| | | | - Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA, USA
| | - Joanna C. Chang
- Department of Bioengineering, Imperial College London, London UK
| | - Lee E. Miller
- Department of Neurosciences, Northwestern University, Chicago IL, USA
- Department of Biomedical Engineering, Northwestern University, Chicago IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago IL, USA, and Shirley Ryan Ability Lab, Chicago, IL, USA
| | - Joshua T. Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA, USA
| | - Matthew G. Perich
- Department of Neurosciences, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Québec Artificial Intelligence Institute (MILA), Montréal, Québec, Canada
| | - Juan A. Gallego
- Department of Bioengineering, Imperial College London, London UK
| |
Collapse
|
9
|
Sit TPH, Feord RC, Dunn AWE, Chabros J, Oluigbo D, Smith HH, Burn L, Chang E, Boschi A, Yuan Y, Gibbons GM, Khayat-Khoei M, De Angelis F, Hemberg E, Hemberg M, Lancaster MA, Lakatos A, Eglen SJ, Paulsen O, Mierau SB. MEA-NAP compares microscale functional connectivity, topology, and network dynamics in organoid or monolayer neuronal cultures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578738. [PMID: 38370637 PMCID: PMC10871179 DOI: 10.1101/2024.02.05.578738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Microelectrode array (MEA) recordings are commonly used to compare firing and burst rates in neuronal cultures. MEA recordings can also reveal microscale functional connectivity, topology, and network dynamics-patterns seen in brain networks across spatial scales. Network topology is frequently characterized in neuroimaging with graph theoretical metrics. However, few computational tools exist for analyzing microscale functional brain networks from MEA recordings. Here, we present a MATLAB MEA network analysis pipeline (MEA-NAP) for raw voltage time-series acquired from single- or multi-well MEAs. Applications to 3D human cerebral organoids or 2D human-derived or murine cultures reveal differences in network development, including topology, node cartography, and dimensionality. MEA-NAP incorporates multi-unit template-based spike detection, probabilistic thresholding for determining significant functional connections, and normalization techniques for comparing networks. MEA-NAP can identify network-level effects of pharmacologic perturbation and/or disease-causing mutations and, thus, can provide a translational platform for revealing mechanistic insights and screening new therapeutic approaches.
Collapse
Affiliation(s)
- Timothy PH Sit
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Rachael C Feord
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Alexander WE Dunn
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Jeremi Chabros
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - David Oluigbo
- Department of Neurology, Brigham & Women’s Hospital, Boston, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hugo H Smith
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Lance Burn
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Elise Chang
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Alessio Boschi
- Department of Neurology, Brigham & Women’s Hospital, Boston, MA, USA
- Istituto Italiano di Tecnologia, Genoa, Italy
| | - Yin Yuan
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - George M Gibbons
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | - Erik Hemberg
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Martin Hemberg
- Gene Lay Institute for Immunology and Inflammation, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Andras Lakatos
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK
| | - Stephen J Eglen
- Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Ole Paulsen
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Susanna B Mierau
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Department of Neurology, Brigham & Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Cowley BR, Stan PL, Pillow JW, Smith MA. Compact deep neural network models of visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568315. [PMID: 38045255 PMCID: PMC10690296 DOI: 10.1101/2023.11.22.568315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A powerful approach to understanding the computations carried out in visual cortex is to develop models that predict neural responses to arbitrary images. Deep neural network (DNN) models have worked remarkably well at predicting neural responses [1, 2, 3], yet their underlying computations remain buried in millions of parameters. Have we simply replaced one complicated system in vivo with another in silico? Here, we train a data-driven deep ensemble model that predicts macaque V4 responses ~50% more accurately than currently-used task-driven DNN models. We then compress this deep ensemble to identify compact models that have 5,000x fewer parameters yet equivalent accuracy as the deep ensemble. We verified that the stimulus preferences of the compact models matched those of the real V4 neurons by measuring V4 responses to both 'maximizing' and adversarial images generated using compact models. We then analyzed the inner workings of the compact models and discovered a common circuit motif: Compact models share a similar set of filters in early stages of processing but then specialize by heavily consolidating this shared representation with a precise readout. This suggests that a V4 neuron's stimulus preference is determined entirely by its consolidation step. To demonstrate this, we investigated the compression step of a dot-detecting compact model and found a set of simple computations that may be carried out by dot-selective V4 neurons. Overall, our work demonstrates that the DNN models currently used in computational neuroscience are needlessly large; our approach provides a new way forward for obtaining explainable, high-accuracy models of visual cortical neurons.
Collapse
Affiliation(s)
- Benjamin R. Cowley
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Patricia L. Stan
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Jonathan W. Pillow
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Matthew A. Smith
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Zdybał K, Parente A, Sutherland JC. Improving reduced-order models through nonlinear decoding of projection-dependent outputs. PATTERNS (NEW YORK, N.Y.) 2023; 4:100859. [PMID: 38035196 PMCID: PMC10682754 DOI: 10.1016/j.patter.2023.100859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 12/02/2023]
Abstract
A fundamental hindrance to building data-driven reduced-order models (ROMs) is the poor topological quality of a low-dimensional data projection. This includes behavior such as overlapping, twisting, or large curvatures or uneven data density that can generate nonuniqueness and steep gradients in quantities of interest (QoIs). Here, we employ an encoder-decoder neural network architecture for dimensionality reduction. We find that nonlinear decoding of projection-dependent QoIs, when embedded in a dimensionality reduction technique, promotes improved low-dimensional representations of complex multiscale and multiphysics datasets. When data projection (encoding) is affected by forcing accurate nonlinear reconstruction of the QoIs (decoding), we minimize nonuniqueness and gradients in representing QoIs on a projection. This in turn leads to enhanced predictive accuracy of a ROM. Our findings are relevant to a variety of disciplines that develop data-driven ROMs of dynamical systems such as reacting flows, plasma physics, atmospheric physics, or computational neuroscience.
Collapse
Affiliation(s)
- Kamila Zdybał
- Université Libre de Bruxelles, École Polytechnique de Bruxelles, Aero-Thermo-Mechanics Laboratory, Brussels, Belgium
- BRITE: Brussels Institute for Thermal-Fluid Systems and Clean Energy, Brussels, Belgium
| | - Alessandro Parente
- Université Libre de Bruxelles, École Polytechnique de Bruxelles, Aero-Thermo-Mechanics Laboratory, Brussels, Belgium
- BRITE: Brussels Institute for Thermal-Fluid Systems and Clean Energy, Brussels, Belgium
| | - James C. Sutherland
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
12
|
Weiss O, Bounds HA, Adesnik H, Coen-Cagli R. Modeling the diverse effects of divisive normalization on noise correlations. PLoS Comput Biol 2023; 19:e1011667. [PMID: 38033166 PMCID: PMC10715670 DOI: 10.1371/journal.pcbi.1011667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/12/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Divisive normalization, a prominent descriptive model of neural activity, is employed by theories of neural coding across many different brain areas. Yet, the relationship between normalization and the statistics of neural responses beyond single neurons remains largely unexplored. Here we focus on noise correlations, a widely studied pairwise statistic, because its stimulus and state dependence plays a central role in neural coding. Existing models of covariability typically ignore normalization despite empirical evidence suggesting it affects correlation structure in neural populations. We therefore propose a pairwise stochastic divisive normalization model that accounts for the effects of normalization and other factors on covariability. We first show that normalization modulates noise correlations in qualitatively different ways depending on whether normalization is shared between neurons, and we discuss how to infer when normalization signals are shared. We then apply our model to calcium imaging data from mouse primary visual cortex (V1), and find that it accurately fits the data, often outperforming a popular alternative model of correlations. Our analysis indicates that normalization signals are often shared between V1 neurons in this dataset. Our model will enable quantifying the relation between normalization and covariability in a broad range of neural systems, which could provide new constraints on circuit mechanisms of normalization and their role in information transmission and representation.
Collapse
Affiliation(s)
- Oren Weiss
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Hayley A. Bounds
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Hillel Adesnik
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Ruben Coen-Cagli
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
13
|
Levy ERJ, Carrillo-Segura S, Park EH, Redman WT, Hurtado JR, Chung S, Fenton AA. A manifold neural population code for space in hippocampal coactivity dynamics independent of place fields. Cell Rep 2023; 42:113142. [PMID: 37742193 PMCID: PMC10842170 DOI: 10.1016/j.celrep.2023.113142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/14/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Hippocampus place cell discharge is temporally unreliable across seconds and days, and place fields are multimodal, suggesting an "ensemble cofiring" spatial coding hypothesis with manifold dynamics that does not require reliable spatial tuning, in contrast to hypotheses based on place field (spatial tuning) stability. We imaged mouse CA1 (cornu ammonis 1) ensembles in two environments across three weeks to evaluate these coding hypotheses. While place fields "remap," being more distinct between than within environments, coactivity relationships generally change less. Decoding location and environment from 1-s ensemble location-specific activity is effective and improves with experience. Decoding environment from cell-pair coactivity relationships is also effective and improves with experience, even after removing place tuning. Discriminating environments from 1-s ensemble coactivity relies crucially on the cells with the most anti-coactive cell-pair relationships because activity is internally organized on a low-dimensional manifold of non-linear coactivity relationships that intermittently reregisters to environments according to the anti-cofiring subpopulation activity.
Collapse
Affiliation(s)
| | - Simón Carrillo-Segura
- Center for Neural Science, New York University, New York, NY 10003, USA; Graduate Program in Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
| | - Eun Hye Park
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - William Thomas Redman
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | | - SueYeon Chung
- Center for Neural Science, New York University, New York, NY 10003, USA; Flatiron Institute Center for Computational Neuroscience, New York, NY 10010, USA
| | - André Antonio Fenton
- Center for Neural Science, New York University, New York, NY 10003, USA; Neuroscience Institute at the NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
14
|
Peterson V, Vissani M, Luo S, Rabbani Q, Crone NE, Bush A, Mark Richardson R. A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535577. [PMID: 37066306 PMCID: PMC10104030 DOI: 10.1101/2023.04.05.535577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Neurosurgical procedures that enable direct brain recordings in awake patients offer unique opportunities to explore the neurophysiology of human speech. The scarcity of these opportunities and the altruism of participating patients compel us to apply the highest rigor to signal analysis. Intracranial electroencephalography (iEEG) signals recorded during overt speech can contain a speech artifact that tracks the fundamental frequency (F0) of the participant's voice, involving the same high-gamma frequencies that are modulated during speech production and perception. To address this artifact, we developed a spatial-filtering approach to identify and remove acoustic-induced contaminations of the recorded signal. We found that traditional reference schemes jeopardized signal quality, whereas our data-driven method denoised the recordings while preserving underlying neural activity.
Collapse
Affiliation(s)
- Victoria Peterson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Instituto de Matemática Aplicada del Litoral, IMAL, FIQ-UNL, CONICET, Santa Fe, Argentina
| | - Matteo Vissani
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Shiyu Luo
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine
| | - Qinwan Rabbani
- Department of Electrical & Computer Engineering, The Johns Hopkins University
| | - Nathan E. Crone
- Department of Neurology, The Johns Hopkins University School of Medicine
| | - Alan Bush
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| |
Collapse
|
15
|
Jiang Y, He S, Zhang J. Different roles of response covariability and its attentional modulation in the sensory cortex and posterior parietal cortex. Proc Natl Acad Sci U S A 2023; 120:e2216942120. [PMID: 37812698 PMCID: PMC10589615 DOI: 10.1073/pnas.2216942120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/16/2023] [Indexed: 10/11/2023] Open
Abstract
The covariability of neural responses in the neuron population is highly relevant to the information encoding. Cognitive processes, such as attention, are found to modulate the covariability in the visual cortex to improve information encoding, suggesting the computational advantage of covariability modulation in the neural system. However, is the covariability modulation a general mechanism for enhanced information encoding throughout the information processing pathway, or only adopted in certain processing stages, depending on the property of neural representation? Here, with ultrahigh-field MRI, we examined the covariability, which was estimated by noise correlation, in different attention states in the early visual cortex and posterior parietal cortex (PPC) of the human brain, and its relationship to the quality of information encoding. Our results showed that while attention decreased the covariability to improve the stimulus encoding in the early visual cortex, covariability modulation was not observed in the PPC, where covariability had little impact on information encoding. Further, attention promoted the information flow between the early visual cortex and PPC, with an apparent emphasis on a flow from high- to low-dimensional representations, suggesting the existence of a reduction in the dimensionality of neural representation from the early visual cortex to PPC. Finally, the neural response patterns in the PPC could predict the amplitudes of covariability change in the early visual cortex, indicating a top-down control from the PPC to early visual cortex. Our findings reveal the specific roles of the sensory cortex and PPC during attentional modulation of covariability, determined by the complexity and fidelity of the neural representation in each cortical region.
Collapse
Affiliation(s)
- Yong Jiang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- Institute of AI, Hefei Comprehensive National Science Center, Hefei230088, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jiedong Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
16
|
Wu S, Huang C, Snyder A, Smith M, Doiron B, Yu B. Automated customization of large-scale spiking network models to neuronal population activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558920. [PMID: 37790533 PMCID: PMC10542160 DOI: 10.1101/2023.09.21.558920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Understanding brain function is facilitated by constructing computational models that accurately reproduce aspects of brain activity. Networks of spiking neurons capture the underlying biophysics of neuronal circuits, yet the dependence of their activity on model parameters is notoriously complex. As a result, heuristic methods have been used to configure spiking network models, which can lead to an inability to discover activity regimes complex enough to match large-scale neuronal recordings. Here we propose an automatic procedure, Spiking Network Optimization using Population Statistics (SNOPS), to customize spiking network models that reproduce the population-wide covariability of large-scale neuronal recordings. We first confirmed that SNOPS accurately recovers simulated neural activity statistics. Then, we applied SNOPS to recordings in macaque visual and prefrontal cortices and discovered previously unknown limitations of spiking network models. Taken together, SNOPS can guide the development of network models and thereby enable deeper insight into how networks of neurons give rise to brain function.
Collapse
Affiliation(s)
- Shenghao Wu
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Chengcheng Huang
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam Snyder
- Department of Neuroscience, University of Rochester, Rochester, NY, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Matthew Smith
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Brent Doiron
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Department of Statistics, University of Chicago, Chicago, IL, USA
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Byron Yu
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Melo de Farias AR, Pelletier A, Iohan LCC, Saha O, Bonnefond A, Amouyel P, Delahaye F, Lambert JC, Costa MR. Amyloid-Beta Peptides Trigger Premature Functional and Gene Expression Alterations in Human-Induced Neurons. Biomedicines 2023; 11:2564. [PMID: 37761004 PMCID: PMC10526858 DOI: 10.3390/biomedicines11092564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia in the elderly, characterized by the presence of amyloid-beta (Aβ) plaques, neurofibrillary tangles, neuroinflammation, synapse loss and neurodegeneration in the brain. The amyloid cascade hypothesis postulates that deposition of Aβ peptides is the causative agent of AD pathology, but we still lack comprehensive understanding of the molecular mechanisms connecting Aβ peptides to neuronal dysfunctions in AD. In this work, we investigate the early effects of Aβ peptide accumulation on the functional properties and gene expression profiles of human-induced neurons (hiNs). We show that hiNs acutely exposed to low concentrations of both cell-secreted Aβ peptides or synthetic Aβ1-42 exhibit alterations in the frequency of calcium transients suggestive of increased neuronal excitability. Using single-cell RNA sequencing, we also show that cell-secreted Aβ up-regulates the expression of several synapse-related genes and down-regulates the expression of genes associated with metabolic stress mainly in glutamatergic neurons and, to a lesser degree, in GABAergic neurons and astrocytes. These neuronal alterations correlate with activation of the SEMA5, EPHA and NECTIN signaling pathways, which are important regulators of synaptic plasticity. Altogether, our findings indicate that slight elevations in Aβ concentrations are sufficient to elicit transcriptional changes in human neurons, which can contribute to early alterations in neural network activity.
Collapse
Affiliation(s)
- Ana Raquel Melo de Farias
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, DISTALZ, 1 rue du Professeur Calmette, 59019 Lille, France; (A.R.M.d.F.); (O.S.); (P.A.); (J.-C.L.)
- Brain Institute, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, Av. Senador Salgado Filho, 3000, Natal 59078-970, Brazil
| | - Alexandre Pelletier
- Université de Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1283-UMR 8199 EGID, Pôle Recherche, 1 Place de Verdun, CEDEX, 59045 Lille, France; (A.P.); (A.B.); (F.D.)
| | - Lukas Cruz Carvalho Iohan
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil;
| | - Orthis Saha
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, DISTALZ, 1 rue du Professeur Calmette, 59019 Lille, France; (A.R.M.d.F.); (O.S.); (P.A.); (J.-C.L.)
| | - Amélie Bonnefond
- Université de Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1283-UMR 8199 EGID, Pôle Recherche, 1 Place de Verdun, CEDEX, 59045 Lille, France; (A.P.); (A.B.); (F.D.)
| | - Philippe Amouyel
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, DISTALZ, 1 rue du Professeur Calmette, 59019 Lille, France; (A.R.M.d.F.); (O.S.); (P.A.); (J.-C.L.)
| | - Fabien Delahaye
- Université de Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1283-UMR 8199 EGID, Pôle Recherche, 1 Place de Verdun, CEDEX, 59045 Lille, France; (A.P.); (A.B.); (F.D.)
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, DISTALZ, 1 rue du Professeur Calmette, 59019 Lille, France; (A.R.M.d.F.); (O.S.); (P.A.); (J.-C.L.)
| | - Marcos R. Costa
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, DISTALZ, 1 rue du Professeur Calmette, 59019 Lille, France; (A.R.M.d.F.); (O.S.); (P.A.); (J.-C.L.)
- Brain Institute, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, Av. Senador Salgado Filho, 3000, Natal 59078-970, Brazil
| |
Collapse
|
18
|
Sachse EM, Snyder AC. Dynamic attention signalling in V4: Relation to fast-spiking/non-fast-spiking cell class and population coupling. Eur J Neurosci 2023; 57:918-939. [PMID: 36732934 PMCID: PMC11521100 DOI: 10.1111/ejn.15928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
The computational role of a neuron during attention depends on its firing properties, neurotransmitter expression and functional connectivity. Neurons in the visual cortical area V4 are reliably engaged by selective attention but exhibit diversity in the effect of attention on firing rates and correlated variability. It remains unclear what specific neuronal properties shape these attention effects. In this study, we quantitatively characterised the distribution of attention modulation of firing rates across populations of V4 neurons. Neurons exhibited a continuum of time-varying attention effects. At one end of the continuum, neurons' spontaneous firing rates were slightly depressed with attention (compared to when unattended), whereas their stimulus responses were enhanced with attention. The other end of the continuum showed the converse pattern: attention depressed stimulus responses but increased spontaneous activity. We tested whether the particular pattern of time-varying attention effects that a neuron exhibited was related to the shape of their actions potentials (so-called 'fast-spiking' [FS] neurons have been linked to inhibition) and the strength of their coupling to the overall population. We found an interdependence among neural attention effects, neuron type and population coupling. In particular, we found neurons for which attention enhanced spontaneous activity but suppressed stimulus responses were less likely to be fast-spiking (more likely to be non-fast-spiking) and tended to have stronger population coupling, compared to neurons with other types of attention effects. These results add important information to our understanding of visual attention circuits at the cellular level.
Collapse
Affiliation(s)
| | - Adam C. Snyder
- Brain and Cognitive Sciences, University of Rochester, Neuroscience, University of Rochester; Center for Visual Sciences, University of Rochester
| |
Collapse
|
19
|
Image Geo-Site Estimation Using Convolutional Auto-Encoder and Multi-Label Support Vector Machine. INFORMATION 2023. [DOI: 10.3390/info14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The estimation of an image geo-site solely based on its contents is a promising task. Compelling image labelling relies heavily on contextual information, which is not as simple as recognizing a single object in an image. An Auto-Encode-based support vector machine approach is proposed in this work to estimate the image geo-site to address the issue of misclassifying the estimations. The proposed method for geo-site estimation is conducted using a dataset consisting of 125 classes of various images captured within 125 countries. The proposed work uses a convolutional Auto-Encode for training and dimensionality reduction. After that, the acquired preprocessed input dataset is further processed by a multi-label support vector machine. The performance assessment of the proposed approach has been accomplished using accuracy, sensitivity, specificity, and F1-score as evaluation parameters. Eventually, the proposed approach for image geo-site estimation presented in this article outperforms Auto-Encode-based K-Nearest Neighbor and Auto-Encode-Random Forest methods.
Collapse
|
20
|
Koh TH, Bishop WE, Kawashima T, Jeon BB, Srinivasan R, Mu Y, Wei Z, Kuhlman SJ, Ahrens MB, Chase SM, Yu BM. Dimensionality reduction of calcium-imaged neuronal population activity. NATURE COMPUTATIONAL SCIENCE 2023; 3:71-85. [PMID: 37476302 PMCID: PMC10358781 DOI: 10.1038/s43588-022-00390-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 12/05/2022] [Indexed: 07/22/2023]
Abstract
Calcium imaging has been widely adopted for its ability to record from large neuronal populations. To summarize the time course of neural activity, dimensionality reduction methods, which have been applied extensively to population spiking activity, may be particularly useful. However, it is unclear if the dimensionality reduction methods applied to spiking activity are appropriate for calcium imaging. We thus carried out a systematic study of design choices based on standard dimensionality reduction methods. We also developed a method to perform deconvolution and dimensionality reduction simultaneously (Calcium Imaging Linear Dynamical System, CILDS). CILDS most accurately recovered the single-trial, low-dimensional time courses from simulated calcium imaging data. CILDS also outperformed the other methods on calcium imaging recordings from larval zebrafish and mice. More broadly, this study represents a foundation for summarizing calcium imaging recordings of large neuronal populations using dimensionality reduction in diverse experimental settings.
Collapse
Affiliation(s)
- Tze Hui Koh
- Department of Biomedical Engineering, Carnegie Mellon University, PA
- Center for the Neural Basis of Cognition, PA
| | - William E. Bishop
- Center for the Neural Basis of Cognition, PA
- Department of Machine Learning, Carnegie Mellon University, PA
- Janelia Research Campus, Howard Hughes Medical Institute, VA
| | - Takashi Kawashima
- Janelia Research Campus, Howard Hughes Medical Institute, VA
- Department of Brain Sciences, Weizmann Institute of Science, Israel
| | - Brian B. Jeon
- Department of Biomedical Engineering, Carnegie Mellon University, PA
- Center for the Neural Basis of Cognition, PA
| | - Ranjani Srinivasan
- Department of Biomedical Engineering, Carnegie Mellon University, PA
- Department of Electrical and Computer Engineering, Johns Hopkins University, MD
| | - Yu Mu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, China
| | - Ziqiang Wei
- Janelia Research Campus, Howard Hughes Medical Institute, VA
| | - Sandra J. Kuhlman
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, PA
- Department of Biological Sciences, Carnegie Mellon University, PA
| | - Misha B. Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, VA
| | - Steven M. Chase
- Department of Biomedical Engineering, Carnegie Mellon University, PA
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, PA
| | - Byron M. Yu
- Department of Biomedical Engineering, Carnegie Mellon University, PA
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, PA
- Department of Electrical and Computer Engineering, Carnegie Mellon University, PA
| |
Collapse
|
21
|
Panzeri S, Moroni M, Safaai H, Harvey CD. The structures and functions of correlations in neural population codes. Nat Rev Neurosci 2022; 23:551-567. [PMID: 35732917 DOI: 10.1038/s41583-022-00606-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/17/2022]
Abstract
The collective activity of a population of neurons, beyond the properties of individual cells, is crucial for many brain functions. A fundamental question is how activity correlations between neurons affect how neural populations process information. Over the past 30 years, major progress has been made on how the levels and structures of correlations shape the encoding of information in population codes. Correlations influence population coding through the organization of pairwise-activity correlations with respect to the similarity of tuning of individual neurons, by their stimulus modulation and by the presence of higher-order correlations. Recent work has shown that correlations also profoundly shape other important functions performed by neural populations, including generating codes across multiple timescales and facilitating information transmission to, and readout by, downstream brain areas to guide behaviour. Here, we review this recent work and discuss how the structures of correlations can have opposite effects on the different functions of neural populations, thus creating trade-offs and constraints for the structure-function relationships of population codes. Further, we present ideas on how to combine large-scale simultaneous recordings of neural populations, computational models, analyses of behaviour, optogenetics and anatomy to unravel how the structures of correlations might be optimized to serve multiple functions.
Collapse
Affiliation(s)
- Stefano Panzeri
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany. .,Istituto Italiano di Tecnologia, Rovereto, Italy.
| | | | - Houman Safaai
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
22
|
Srinath R, Ruff DA, Cohen MR. Attention improves information flow between neuronal populations without changing the communication subspace. Curr Biol 2021; 31:5299-5313.e4. [PMID: 34699782 PMCID: PMC8665027 DOI: 10.1016/j.cub.2021.09.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Visual attention allows observers to change the influence of different parts of a visual scene on their behavior, suggesting that information can be flexibly shared between visual cortex and neurons involved in decision making. We investigated the neural substrate of flexible information routing by analyzing the activity of populations of visual neurons in the medial temporal area (MT) and oculo-motor neurons in the superior colliculus (SC) while rhesus monkeys switched spatial attention. We demonstrated that attention increases the efficacy of visuomotor communication: trial-to-trial variability in SC population activity could be better predicted by the activity of the MT population (and vice versa) when attention was directed toward their joint receptive fields. Surprisingly, this improvement in prediction was not explained by changes in the dimensionality of the shared subspace or in the magnitude of local or shared pairwise noise correlations. These results lay a foundation for future theoretical and experimental studies into how visual attention can flexibly change information flow between sensory and decision neurons.
Collapse
Affiliation(s)
- Ramanujan Srinath
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Douglas A Ruff
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marlene R Cohen
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|