1
|
Maji RK, Leisegang MS, Boon RA, Schulz MH. Revealing microRNA regulation in single cells. Trends Genet 2025:S0168-9525(24)00317-2. [PMID: 39863489 DOI: 10.1016/j.tig.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression and control cellular functions in physiological and pathophysiological states. miRNAs play important roles in disease, stress, and development, and are now being investigated for therapeutic approaches. Alternative processing of miRNAs during biogenesis results in the generation of miRNA isoforms (isomiRs) which further diversify miRNA gene regulation. Single-cell RNA-sequencing (scsRNA-seq) technologies, together with computational strategies, enable exploration of miRNAs, isomiRs, and interacting RNAs at the cellular level. By integration with other miRNA-associated single-cell modalities, miRNA roles can be resolved at different stages of processing and regulation. In this review we discuss (i) single-cell experimental assays that measure miRNA and isomiR abundances, and (ii) computational methods for their analysis to investigate the mechanisms of miRNA biogenesis and post-transcriptional regulation.
Collapse
Affiliation(s)
- Ranjan K Maji
- Institute for Computational Genomic Medicine, Goethe University Frankfurt, Frankfurt, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, Germany
| | - Matthias S Leisegang
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, Germany; Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt, Germany
| | - Reinier A Boon
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, Germany; Department of Physiology, Amsterdam UMC, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Marcel H Schulz
- Institute for Computational Genomic Medicine, Goethe University Frankfurt, Frankfurt, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, Germany.
| |
Collapse
|
2
|
Penning A, Snoeck S, Garritsen O, Tosoni G, Hof A, de Boer F, van Hasenbroek J, Zhang L, Thrupp N, Craessaerts K, Fiers M, Salta E. NACC2, a molecular effector of miR-132 regulation at the interface between adult neurogenesis and Alzheimer's disease. Sci Rep 2024; 14:21163. [PMID: 39256511 PMCID: PMC11387632 DOI: 10.1038/s41598-024-72096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
The generation of new neurons at the hippocampal neurogenic niche, known as adult hippocampal neurogenesis (AHN), and its impairment, have been implicated in Alzheimer's disease (AD). MicroRNA-132 (miR-132), the most consistently downregulated microRNA (miRNA) in AD, was recently identified as a potent regulator of AHN, exerting multilayered proneurogenic effects in adult neural stem cells (NSCs) and their progeny. Supplementing miR-132 in AD mouse brain restores AHN and relevant memory deficits, yet the exact mechanisms involved are still unknown. Here, we identify NACC2 as a novel miR-132 target implicated in both AHN and AD. miR-132 deficiency in mouse hippocampus induces Nacc2 expression and inflammatory signaling in adult NSCs. We show that miR-132-dependent regulation of NACC2 is involved in the initial stages of human NSC differentiation towards astrocytes and neurons. Later, NACC2 function in astrocytic maturation becomes uncoupled from miR-132. We demonstrate that NACC2 is present in reactive astrocytes surrounding amyloid plaques in mouse and human AD hippocampus, and that there is an anticorrelation between miR-132 and NACC2 levels in AD and upon induction of inflammation. Unraveling the molecular mechanisms by which miR-132 regulates neurogenesis and cellular reactivity in AD, will provide valuable insights towards its possible application as a therapeutic target.
Collapse
Affiliation(s)
- Amber Penning
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Sarah Snoeck
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Oxana Garritsen
- UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Giorgia Tosoni
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Amber Hof
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Fleur de Boer
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | | | - Lin Zhang
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Nicky Thrupp
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | | | - Mark Fiers
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Evgenia Salta
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Erickson AG, Motta A, Kastriti ME, Edwards S, Coulpier F, Théoulle E, Murtazina A, Poverennaya I, Wies D, Ganofsky J, Canu G, Lallemend F, Topilko P, Hadjab S, Fried K, Ruhrberg C, Schwarz Q, Castellani V, Bonanomi D, Adameyko I. Motor innervation directs the correct development of the mouse sympathetic nervous system. Nat Commun 2024; 15:7065. [PMID: 39152112 PMCID: PMC11329663 DOI: 10.1038/s41467-024-51290-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
The sympathetic nervous system controls bodily functions including vascular tone, cardiac rhythm, and the "fight-or-flight response". Sympathetic chain ganglia develop in parallel with preganglionic motor nerves extending from the neural tube, raising the question of whether axon targeting contributes to sympathetic chain formation. Using nerve-selective genetic ablations and lineage tracing in mouse, we reveal that motor nerve-associated Schwann cell precursors (SCPs) contribute sympathetic neurons and satellite glia after the initial seeding of sympathetic ganglia by neural crest. Motor nerve ablation causes mispositioning of SCP-derived sympathoblasts as well as sympathetic chain hypoplasia and fragmentation. Sympathetic neurons in motor-ablated embryos project precociously and abnormally towards dorsal root ganglia, eventually resulting in fusion of sympathetic and sensory ganglia. Cell interaction analysis identifies semaphorins as potential motor nerve-derived signaling molecules regulating sympathoblast positioning and outgrowth. Overall, central innervation functions both as infrastructure and regulatory niche to ensure the integrity of peripheral ganglia morphogenesis.
Collapse
Affiliation(s)
- Alek G Erickson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alessia Motta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Brain Research, Department of Neuroimmunology, Medical University Vienna, Vienna, Austria
| | - Steven Edwards
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fanny Coulpier
- Mondor Institute for Biomedical Research (IMRB), INSERM, Créteil, France
| | - Emy Théoulle
- University of Claude Bernard Lyon 1, MeLiS, CNRS, INSERM, NeuroMyoGene Institute, Lyon, France
| | - Aliia Murtazina
- Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, Sweden
| | - Irina Poverennaya
- Center for Brain Research, Department of Neuroimmunology, Medical University Vienna, Vienna, Austria
| | - Daniel Wies
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jeremy Ganofsky
- University of Claude Bernard Lyon 1, MeLiS, CNRS, INSERM, NeuroMyoGene Institute, Lyon, France
| | - Giovanni Canu
- University College London, Department of Ophthalmology London, London, UK
| | - Francois Lallemend
- Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, Sweden
| | - Piotr Topilko
- Mondor Institute for Biomedical Research (IMRB), INSERM, Créteil, France
| | - Saida Hadjab
- Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, Sweden
| | - Kaj Fried
- Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, Sweden
| | | | - Quenten Schwarz
- Center for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Valerie Castellani
- University of Claude Bernard Lyon 1, MeLiS, CNRS, INSERM, NeuroMyoGene Institute, Lyon, France
| | - Dario Bonanomi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Center for Brain Research, Department of Neuroimmunology, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Dash BP, Freischmidt A, Weishaupt JH, Hermann A. An integrative miRNA-mRNA expression analysis identifies miRNA signatures associated with SOD1 and TARDBP patient-derived motor neurons. Hum Mol Genet 2024; 33:1300-1314. [PMID: 38676626 DOI: 10.1093/hmg/ddae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
MicroRNAs (miRNAs) are a subset of small non-coding single-stranded RNA molecules involved in the regulation of post-transcriptional gene expression of a variety of transcript targets. Therefore altered miRNA expression may result in the dysregulation of key genes and biological pathways that has been reported with the onset and progression of neurodegenerative diseases, such as Amyotrophic lateral sclerosis (ALS). ALS is marked by a progressive degeneration of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex. Although the pathomechanism underlying molecular interactions of ALS remains poorly understood, alterations in RNA metabolism, including dysregulation of miRNA expression in familial as well as sporadic forms are still scarcely studied. In this study, we performed combined transcriptomic data and miRNA profiling in MN samples of the same samples of iPSC-derived MNs from SOD1- and TARDBP (TDP-43 protein)-mutant-ALS patients and healthy controls. We report a global upregulation of mature miRNAs, and suggest that differentially expressed (DE) miRNAs have a significant impact on mRNA-level in SOD1-, but not in TARDBP-linked ALS. Furthermore, in SOD1-ALS we identified dysregulated miRNAs such as miR-124-3p, miR-19b-3p and miR-218 and their potential targets previously implicated in important functional process and pathogenic pathways underlying ALS. These miRNAs may play key roles in the neuronal development and cell survival related functions in SOD1-ALS. Altogether, we provide evidence of miRNA regulated genes expression mainly in SOD1 rather than TDP43-ALS.
Collapse
Affiliation(s)
- Banaja P Dash
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Gehlsheimer Str. 20, Rostock 18147, Germany
| | - Axel Freischmidt
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Jochen H Weishaupt
- Division of Neurodegeneration, Department of Neurology, Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Gehlsheimer Str. 20, Rostock 18147, Germany
- Center for Transdisciplinary Neurosciences Rostock, University Medical Center Rostock, Gehlsheimer Str. 20, Rostock 18147, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Gehlsheimer Str. 20, Rostock 18147, Germany
| |
Collapse
|
5
|
Pulcrano S, De Gregorio R, De Sanctis C, Volpicelli F, Piscitelli RM, Speranza L, Perrone-Capano C, di Porzio U, Caiazzo M, Martini A, Giacomet C, Medina D, Awatramani R, Viggiano D, Federici M, Mercuri NB, Guatteo E, Bellenchi GC. miR-218 Promotes Dopaminergic Differentiation and Controls Neuron Excitability and Neurotransmitter Release through the Regulation of a Synaptic-Related Genes Network. J Neurosci 2023; 43:8104-8125. [PMID: 37816598 PMCID: PMC10697421 DOI: 10.1523/jneurosci.0431-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 10/12/2023] Open
Abstract
In the brain, microRNAs (miRNAs) are believed to play a role in orchestrating synaptic plasticity at a higher level by acting as an additional mechanism of translational regulation, alongside the mRNA/polysome system. Despite extensive research, our understanding of the specific contribution of individual miRNA to the function of dopaminergic neurons (DAn) remains limited. By performing a dopaminergic-specific miRNA screening, we have identified miR-218 as a critical regulator of DAn activity in male and female mice. We have found that miR-218 is specifically expressed in mesencephalic DAn and is able to promote dopaminergic differentiation of embryonic stem cells and functional maturation of transdifferentiated induced DA neurons. Midbrain-specific deletion of both genes encoding for miR-218 (referred to as miR-218-1 and mir218-2) affects the expression of a cluster of synaptic-related mRNAs and alters the intrinsic excitability of DAn, as it increases instantaneous frequencies of evoked action potentials, reduces rheobase current, affects the ionic current underlying the action potential after hyperpolarization phase, and reduces dopamine efflux in response to a single electrical stimulus. Our findings provide a comprehensive understanding of the involvement of miR-218 in the dopaminergic system and highlight its role as a modulator of dopaminergic transmission.SIGNIFICANCE STATEMENT In the past decade, several miRNAs have emerged as potential regulators of synapse activity through the modulation of specific gene expression. Among these, we have identified a dopaminergic-specific miRNA, miR-218, which is able to promote dopaminergic differentiation and regulates the translation of an entire cluster of synapse related mRNAs. Deletion of miR-218 has notable effects on dopamine release and alters the intrinsic excitability of dopaminergic neurons, indicating a direct control of dopaminergic activity by miR-218.
Collapse
Affiliation(s)
- Salvatore Pulcrano
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
| | - Roberto De Gregorio
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021
| | - Claudia De Sanctis
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
- Neuropathology Brain Bank at Mount Sinai, New York, New York 10029
| | - Floriana Volpicelli
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, 80131, Italy
| | - Rosa Maria Piscitelli
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
| | - Luisa Speranza
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| | - Carla Perrone-Capano
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, 80131, Italy
| | - Umberto di Porzio
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
| | - Massimiliano Caiazzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Alessandro Martini
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
| | - Cecilia Giacomet
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
| | - Diego Medina
- Telethon Institute of Genetics and Medicine, Pozzuoli, 80078, Italy
- Department of Medical and Translational Science, Federico II University, Naples, 80131, Italy
| | | | - Davide Viggiano
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli," Naples, 80131, Italy
| | - Mauro Federici
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
| | - Nicola B Mercuri
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
- University of Tor Vergata, Department of Systems Medicine, Rome, 00133, Italy
| | - Ezia Guatteo
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
- Department of Motor Science and Wellness, Parthenope University, Naples, 80133, Italy
| | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
| |
Collapse
|
6
|
Li N, Ren C, Li S, Yu W, Jin K, Ji X. Remote ischemic conditioning alleviates chronic cerebral hypoperfusion-induced cognitive decline and synaptic dysfunction via the miR-218a-5p/SHANK2 pathway. Prog Neurobiol 2023; 230:102514. [PMID: 37574039 DOI: 10.1016/j.pneurobio.2023.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Vascular cognitive impairment (VCI) due to chronic cerebral hypoperfusion (CCH), is the second leading cause of dementia. Although synaptic impairment plays a critical role in VCI, its exact mechanism remains unknown. Our previous research revealed that remote ischemic conditioning (RIC) could alleviate cognitive decline resulting from CCH, however, its effects on synaptic impairment remain unclear. In this study, we confirmed that RIC alleviated both cognitive decline and its associated synaptic dysfunction caused by CCH. RNA sequencing revealed that CCH increased in miR-218a-5p expression, which was decreased by RIC. Elevated miR-218a-5p levels limited the benefits of RIC, however, inhibiting miR-218a-5p in hippocampal CA1 neurons rescued synaptic dysfunction. Additionally, we found that SHANK2 is a downstream target of miR-218a-5p, and inhibiting SHANK2 expression reduced the alleviation caused by hypoxic conditioning in synaptic impairment in vitro. In conclusion, our results suggested that RIC alleviated synaptic impairment via the miR-218a-5p/SHANK2 pathway, which could be a potential biomarker or therapeutic target for cognitive impairment caused by CCH.
Collapse
Affiliation(s)
- Ning Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Wantong Yu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Kunlin Jin
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Xuming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
7
|
Lee Y, Yeo IS, Kim N, Lee DK, Kim KT, Yoon J, Yi J, Hong YB, Choi BO, Kosodo Y, Kim D, Park J, Song MR. Transcriptional control of motor pool formation and motor circuit connectivity by the LIM-HD protein Isl2. eLife 2023; 12:e84596. [PMID: 37869988 PMCID: PMC10637776 DOI: 10.7554/elife.84596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
The fidelity of motor control requires the precise positional arrangement of motor pools and the establishment of synaptic connections between them. During neural development in the spinal cord, motor nerves project to specific target muscles and receive proprioceptive input from these muscles via the sensorimotor circuit. LIM-homeodomain transcription factors are known to play a crucial role in successively restricting specific motor neuronal fates. However, their exact contribution to limb-based motor pools and locomotor circuits has not been fully understood. To address this, we conducted an investigation into the role of Isl2, a LIM-homeodomain transcription factor, in motor pool organization. We found that deletion of Isl2 led to the dispersion of motor pools, primarily affecting the median motor column (MMC) and lateral motor column (LMC) populations. Additionally, hindlimb motor pools lacked Etv4 expression, and we observed reduced terminal axon branching and disorganized neuromuscular junctions in Isl2-deficient mice. Furthermore, we performed transcriptomic analysis on the spinal cords of Isl2-deficient mice and identified a variety of downregulated genes associated with motor neuron (MN) differentiation, axon development, and synapse organization in hindlimb motor pools. As a consequence of these disruptions, sensorimotor connectivity and hindlimb locomotion were impaired in Isl2-deficient mice. Taken together, our findings highlight the critical role of Isl2 in organizing motor pool position and sensorimotor circuits in hindlimb motor pools. This research provides valuable insights into the molecular mechanisms governing motor control and its potential implications for understanding motor-related disorders in humans.
Collapse
Affiliation(s)
- Yunjeong Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - In Seo Yeo
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Namhee Kim
- Fermentation Regulation Technology Research Group, World Institute of KimchiGwangjuRepublic of Korea
| | - Dong-Keun Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Kyung-Tai Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of ToxicologyJeongeup-siRepublic of Korea
| | - Jiyoung Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Jawoon Yi
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Young Bin Hong
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of Biochemistry, College of Medicine, Dong-A UniversityBusanRepublic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Yoichi Kosodo
- Korea Brain Research InstituteDaeguRepublic of Korea
| | - Daesoo Kim
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| |
Collapse
|
8
|
Taylor SR, Kobayashi M, Vilella A, Tiwari D, Zolboot N, Du JX, Spencer KR, Hartzell A, Girgiss C, Abaci YT, Shao Y, De Sanctis C, Bellenchi GC, Darnell RB, Gross C, Zoli M, Berg DK, Lippi G. MicroRNA-218 instructs proper assembly of hippocampal networks. eLife 2023; 12:e82729. [PMID: 37862092 PMCID: PMC10637775 DOI: 10.7554/elife.82729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
The assembly of the mammalian brain is orchestrated by temporally coordinated waves of gene expression. Post-transcriptional regulation by microRNAs (miRNAs) is a key aspect of this program. Indeed, deletion of neuron-enriched miRNAs induces strong developmental phenotypes, and miRNA levels are altered in patients with neurodevelopmental disorders. However, the mechanisms used by miRNAs to instruct brain development remain largely unexplored. Here, we identified miR-218 as a critical regulator of hippocampal assembly. MiR-218 is highly expressed in the hippocampus and enriched in both excitatory principal neurons (PNs) and GABAergic inhibitory interneurons (INs). Early life inhibition of miR-218 results in an adult brain with a predisposition to seizures. Changes in gene expression in the absence of miR-218 suggest that network assembly is impaired. Indeed, we find that miR-218 inhibition results in the disruption of early depolarizing GABAergic signaling, structural defects in dendritic spines, and altered intrinsic membrane excitability. Conditional knockout of Mir218-2 in INs, but not PNs, is sufficient to recapitulate long-term instability. Finally, de-repressing Kif21b and Syt13, two miR-218 targets, phenocopies the effects on early synchronous network activity induced by miR-218 inhibition. Taken together, the data suggest that miR-218 orchestrates formative events in PNs and INs to produce stable networks.
Collapse
Affiliation(s)
- Seth R Taylor
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Mariko Kobayashi
- Laboratory of Molecular Neuro-oncology, Howard Hughes Medical Institute, Rockefeller UniversityNew YorkUnited States
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences; Center for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio EmiliaModenaItaly
| | - Durgesh Tiwari
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Norjin Zolboot
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Jessica X Du
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Kathryn R Spencer
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Andrea Hartzell
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Carol Girgiss
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Yusuf T Abaci
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Yufeng Shao
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | | | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics A Buzzati-TraversoNaplesItaly
- IRCCS Fondazione Santa LuciaRomeItaly
| | - Robert B Darnell
- Laboratory of Molecular Neuro-oncology, Howard Hughes Medical Institute, Rockefeller UniversityNew YorkUnited States
| | - Christina Gross
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences; Center for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio EmiliaModenaItaly
| | - Darwin K Berg
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Giordano Lippi
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
9
|
Chen TH, Chang SH, Wu YF, Yen YP, Hsu FY, Chen YC, Ming Y, Hsu HC, Su YC, Wong ST, Hung JH, Chiou SH, Jong YJ, Chen JA. MiR34 contributes to spinal muscular atrophy and AAV9-mediated delivery of MiR34a ameliorates the motor deficits in SMA mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:144-160. [PMID: 37064776 PMCID: PMC10090489 DOI: 10.1016/j.omtn.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by the selective loss of spinal motor neurons (MNs) and concomitant muscle weakness. Mutation of SMN1 is known to cause SMA, and restoring SMN protein levels via antisense oligonucleotide treatment is effective for ameliorating symptoms. However, this approach is hindered by exorbitant costs, invasive procedures, and poor treatment responses of some patients. Here, we seek to circumvent these hurdles by identifying reliable biomarkers that could predict treatment efficacy. We uncovered that MiR34 exhibits consistent downregulation during SMA progression in both human and rodent contexts. Importantly, Mir34 family-knockout mice display axon swelling and reduced neuromuscular junction (NMJ) endplates, recapitulating SMA pathology. Introducing MiR34a via scAAV9 improved the motor ability of SMNΔ7 mice, possibly by restoring NMJ endplate size. Finally, we observed a consistent decreasing trend in MiR34 family expression in the cerebrospinal fluid (CSF) of type I SMA patients during the loading phase of nusinersen treatment. Baseline CSF MiR34 levels before nusinersen injection proved predictive of patient motor skills 1 year later. Thus, we propose that MiR34 may serve as a biomarker of SMA since it is associated with the pathology and can help evaluate the therapeutic effects of nusinersen.
Collapse
Affiliation(s)
- Tai-Heng Chen
- PhD Program in Translational Medicine, Kaohsiung Medical University, Kaohsiung 80708, and Academia Sinica, Taipei 11529, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Department of Pediatrics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Hsin Chang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Fu Wu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 11529, Taiwan
| | - Ya-Ping Yen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 11529, Taiwan
| | - Fang-Yu Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 11529, Taiwan
| | - Yen-Chung Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yang Ming
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ho-Chiang Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ching Su
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Sheng-Tang Wong
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 30093, Taiwan
| | - Jui-Hung Hung
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 30093, Taiwan
| | - Shih-Hwa Chiou
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Innovative Cellular Therapy Center, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yuh-Jyh Jong
- PhD Program in Translational Medicine, Kaohsiung Medical University, Kaohsiung 80708, and Academia Sinica, Taipei 11529, Taiwan
- Department of Pediatrics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30093, Taiwan
| | - Jun-An Chen
- PhD Program in Translational Medicine, Kaohsiung Medical University, Kaohsiung 80708, and Academia Sinica, Taipei 11529, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
10
|
Kołosowska KA, Schratt G, Winterer J. microRNA-dependent regulation of gene expression in GABAergic interneurons. Front Cell Neurosci 2023; 17:1188574. [PMID: 37213213 PMCID: PMC10196030 DOI: 10.3389/fncel.2023.1188574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 05/23/2023] Open
Abstract
Information processing within neuronal circuits relies on their proper development and a balanced interplay between principal and local inhibitory interneurons within those circuits. Gamma-aminobutyric acid (GABA)ergic inhibitory interneurons are a remarkably heterogeneous population, comprising subclasses based on their morphological, electrophysiological, and molecular features, with differential connectivity and activity patterns. microRNA (miRNA)-dependent post-transcriptional control of gene expression represents an important regulatory mechanism for neuronal development and plasticity. miRNAs are a large group of small non-coding RNAs (21-24 nucleotides) acting as negative regulators of mRNA translation and stability. However, while miRNA-dependent gene regulation in principal neurons has been described heretofore in several studies, an understanding of the role of miRNAs in inhibitory interneurons is only beginning to emerge. Recent research demonstrated that miRNAs are differentially expressed in interneuron subclasses, are vitally important for migration, maturation, and survival of interneurons during embryonic development and are crucial for cognitive function and memory formation. In this review, we discuss recent progress in understanding miRNA-dependent regulation of gene expression in interneuron development and function. We aim to shed light onto mechanisms by which miRNAs in GABAergic interneurons contribute to sculpting neuronal circuits, and how their dysregulation may underlie the emergence of numerous neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Jochen Winterer
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| |
Collapse
|
11
|
Xu HJ, Yao Y, Yao F, Chen J, Li M, Yang X, Li S, Lu F, Hu P, He S, Peng G, Jing N. Generation of functional posterior spinal motor neurons from hPSCs-derived human spinal cord neural progenitor cells. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:15. [PMID: 36949352 PMCID: PMC10033800 DOI: 10.1186/s13619-023-00159-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/24/2023] [Indexed: 03/24/2023]
Abstract
Spinal motor neurons deficiency results in a series of devastating disorders such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA) and spinal cord injury (SCI). These disorders are currently incurable, while human pluripotent stem cells (hPSCs)-derived spinal motor neurons are promising but suffered from inappropriate regional identity and functional immaturity for the study and treatment of posterior spinal cord related injuries. In this study, we have established human spinal cord neural progenitor cells (hSCNPCs) via hPSCs differentiated neuromesodermal progenitors (NMPs) and demonstrated the hSCNPCs can be continuously expanded up to 40 passages. hSCNPCs can be rapidly differentiated into posterior spinal motor neurons with high efficiency. The functional maturity has been examined in detail. Moreover, a co-culture scheme which is compatible for both neural and muscular differentiation is developed to mimic the neuromuscular junction (NMJ) formation in vitro. Together, these studies highlight the potential avenues for generating clinically relevant spinal motor neurons and modeling neuromuscular diseases through our defined hSCNPCs.
Collapse
Affiliation(s)
- He Jax Xu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yao Yao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fenyong Yao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiehui Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meishi Li
- University of Chinese Academy of Sciences, Beijing, China
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xianfa Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangzhou Laboratory/Bioland Laboratory, Guangzhou, 510005, China
| | - Sheng Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 20023, China
| | - Fangru Lu
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ping Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangzhou Laboratory/Bioland Laboratory, Guangzhou, 510005, China
- Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 20023, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuijin He
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Guangdun Peng
- University of Chinese Academy of Sciences, Beijing, China.
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, 510005, China.
| | - Naihe Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Guangzhou Laboratory/Bioland Laboratory, Guangzhou, 510005, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
12
|
von Rüden EL, Janssen-Peters H, Reiber M, van Dijk RM, Xiao K, Seiffert I, Koska I, Hubl C, Thum T, Potschka H. An exploratory approach to identify microRNAs as circulatory biomarker candidates for epilepsy-associated psychiatric comorbidities in an electrical post-status epilepticus model. Sci Rep 2023; 13:4552. [PMID: 36941269 PMCID: PMC10027890 DOI: 10.1038/s41598-023-31017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Patients with epilepsy have a high risk of developing psychiatric comorbidities, and there is a particular need for early detection of these comorbidities. Here, in an exploratory, hypothesis-generating approach, we aimed to identify microRNAs as potential circulatory biomarkers for epilepsy-associated psychiatric comorbidities across different rat models of epilepsy. The identification of distress-associated biomarkers can also contribute to animal welfare assessment. MicroRNA expression profiles were analyzed in blood samples from the electrical post-status epilepticus (SE) model. Preselected microRNAs were correlated with behavioral and biochemical parameters in the electrical post-SE model, followed by quantitative real-time PCR validation in three additional well-described rat models of epilepsy. Six microRNAs (miR-376a, miR-429, miR-494, miR-697, miR-763, miR-1903) were identified showing a positive correlation with weight gain in the early post-insult phase as well as a negative correlation with social interaction, saccharin preference, and plasma BDNF. Real-time PCR validation confirmed miR-203, miR-429, and miR-712 as differentially expressed with miR-429 being upregulated across epilepsy models. While readouts from the electrical post-SE model suggest different microRNA candidates for psychiatric comorbidities, cross-model analysis argues against generalizability across models. Thus, further research is necessary to compare the predictive validity of rodent epilepsy models for detection and management of psychiatric comorbidities.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Heike Janssen-Peters
- Hannover Medical School (MHH), Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover, Germany
| | - Maria Reiber
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Roelof Maarten van Dijk
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Ke Xiao
- Hannover Medical School (MHH), Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover, Germany
| | - Isabel Seiffert
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Ines Koska
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Christina Hubl
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Thomas Thum
- Hannover Medical School (MHH), Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany.
| |
Collapse
|
13
|
Single-cell transcriptomic analysis reveals diversity within mammalian spinal motor neurons. Nat Commun 2023; 14:46. [PMID: 36596814 PMCID: PMC9810664 DOI: 10.1038/s41467-022-35574-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Spinal motor neurons (MNs) integrate sensory stimuli and brain commands to generate movements. In vertebrates, the molecular identities of the cardinal MN types such as those innervating limb versus trunk muscles are well elucidated. Yet the identities of finer subtypes within these cell populations that innervate individual muscle groups remain enigmatic. Here we investigate heterogeneity in mouse MNs using single-cell transcriptomics. Among limb-innervating MNs, we reveal a diverse neuropeptide code for delineating putative motor pool identities. Additionally, we uncover that axial MNs are subdivided into three molecularly distinct subtypes, defined by mediolaterally-biased Satb2, Nr2f2 or Bcl11b expression patterns with different axon guidance signatures. These three subtypes are present in chicken and human embryos, suggesting a conserved axial MN expression pattern across higher vertebrates. Overall, our study provides a molecular resource of spinal MN types and paves the way towards deciphering how neuronal subtypes evolved to accommodate vertebrate motor behaviors.
Collapse
|
14
|
Martins LF, Brambilla I, Motta A, de Pretis S, Bhat GP, Badaloni A, Malpighi C, Amin ND, Imai F, Almeida RD, Yoshida Y, Pfaff SL, Bonanomi D. Motor neurons use push-pull signals to direct vascular remodeling critical for their connectivity. Neuron 2022; 110:4090-4107.e11. [PMID: 36240771 PMCID: PMC10316999 DOI: 10.1016/j.neuron.2022.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/19/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022]
Abstract
The nervous system requires metabolites and oxygen supplied by the neurovascular network, but this necessitates close apposition of neurons and endothelial cells. We find motor neurons attract vessels with long-range VEGF signaling, but endothelial cells in the axonal pathway are an obstacle for establishing connections with muscles. It is unclear how this paradoxical interference from heterotypic neurovascular contacts is averted. Through a mouse mutagenesis screen, we show that Plexin-D1 receptor is required in endothelial cells for development of neuromuscular connectivity. Motor neurons release Sema3C to elicit short-range repulsion via Plexin-D1, thus displacing endothelial cells that obstruct axon growth. When this signaling pathway is disrupted, epaxial motor neurons are blocked from reaching their muscle targets and concomitantly vascular patterning in the spinal cord is altered. Thus, an integrative system of opposing push-pull cues ensures detrimental axon-endothelial encounters are avoided while enabling vascularization within the nervous system and along peripheral nerves.
Collapse
Affiliation(s)
- Luis F Martins
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Ilaria Brambilla
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Alessia Motta
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Stefano de Pretis
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy; Center for Omics Sciences, San Raffaele Scientific Institute, Milan, Italy
| | - Ganesh Parameshwar Bhat
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Aurora Badaloni
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Chiara Malpighi
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Neal D Amin
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Fumiyasu Imai
- Burke Neurological Institute, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ramiro D Almeida
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal; iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Yutaka Yoshida
- Burke Neurological Institute, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA; Neural Circuit Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Samuel L Pfaff
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA.
| | - Dario Bonanomi
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
15
|
Akter M, Ding B. Modeling Movement Disorders via Generation of hiPSC-Derived Motor Neurons. Cells 2022; 11:3796. [PMID: 36497056 PMCID: PMC9737271 DOI: 10.3390/cells11233796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Generation of motor neurons (MNs) from human-induced pluripotent stem cells (hiPSCs) overcomes the limited access to human brain tissues and provides an unprecedent approach for modeling MN-related diseases. In this review, we discuss the recent progression in understanding the regulatory mechanisms of MN differentiation and their applications in the generation of MNs from hiPSCs, with a particular focus on two approaches: induction by small molecules and induction by lentiviral delivery of transcription factors. At each induction stage, different culture media and supplements, typical growth conditions and cellular morphology, and specific markers for validation of cell identity and quality control are specifically discussed. Both approaches can generate functional MNs. Currently, the major challenges in modeling neurological diseases using iPSC-derived neurons are: obtaining neurons with high purity and yield; long-term neuron culture to reach full maturation; and how to culture neurons more physiologically to maximize relevance to in vivo conditions.
Collapse
Affiliation(s)
| | - Baojin Ding
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| |
Collapse
|
16
|
Soto X, Burton J, Manning CS, Minchington T, Lea R, Lee J, Kursawe J, Rattray M, Papalopulu N. Sequential and additive expression of miR-9 precursors control timing of neurogenesis. Development 2022; 149:276990. [PMID: 36189829 PMCID: PMC9641661 DOI: 10.1242/dev.200474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/26/2022] [Indexed: 11/06/2022]
Abstract
MicroRNAs (miRs) have an important role in tuning dynamic gene expression. However, the mechanism by which they are quantitatively controlled is unknown. We show that the amount of mature miR-9, a key regulator of neuronal development, increases during zebrafish neurogenesis in a sharp stepwise manner. We characterize the spatiotemporal profile of seven distinct microRNA primary transcripts (pri-mir)-9s that produce the same mature miR-9 and show that they are sequentially expressed during hindbrain neurogenesis. Expression of late-onset pri-mir-9-1 is added on to, rather than replacing, the expression of early onset pri-mir-9-4 and -9-5 in single cells. CRISPR/Cas9 mutation of the late-onset pri-mir-9-1 prevents the developmental increase of mature miR-9, reduces late neuronal differentiation and fails to downregulate Her6 at late stages. Mathematical modelling shows that an adaptive network containing Her6 is insensitive to linear increases in miR-9 but responds to stepwise increases of miR-9. We suggest that a sharp stepwise increase of mature miR-9 is created by sequential and additive temporal activation of distinct loci. This may be a strategy to overcome adaptation and facilitate a transition of Her6 to a new dynamic regime or steady state.
Collapse
Affiliation(s)
- Ximena Soto
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK,Authors for correspondence (; )
| | - Joshua Burton
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Cerys S. Manning
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Thomas Minchington
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Robert Lea
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Jessica Lee
- Discovery Department, Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Jochen Kursawe
- School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK
| | - Magnus Rattray
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nancy Papalopulu
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK,Authors for correspondence (; )
| |
Collapse
|
17
|
Zhang P, Rasheed M, Liang J, Wang C, Feng L, Chen Z. Emerging Potential of Exosomal Non-coding RNA in Parkinson’s Disease: A Review. Front Aging Neurosci 2022; 14:819836. [PMID: 35360206 PMCID: PMC8960858 DOI: 10.3389/fnagi.2022.819836] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Exosomes are extracellular vesicles that are released by cells and circulate freely in body fluids. Under physiological and pathological conditions, they serve as cargo for various biological substances such as nucleotides (DNA, RNA, ncRNA), lipids, and proteins. Recently, exosomes have been revealed to have an important role in the pathophysiology of several neurodegenerative illnesses, including Parkinson’s disease (PD). When secreted from damaged neurons, these exosomes are enriched in non-coding RNAs (e.g., miRNAs, lncRNAs, and circRNAs) and display wide distribution characteristics in the brain and periphery, bridging the gap between normal neuronal function and disease pathology. However, the current status of ncRNAs carried in exosomes regulating neuroprotection and PD pathogenesis lacks a systematic summary. Therefore, this review discussed the significance of ncRNAs exosomes in maintaining the normal neuron function and their pathogenic role in PD progression. Additionally, we have emphasized the importance of ncRNAs exosomes as potential non-invasive diagnostic and screening agents for the early detection of PD. Moreover, bioengineered exosomes are proposed to be used as drug carriers for targeted delivery of RNA interference molecules across the blood-brain barrier without immune system interference. Overall, this review highlighted the diverse characteristics of ncRNA exosomes, which may aid researchers in characterizing future exosome-based biomarkers for early PD diagnosis and tailored PD medicines.
Collapse
Affiliation(s)
- Peng Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Madiha Rasheed
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Junhan Liang
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Chaolei Wang
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- *Correspondence: Lin Feng,
| | - Zixuan Chen
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
- Zixuan Chen,
| |
Collapse
|
18
|
Amin ND, Senturk G, Hayashi M, Driscoll SP, Pfaff SL. Detecting microRNA-mediated gene regulatory effects in murine neuronal subpopulations. STAR Protoc 2022; 3:101130. [PMID: 35146446 PMCID: PMC8801384 DOI: 10.1016/j.xpro.2022.101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
microRNAs (miRNAs) have unique gene regulatory effects in different neuronal subpopulations. Here, we describe a protocol to identify neuronal subtype-specific effects of a miRNA in murine motor neuron subpopulations. We detail the preparation of primary mouse spinal tissue for single cell RNA sequencing and bioinformatics analyses of pseudobulk expression data. This protocol applies differential gene expression testing approaches to identify miRNA target networks in heterogeneous neuronal subpopulations that cannot otherwise be captured by bulk RNA sequencing approaches. For complete details on the use and execution of this protocol, please refer to Amin et al. (2021). Careful removal of the meninges during embryonic mouse spinal cord dissection Fluorescence-activated cell sorting of motor neurons Perform differential expression testing between cell populations identified in silico Hypergeometric enrichment analysis detects dysregulated miRNA targets
Collapse
|