1
|
Iosilevskii Y, Hall DH, Katz M, Podbilewicz B. The PVD neuron has male-specific structure and mating function in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2025; 122:e2421376122. [PMID: 40138342 PMCID: PMC12002248 DOI: 10.1073/pnas.2421376122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Neurons display unique shapes and establish intricate networks, which may differ between sexes. In complex organisms, studying sex differences in structure and function of individual neurons is difficult. The nematode Caenorhabditis elegans hermaphrodites and males present an exceptional model for studying neuronal morphogenesis in a simple, sexually dimorphic system. We focus on the polymodal sensory bilateral neuron pair PVD, which forms a complex but stereotypic dendritic tree composed of multiple subunits that resemble candelabra. PVD is well studied in hermaphrodites, but not in males. We show here that during larval development, male PVD extends a similar architecture to the hermaphrodite utilizing the sexually shared Menorin patterning mechanism. In early adulthood, however, male PVD develops a unique extension into the copulatory tail structure. Alongside established tail ray neurons RnA and RnB, we show PVD is a third, previously unrecognized, neuron within the tail rays. Unlike RnA and RnB, PVD extends anterogradely, branches and turns within the ray hypodermis, and is nonciliated. This PVD sexually dimorphic arborization is absent in mutant backgrounds which perturb the Menorin guidance complex. SAX-7/L1CAM, a hypodermal component of this complex, shows a male-specific expression pattern which precedes PVD extension, and its presence allows PVD to enter the tail rays. Further, our results reveal that genetically altered arborization or ablation of the PVD results in male mating behavioral defects, particularly as males turn around the hermaphrodite. These results uncover an adult-stage sexual dimorphism of dendritic branching and a function for PVD in male sexual behavior.
Collapse
Affiliation(s)
- Yael Iosilevskii
- Department of Biology, Technion—Israel Institute of Technology, Haifa32000, Israel
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY10461
| | - Menachem Katz
- Department of Biology, Technion—Israel Institute of Technology, Haifa32000, Israel
| | - Benjamin Podbilewicz
- Department of Biology, Technion—Israel Institute of Technology, Haifa32000, Israel
| |
Collapse
|
2
|
Zou W, Fan Y, Liu J, Cheng H, Hong H, Al-Sheikh U, Li S, Zhu L, Li R, He L, Tang YQ, Zhao G, Zhang Y, Wang F, Zhan R, Zheng X, Kang L. Anoctamin-1 is a core component of a mechanosensory anion channel complex in C. elegans. Nat Commun 2025; 16:1680. [PMID: 39956854 PMCID: PMC11830769 DOI: 10.1038/s41467-025-56938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/06/2025] [Indexed: 02/18/2025] Open
Abstract
Mechanotransduction channels are widely expressed in both vertebrates and invertebrates, mediating various physiological processes such as touch, hearing and blood-pressure sensing. While previously known mechanotransduction channels in metazoans are primarily cation-selective, we identified Anoctamin-1 (ANOH-1), the C. elegans homolog of mammalian calcium-activated chloride channel ANO1/TMEM16A, as an essential component of a mechanosensory channel complex that contributes to the nose touch mechanosensation in C. elegans. Ectopic expression of either C. elegans or human Anoctamin-1 confers mechanosensitivity to touch-insensitive neurons, suggesting a cell-autonomous role of ANOH-1/ANO1 in mechanotransduction. Additionally, we demonstrated that the mechanosensory function of ANOH-1/ANO1 relies on CIB (calcium- and integrin- binding) proteins. Thus, our results reveal an evolutionarily conserved chloride channel involved in mechanosensory transduction in metazoans, highlighting the importance of anion channels in mechanosensory processes.
Collapse
Affiliation(s)
- Wenjuan Zou
- Department of Neurosurgery of the First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Zhejiang, China.
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China.
| | - Yuedan Fan
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia Liu
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hankui Cheng
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huitao Hong
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Umar Al-Sheikh
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shitian Li
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Linhui Zhu
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rong Li
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Longyuan He
- Department of Neurosurgery of the First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Zhejiang, China
| | - Yi-Quan Tang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Fudan University, Shanghai, China
| | - Guohua Zhao
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongming Zhang
- Department of Ophthalmology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Wang
- Department of Neurosurgery of the First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Zhejiang, China
| | - Renya Zhan
- Department of Neurosurgery of the First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Zhejiang, China
| | - Xiujue Zheng
- Department of Neurosurgery of the First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Zhejiang, China
| | - Lijun Kang
- Department of Neurosurgery of the First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Zhejiang, China.
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Wang C, Ronan EA, Iliff AJ, Al-Ebidi R, Kitsopoulos P, Grosh K, Liu J, Xu XS. Characterization of auditory sensation in C. elegans. BIOPHYSICS REPORTS 2024; 10:351-363. [PMID: 39758425 PMCID: PMC11693501 DOI: 10.52601/bpr.2024.240027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/12/2024] [Indexed: 01/07/2025] Open
Abstract
Research using the model organism nematode C. elegans has greatly facilitated our understanding of sensory biology, including touch, olfaction, taste, vision and proprioception. While hearing had long been considered to be restricted to vertebrates and some arthropods, we recently discovered that C. elegans is capable of sensing and responding to airborne sound in a frequency and sound source-size-dependent manner. C. elegans auditory sensation occurs when airborne sound physically vibrates their external cuticle (skin) to activate the sound-sensitive mechanosensory FLP/PVD neurons via nicotinic acetylcholine receptors (nAChRs), triggering aversive phonotaxis behavior. Here, we report stepwise methods to characterize these three features of C. elegans auditory sensation, including sound-evoked skin vibration, neuronal activation, and behavior. This approach provides an accessible platform to investigate the cellular and molecular mechanisms underlying auditory sensation and mechanotransduction mechanisms in C. elegans.
Collapse
Affiliation(s)
- Can Wang
- Life Sciences Institute, University of Michigan, Ann Arbor 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor 48109, USA
| | - Elizabeth A. Ronan
- Life Sciences Institute, University of Michigan, Ann Arbor 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor 48109, USA
| | - Adam J. Iliff
- Life Sciences Institute, University of Michigan, Ann Arbor 48109, USA
| | - Rawan Al-Ebidi
- Life Sciences Institute, University of Michigan, Ann Arbor 48109, USA
| | | | - Karl Grosh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor 48109, USA
| | - Jianfeng Liu
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan 430074, China
| | - X.Z. Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor 48109, USA
| |
Collapse
|
4
|
Zhang Z, Li X, Wang C, Zhang F, Liu J, Xu XZS. Shear stress sensing in C. elegans. Curr Biol 2024; 34:5382-5391.e3. [PMID: 39471806 PMCID: PMC11576262 DOI: 10.1016/j.cub.2024.09.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 09/26/2024] [Indexed: 11/01/2024]
Abstract
Shear stress sensing represents a vital mode of mechanosensation.1 Previous efforts have mainly focused on characterizing how various cell types-for example, vascular endothelial cells-sense shear stress arising from fluid flow within the animal body.1,2 How animals sense shear stress derived from their external environment, however, is not well understood. Here, using C. elegans as a model, we show that external fluid flow triggers behavioral responses in C. elegans, facilitating their navigation of the environment during swimming. Such behavioral responses primarily result from shear stress generated by fluid flow. The sensory neurons AWC, ASH, and ASER are the major shear stress-sensitive neurons, among which AWC shows the most robust response to shear stress and is required for shear stress-induced behavior. Mechanistically, shear stress signals are transduced by G protein signaling in AWC, with cGMP as the second messenger, culminating in the opening of cGMP-sensitive cyclic nucleotide-gated (CNG) channels and neuronal excitation. These studies demonstrate that C. elegans senses and responds to shear stress and characterize the underlying neural and molecular mechanisms. Our work helps establish C. elegans as a genetic model for studying shear stress sensing.
Collapse
Affiliation(s)
- Zhiyong Zhang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China; Life Sciences Institute, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xia Li
- Life Sciences Institute, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Can Wang
- Life Sciences Institute, Ann Arbor, MI, USA
| | - Fengfan Zhang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China; Life Sciences Institute, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianfeng Liu
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| | - X Z Shawn Xu
- Life Sciences Institute, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
6
|
Heiman MG, Bülow HE. Dendrite morphogenesis in Caenorhabditis elegans. Genetics 2024; 227:iyae056. [PMID: 38785371 PMCID: PMC11151937 DOI: 10.1093/genetics/iyae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Since the days of Ramón y Cajal, the vast diversity of neuronal and particularly dendrite morphology has been used to catalog neurons into different classes. Dendrite morphology varies greatly and reflects the different functions performed by different types of neurons. Significant progress has been made in our understanding of how dendrites form and the molecular factors and forces that shape these often elaborately sculpted structures. Here, we review work in the nematode Caenorhabditis elegans that has shed light on the developmental mechanisms that mediate dendrite morphogenesis with a focus on studies investigating ciliated sensory neurons and the highly elaborated dendritic trees of somatosensory neurons. These studies, which combine time-lapse imaging, genetics, and biochemistry, reveal an intricate network of factors that function both intrinsically in dendrites and extrinsically from surrounding tissues. Therefore, dendrite morphogenesis is the result of multiple tissue interactions, which ultimately determine the shape of dendritic arbors.
Collapse
Affiliation(s)
- Maxwell G Heiman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
7
|
Bhar S, Yoon CS, Mai K, Han J, Prajapati DV, Wang Y, Steffen CL, Bailey LS, Basso KB, Butcher RA. An acyl-CoA thioesterase is essential for the biosynthesis of a key dauer pheromone in C. elegans. Cell Chem Biol 2024; 31:1011-1022.e6. [PMID: 38183989 PMCID: PMC11102344 DOI: 10.1016/j.chembiol.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/02/2023] [Accepted: 12/10/2023] [Indexed: 01/08/2024]
Abstract
Methyl ketone (MK)-ascarosides represent essential components of several pheromones in Caenorhabditis elegans, including the dauer pheromone, which triggers the stress-resistant dauer larval stage, and the male-attracting sex pheromone. Here, we identify an acyl-CoA thioesterase, ACOT-15, that is required for the biosynthesis of MK-ascarosides. We propose a model in which ACOT-15 hydrolyzes the β-keto acyl-CoA side chain of an ascaroside intermediate during β-oxidation, leading to decarboxylation and formation of the MK. Using comparative metabolomics, we identify additional ACOT-15-dependent metabolites, including an unusual piperidyl-modified ascaroside, reminiscent of the alkaloid pelletierine. The β-keto acid generated by ACOT-15 likely couples to 1-piperideine to produce the piperidyl ascaroside, which is much less dauer-inducing than the dauer pheromone, asc-C6-MK (ascr#2, 1). The bacterial food provided influences production of the piperidyl ascaroside by the worm. Our work shows how the biosynthesis of MK- and piperidyl ascarosides intersect and how bacterial food may impact chemical signaling in the worm.
Collapse
Affiliation(s)
- Subhradeep Bhar
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Chi-Su Yoon
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kevin Mai
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Jungsoo Han
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Dilip V Prajapati
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Yuting Wang
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Candy L Steffen
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Laura S Bailey
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
8
|
Brar HK, Dey S, Singh P, Pande D, Ghosh-Roy A. Functional Recovery Associated with Dendrite Regeneration in PVD Neuron of Caenorhabditis elegans. eNeuro 2024; 11:ENEURO.0292-23.2024. [PMID: 38548333 PMCID: PMC7615967 DOI: 10.1523/eneuro.0292-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/18/2024] [Accepted: 03/03/2024] [Indexed: 05/02/2024] Open
Abstract
PVD neuron of Caenorhabditis elegans is a highly polarized cell with well-defined axonal, and dendritic compartments. PVD neuron operates in multiple sensory modalities including the control of both nociceptive touch sensation and body posture. Although both the axon and dendrites of this neuron show a regeneration response following laser-assisted injury, it is rather unclear how the behavior associated with this neuron is affected by the loss of these structures. It is also unclear whether neurite regrowth would lead to functional restoration in these neurons. Upon axotomy, using a femtosecond laser, we saw that harsh touch response was specifically affected leaving the body posture unperturbed. Subsequently, recovery in the touch response is highly correlated to the axon regrowth, which was dependent on DLK-1/MLK-1 MAP Kinase. Dendrotomy of both major and minor primary dendrites affected the wavelength and amplitude of sinusoidal movement without any apparent effect on harsh touch response. We further correlated the recovery in posture behavior to the type of dendrite regeneration events. We found that dendrite regeneration through the fusion and reconnection between the proximal and distal branches of the injured dendrite corresponded to improved recovery in posture. Our data revealed that the axons and dendrites of PVD neurons regulate the nociception and proprioception in worms, respectively. It also revealed that dendrite and axon regeneration lead to the restoration of these differential sensory modalities.
Collapse
Affiliation(s)
- Harjot Kaur Brar
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Swagata Dey
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Pallavi Singh
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Devashish Pande
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Anindya Ghosh-Roy
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| |
Collapse
|
9
|
Szigeti K, Ihnatovych I, Notari E, Dorn RP, Maly I, He M, Birkaya B, Prasad S, Byrne RS, Indurthi DC, Nimmer E, Heo Y, Retfalvi K, Chaves L, Sule N, Hofmann WA, Auerbach A, Wilding G, Bae Y, Reynolds J. CHRFAM7A diversifies human immune adaption through Ca 2+ signalling and actin cytoskeleton reorganization. EBioMedicine 2024; 103:105093. [PMID: 38569318 PMCID: PMC10999709 DOI: 10.1016/j.ebiom.2024.105093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Human restricted genes contribute to human specific traits in the immune system. CHRFAM7A, a uniquely human fusion gene, is a negative regulator of the α7 nicotinic acetylcholine receptor (α7 nAChR), the highest Ca2+ conductor of the ACh receptors implicated in innate immunity. Understanding the mechanism of how CHRFAM7A affects the immune system remains unexplored. METHODS Two model systems are used, human induced pluripotent stem cells (iPSC) and human primary monocytes, to characterize α7 nAChR function, Ca2+ dynamics and decoders to elucidate the pathway from receptor to phenotype. FINDINGS CHRFAM7A/α7 nAChR is identified as a hypomorphic receptor with mitigated Ca2+ influx and prolonged channel closed state. This shifts the Ca2+ reservoir from the extracellular space to the endoplasmic reticulum (ER) leading to Ca2+ dynamic changes. Ca2+ decoder small GTPase Rac1 is then activated, reorganizing the actin cytoskeleton. Observed actin mediated phenotypes include cellular adhesion, motility, phagocytosis and tissue mechanosensation. INTERPRETATION CHRFAM7A introduces an additional, human specific, layer to Ca2+ regulation leading to an innate immune gain of function. Through the actin cytoskeleton it drives adaptation to the mechanical properties of the tissue environment leading to an ability to invade previously immune restricted niches. Human genetic diversity predicts profound translational significance as its understanding builds the foundation for successful treatments for infectious diseases, sepsis, and cancer metastasis. FUNDING This work is supported in part by the Community Foundation for Greater Buffalo (Kinga Szigeti) and in part by NIH grant R01HL163168 (Yongho Bae).
Collapse
Affiliation(s)
- Kinga Szigeti
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA.
| | - Ivanna Ihnatovych
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Emily Notari
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Ryu P Dorn
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Ivan Maly
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Muye He
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Barbara Birkaya
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Shreyas Prasad
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Robin Schwartz Byrne
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Dinesh C Indurthi
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Erik Nimmer
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Yuna Heo
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Kolos Retfalvi
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Lee Chaves
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Norbert Sule
- Roswell Park Comprehensive Cancer Center, 665 Elm St, Buffalo, NY, 14203, USA
| | - Wilma A Hofmann
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Anthony Auerbach
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Gregory Wilding
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Yongho Bae
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Jessica Reynolds
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| |
Collapse
|
10
|
Nava S, Palma W, Wan X, Oh JY, Gharib S, Wang H, Revanna JS, Tan M, Zhang M, Liu J, Chen CH, Lee JS, Perry B, Sternberg PW. A cGAL-UAS bipartite expression toolkit for Caenorhabditis elegans sensory neurons. Proc Natl Acad Sci U S A 2023; 120:e2221680120. [PMID: 38096407 PMCID: PMC10743456 DOI: 10.1073/pnas.2221680120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 10/05/2023] [Indexed: 12/18/2023] Open
Abstract
Animals integrate sensory information from the environment and display various behaviors in response to external stimuli. In Caenorhabditis elegans hermaphrodites, 33 types of sensory neurons are responsible for chemosensation, olfaction, and mechanosensation. However, the functional roles of all sensory neurons have not been systematically studied due to the lack of facile genetic accessibility. A bipartite cGAL-UAS system has been previously developed to study tissue- or cell-specific functions in C. elegans. Here, we report a toolkit of new cGAL drivers that can facilitate the analysis of a vast majority of the 60 sensory neurons in C. elegans hermaphrodites. We generated 37 sensory neuronal cGAL drivers that drive cGAL expression by cell-specific regulatory sequences or intersection of two distinct regulatory regions with overlapping expression (split cGAL). Most cGAL-drivers exhibit expression in single types of cells. We also constructed 28 UAS effectors that allow expression of proteins to perturb or interrogate sensory neurons of choice. This cGAL-UAS sensory neuron toolkit provides a genetic platform to systematically study the functions of C. elegans sensory neurons.
Collapse
Affiliation(s)
- Stephanie Nava
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Wilber Palma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Xuan Wan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Jun Young Oh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Shahla Gharib
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Han Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Jasmin S. Revanna
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Minyi Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Mark Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Jonathan Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Chun-Hao Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - James S. Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Barbara Perry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
11
|
Buchinger TJ, Li W. Chemical communication and its role in sexual selection across Animalia. Commun Biol 2023; 6:1178. [PMID: 37985853 PMCID: PMC10662023 DOI: 10.1038/s42003-023-05572-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
Sexual selection has been studied as a major evolutionary driver of animal diversity for roughly 50 years. Much evidence indicates that competition for mates favors elaborate signaling traits. However, this evidence comes primarily from a few taxa, leaving sexual selection as a salient evolutionary force across Animalia largely untested. Here, we reviewed the evidence for sexual selection on communication across all animal phyla, classes, and orders with emphasis on chemoreception, the only sense shared across lifeforms. An exhaustive literature review documented evidence for sexual selection on chemosensory traits in 10 of 34 animal phyla and indications of sexual selection on chemosensory traits in an additional 13 phyla. Potential targets of sexual selection include structures and processes involved in production, delivery, and detection of chemical signals. Our review suggests sexual selection plays a widespread role in the evolution of communication and highlights the need for research that better reflects animal diversity.
Collapse
Affiliation(s)
- Tyler J Buchinger
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.
- Biology Department, Albion College, Albion, MI, USA.
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
12
|
Adams JRG, Pooranachithra M, Jyo EM, Zheng SL, Goncharov A, Crew JR, Kramer JM, Jin Y, Ernst AM, Chisholm AD. Nanoscale patterning of collagens in C. elegans apical extracellular matrix. Nat Commun 2023; 14:7506. [PMID: 37980413 PMCID: PMC10657453 DOI: 10.1038/s41467-023-43058-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023] Open
Abstract
Apical extracellular matrices (aECMs) are complex extracellular compartments that form important interfaces between animals and their environment. In the adult C. elegans cuticle, layers are connected by regularly spaced columnar structures known as struts. Defects in struts result in swelling of the fluid-filled medial cuticle layer ('blistering', Bli). Here we show that three cuticle collagens BLI-1, BLI-2, and BLI-6, play key roles in struts. BLI-1 and BLI-2 are essential for strut formation whereas activating mutations in BLI-6 disrupt strut formation. BLI-1, BLI-2, and BLI-6 precisely colocalize to arrays of puncta in the adult cuticle, corresponding to struts, initially deposited in diffuse stripes adjacent to cuticle furrows. They eventually exhibit tube-like morphology, with the basal ends of BLI-containing struts contact regularly spaced holes in the cuticle. Genetic interaction studies indicate that BLI strut patterning involves interactions with other cuticle components. Our results reveal strut formation as a tractable example of precise aECM patterning at the nanoscale.
Collapse
Affiliation(s)
- Jennifer R G Adams
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Erin M Jyo
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sherry Li Zheng
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alexandr Goncharov
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jennifer R Crew
- Northwestern University School of Medicine, Department of Cell and Molecular Biology, Chicago, IL, 60611, USA
| | - James M Kramer
- Northwestern University School of Medicine, Department of Cell and Molecular Biology, Chicago, IL, 60611, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andreas M Ernst
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andrew D Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
13
|
Fritzsch B, Elliott KL. Fish hearing revealed: Do we understand hearing in critical fishes and marine tetrapods. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:3019-3026. [PMID: 37955566 PMCID: PMC10769566 DOI: 10.1121/10.0022355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023]
Abstract
Hearing evolved in lampreys with a frequency range of 50-200 Hz. This hearing range is comparable to that of elasmobranchs, most non-teleosts, and lungfish. Elasmobranchs most likely use the saccule and the papilla neglecta (PN) for hearing. In non-teleosts and teleosts, lungfish, and certain tetrapods the saccule is the likely sensor for sound reception while the lagena and the PN are important for gravistatic sensing. Coelacanth and most tetrapods have a basilar papilla (BP) for hearing. In coelacanth and tetrapods, the hair cells of the BP are in contact with a basilar and a tectorial membrane. These membranes transmit mechanical vibrations. A cochlear aqueduct (CA) provides a connection between the cerebrospinal fluid that has a sodium rich space in coelacanth and tetrapods while the potassium rich endolymph is known in vertebrates. A unique feature is known in basic sarcopterygians, the intracranial joint, that never developed in actinopterygians and has been lost in lungfish and tetrapods. The BP in coelacanths is thought to generate pressure with the intracranial joint that will be transmitted to the CA. Lungs or a swim bladder are not forming in Chondrichthyes, structures that have a major impact on hearing in teleosts and tetrapods.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology & Department of Otolaryngology, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Karen L Elliott
- Department of Biology & Department of Otolaryngology, The University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
14
|
Wang C, Ronan EA, Kim SK, Kitsopoulos P, Iliff AJ, Grosh K, Kim GH, Liu J, Xu XZS. Sensing of sound pressure gradients by C. elegans drives phonotaxis behavior. Curr Biol 2023; 33:3985-3991.e4. [PMID: 37643623 PMCID: PMC10575617 DOI: 10.1016/j.cub.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/06/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023]
Abstract
Despite lacking ears, the nematode C. elegans senses airborne sound and engages in phonotaxis behavior, enabling it to locate and avoid sound sources.1 How worms sense sound, however, is not well understood. Here, we report an interesting observation that worms respond only to sounds emitted by small but not large speakers, indicating that they preferentially respond to localized sound sources. Notably, sounds emitted by small speakers form a sharp sound pressure gradient across the worm body, while sounds from large speakers do not, suggesting that worms sense sound pressure gradients rather than absolute sound pressure. Analysis of phonotaxis behavior, sound-evoked skin vibration, and sound-sensitive neuron activities further support this model. We suggest that the ability to sense sound pressure gradients provides a potential mechanism for worms to distinguish sounds generated by their predators, which are typically small animals, from those produced by large animals or background noise. As vertebrate cochlea and some insect ears can also detect sound pressure gradients, our results reveal that sensing of sound pressure gradients may represent a common mechanism in auditory sensation across animal phyla. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Can Wang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth A Ronan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shin-Kwan Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, South Korea
| | - Panagiota Kitsopoulos
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam J Iliff
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karl Grosh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gun-Ho Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, South Korea
| | - Jianfeng Liu
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - X Z Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
Tzeng CP, Shen K. Wnt signaling and contact-mediated repulsion shape sensory dendritic fields. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557812. [PMID: 37781584 PMCID: PMC10540810 DOI: 10.1101/2023.09.14.557812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The complete and non-redundant coverage of sensory tissues by neighboring neurons enables effective detection of stimuli in the environment. How the neurites of adjacent neurons establish their boundaries to achieve this completeness in coverage remains incompletely understood. Here, we use distinct fluorescent reporters to study two neighboring sensory neurons with complex dendritic arbors, FLP and PVD, in C. elegans . We quantify the sizes of their dendritic fields, and identify CWN-2/Wnt and LIN-17/Frizzled as a ligand and receptor that regulate the relative dendritic field sizes of these two neurons. Loss of either cwn-2 or lin-17 results in complementary changes in the size of the dendritic fields of both neurons; the FLP arbor expands, while that of PVD shrinks. Using an endogenous knock-in mNeonGreen-CWN-2/Wnt, we find that CWN-2/Wnt is localized along the path of growing FLP dendrites. Dynamic imaging shows a significant braking of FLP dendrite growth upon CWN-2/Wnt contact. We find that LIN-17/Frizzled functions cell-autonomously in FLP to limit dendritic field size and propose that PVD fills the space left by FLP through contact-induced retraction. Our results reveal that interactions of dendrites with adjacent dendrites and with environmental cues both shape the boundaries of neighboring dendritic fields. Highlights ▫ Secreted Wnt CWN-2 and cell-autonomous activity of neuronal LIN-17/Frizzled receptors restrict FLP dendritic field sizes▫ Endogenously tagged CWN-2/Wnt is punctate and visible in the same plane of growing FLP dendrites▫ Growth of developing FLP dendrites is inhibited upon contact with extracellular CWN-2/Wnt and with PVD dendrites.
Collapse
|
16
|
Li Z, Zhou J, Wani KA, Yu T, Ronan EA, Piggott BJ, Liu J, Xu XS. A C. elegans neuron both promotes and suppresses motor behavior to fine tune motor output. Front Mol Neurosci 2023; 16:1228980. [PMID: 37680582 PMCID: PMC10482346 DOI: 10.3389/fnmol.2023.1228980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
How neural circuits drive behavior is a central question in neuroscience. Proper execution of motor behavior requires precise coordination of many neurons. Within a motor circuit, individual neurons tend to play discrete roles by promoting or suppressing motor output. How exactly neurons function in specific roles to fine tune motor output is not well understood. In C. elegans, the interneuron RIM plays important yet complex roles in locomotion behavior. Here, we show that RIM both promotes and suppresses distinct features of locomotion behavior to fine tune motor output. This dual function is achieved via the excitation and inhibition of the same motor circuit by electrical and chemical neurotransmission, respectively. Additionally, this bi-directional regulation contributes to motor adaptation in animals placed in novel environments. Our findings reveal that individual neurons within a neural circuit may act in opposing ways to regulate circuit dynamics to fine tune behavioral output.
Collapse
Affiliation(s)
- Zhaoyu Li
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Jiejun Zhou
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- College of Life Science and Technology, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Khursheed A. Wani
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Teng Yu
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- College of Life Science and Technology, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Elizabeth A. Ronan
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Beverly J. Piggott
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Jianfeng Liu
- College of Life Science and Technology, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - X.Z. Shawn Xu
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
17
|
Zhang X, Xu XZS. Electroreception: Worms leap to insects for dispersal. Curr Biol 2023; 33:R775-R777. [PMID: 37490866 PMCID: PMC10914292 DOI: 10.1016/j.cub.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Electroreception is employed by some fishes to locate prey or predators. However, why the nematode Caenorhabditis elegans senses electric fields is unclear. A new study shows that electroreception helps these microscopic worms to attach themselves to insects for transportation.
Collapse
Affiliation(s)
- Xinxing Zhang
- Life Sciences Institute University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - X Z Shawn Xu
- Life Sciences Institute University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Fok A, Brissette B, Hallacy T, Ahamed H, Ho E, Ramanathan S, Ringstad N. High-fidelity encoding of mechanostimuli by tactile food-sensing neurons requires an ensemble of ion channels. Cell Rep 2023; 42:112452. [PMID: 37119137 PMCID: PMC10320741 DOI: 10.1016/j.celrep.2023.112452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/07/2023] [Accepted: 04/14/2023] [Indexed: 04/30/2023] Open
Abstract
The nematode C. elegans uses mechanosensitive neurons to detect bacteria, which are food for worms. These neurons release dopamine to suppress foraging and promote dwelling. Through a screen of genes highly expressed in dopaminergic food-sensing neurons, we identify a K2P-family potassium channel-TWK-2-that damps their activity. Strikingly, loss of TWK-2 restores mechanosensation to neurons lacking the NOMPC-like channel transient receptor potential 4 (TRP-4), which was thought to be the primary mechanoreceptor for tactile food sensing. The alternate mechanoreceptor mechanism uncovered by TWK-2 mutation requires three Deg/ENaC channel subunits: ASIC-1, DEL-3, and UNC-8. Analysis of cell-physiological responses to mechanostimuli indicates that TRP and Deg/ENaC channels work together to set the range of analog encoding of stimulus intensity and to improve signal-to-noise characteristics and temporal fidelity of food-sensing neurons. We conclude that a specialized mechanosensory modality-tactile food sensing-emerges from coordination of distinct force-sensing mechanisms housed in one type of sensory neuron.
Collapse
Affiliation(s)
- Alice Fok
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, and Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Benjamin Brissette
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, and Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Tim Hallacy
- Harvard University, Departments of Molecular and Cell Biology, Stem Cell and Regenerative Biology and Applied Physics, Cambridge, MA 10238, USA
| | - Hassan Ahamed
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, and Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Elver Ho
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, and Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Sharad Ramanathan
- Harvard University, Departments of Molecular and Cell Biology, Stem Cell and Regenerative Biology and Applied Physics, Cambridge, MA 10238, USA
| | - Niels Ringstad
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, and Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
19
|
Thapliyal S, Beets I, Glauser DA. Multisite regulation integrates multimodal context in sensory circuits to control persistent behavioral states in C. elegans. Nat Commun 2023; 14:3052. [PMID: 37236963 DOI: 10.1038/s41467-023-38685-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Maintaining or shifting between behavioral states according to context is essential for animals to implement fitness-promoting strategies. How the integration of internal state, past experience and sensory inputs orchestrates persistent multidimensional behavioral changes remains poorly understood. Here, we show that C. elegans integrates environmental temperature and food availability over different timescales to engage in persistent dwelling, scanning, global or glocal search strategies matching thermoregulatory and feeding needs. Transition between states, in each case, involves regulating multiple processes including AFD or FLP tonic sensory neurons activity, neuropeptide expression and downstream circuit responsiveness. State-specific FLP-6 or FLP-5 neuropeptide signaling acts on a distributed set of inhibitory GPCR(s) to promote scanning or glocal search, respectively, bypassing dopamine and glutamate-dependent behavioral state control. Integration of multimodal context via multisite regulation in sensory circuits might represent a conserved regulatory logic for a flexible prioritization on the valence of multiple inputs when operating persistent behavioral state transitions.
Collapse
Affiliation(s)
- Saurabh Thapliyal
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | | |
Collapse
|
20
|
Bye LJ, Finol-Urdaneta RK, Tae HS, Adams DJ. Nicotinic acetylcholine receptors: Key targets for attenuating neurodegenerative diseases. Int J Biochem Cell Biol 2023; 157:106387. [PMID: 36754161 DOI: 10.1016/j.biocel.2023.106387] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are master regulators of immune functions via the cholinergic anti-inflammatory pathway and are expressed in microglia, the brain's resident immune cells. There is an extensive dialogue between the neurons and the glial cells around them from which microglia are tasked with monitoring, nurturing, and defending their microenvironment. Dysregulation of any of these processes can have devastating and long-lasting consequences involving microglia-mediated neuroinflammation associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, amongst others. Disease-associated microglia acquire a distinguishing phenotype that emphasizes scavenging and defence functions while nurturing and repairing functions become muted. Attempts to resolve this critical imbalance remain a key focus of research. Furthermore, cholinergic modulation of neuroinflammation represents a promising avenue for treatment.
Collapse
Affiliation(s)
- Lydia J Bye
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522 Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522 Australia
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522 Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522 Australia.
| |
Collapse
|
21
|
Long T, Xie L, Pulati M, Wen Q, Guo X, Zhang D. C. elegans: Sensing the low-frequency profile of amplitude-modulated ultrasound. ULTRASONICS 2023; 128:106887. [PMID: 36395535 DOI: 10.1016/j.ultras.2022.106887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Several research groups have demonstrated that C. elegans can respond to pulsed ultrasound stimuli, and elucidating the underlying mechanisms is necessary to develop ultrasound neuromodulation. Here, amplitude-modulated (AM) ultrasound is applied to C. elegans, and its behavioral responses are investigated in detail. By loading surface acoustic waves (SAWs) onto free-moving worms on an agar surface, a carrier wave with a frequency of 8.80 MHz is selected. The signal is modulated by a rectangular or sinusoidal profile. It is demonstrated that sinusoidal modulation can produce similar responses in worms to rectangular modulation, with the strongest responses occurring at modulation frequencies of around 1.00 kHz. Meanwhile, the behavioral response is relatively weak when the ultrasonic signal is unmodulated, that is, when only the carrier wave is applied. At modulation frequencies other than 100.00 Hz to 10.00 kHz, the worms respond weakly, but when a second modulation frequency of 1.00 kHz is introduced, an improvement in response can be observed. These results suggest that C. elegans may sense the low-frequency envelope and respond to amplitude-modulated ultrasonic stimuli like an amplitude demodulator. MEC-4, an ion channel for touch sensing, is involved in the behavioral response of C. elegans to ultrasound in the present setup.
Collapse
Affiliation(s)
- Tianyang Long
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Linzhou Xie
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Mayibaier Pulati
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China
| | - Quan Wen
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
22
|
Wang L, Graziano B, Encalada N, Fernandez-Abascal J, Kaplan DH, Bianchi L. Glial regulators of ions and solutes required for specific chemosensory functions in Caenorhabditis elegans. iScience 2022; 25:105684. [PMID: 36567707 PMCID: PMC9772852 DOI: 10.1016/j.isci.2022.105684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/11/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Glia and accessory cells regulate the microenvironment around neurons and primary sensory cells. However, the impact of specific glial regulators of ions and solutes on functionally diverse primary cells is poorly understood. Here, we systemically investigate the requirement of ion channels and transporters enriched in Caenorhabditis elegans Amsh glia for the function of chemosensory neurons. Although Amsh glia ablated worms show reduced function of ASH, AWC, AWA, and ASE neurons, we show that the loss of glial enriched ion channels and transporters impacts these neurons differently, with nociceptor ASH being the most affected. Furthermore, our analysis underscores the importance of K+, Cl-, and nucleoside homeostasis in the Amphid sensory organ and uncovers the contribution of glial genes implicated in neurological disorders. Our findings build a unique fingerprint of each glial enriched ion channel and transporter and may provide insights into the function of supporting cells of mammalian sensory organs.
Collapse
Affiliation(s)
- Lei Wang
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Bianca Graziano
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Nicole Encalada
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Jesus Fernandez-Abascal
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Daryn H. Kaplan
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Laura Bianchi
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| |
Collapse
|
23
|
Cadd LC, Crooks B, Marks NJ, Maule AG, Mousley A, Atkinson LE. The Strongyloides bioassay toolbox: A unique opportunity to accelerate functional biology for nematode parasites. Mol Biochem Parasitol 2022; 252:111526. [PMID: 36240960 DOI: 10.1016/j.molbiopara.2022.111526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 12/31/2022]
Abstract
Caenorhabditis elegans is a uniquely powerful tool to aid understanding of fundamental nematode biology. While C. elegans boasts an unrivalled array of functional genomics tools and phenotype bioassays the inherent differences between free-living and parasitic nematodes underscores the need to develop these approaches in tractable parasite models. Advances in functional genomics approaches, including RNA interference and CRISPR/Cas9 gene editing, in the parasitic nematodes Strongyloides ratti and Strongyloides stercoralis provide a unique and timely opportunity to probe basic parasite biology and reveal novel anthelmintic targets in species that are both experimentally and therapeutically relevant pathogens. While Strongyloides functional genomics tools have progressed rapidly, the complementary range of bioassays required to elucidate phenotypic outcomes post-functional genomics remain more limited in scope. To adequately support the exploitation of functional genomic pipelines for studies of gene function in Strongyloides a comprehensive set of species- and parasite-specific quantitative bioassays are required to assess nematode behaviours post-genetic manipulation. Here we review the scope of the current Strongyloides bioassay toolbox, how established Strongyloides bioassays have advanced knowledge of parasite biology, opportunities for Strongyloides bioassay development and, the need for investment in tractable model parasite platforms such as Strongyloides to drive the discovery of novel targets for parasite control.
Collapse
Affiliation(s)
- Luke C Cadd
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Bethany Crooks
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Nikki J Marks
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Aaron G Maule
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Angela Mousley
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Louise E Atkinson
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK.
| |
Collapse
|
24
|
Yu YV, Xue W, Chen Y. Multisensory Integration in Caenorhabditis elegans in Comparison to Mammals. Brain Sci 2022; 12:brainsci12101368. [PMID: 36291302 PMCID: PMC9599712 DOI: 10.3390/brainsci12101368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Multisensory integration refers to sensory inputs from different sensory modalities being processed simultaneously to produce a unitary output. Surrounded by stimuli from multiple modalities, animals utilize multisensory integration to form a coherent and robust representation of the complex environment. Even though multisensory integration is fundamentally essential for animal life, our understanding of the underlying mechanisms, especially at the molecular, synaptic and circuit levels, remains poorly understood. The study of sensory perception in Caenorhabditis elegans has begun to fill this gap. We have gained a considerable amount of insight into the general principles of sensory neurobiology owing to C. elegans’ highly sensitive perceptions, relatively simple nervous system, ample genetic tools and completely mapped neural connectome. Many interesting paradigms of multisensory integration have been characterized in C. elegans, for which input convergence occurs at the sensory neuron or the interneuron level. In this narrative review, we describe some representative cases of multisensory integration in C. elegans, summarize the underlying mechanisms and compare them with those in mammalian systems. Despite the differences, we believe C. elegans is able to provide unique insights into how processing and integrating multisensory inputs can generate flexible and adaptive behaviors. With the emergence of whole brain imaging, the ability of C. elegans to monitor nearly the entire nervous system may be crucial for understanding the function of the brain as a whole.
Collapse
Affiliation(s)
- Yanxun V. Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430070, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430070, China
- Correspondence: or
| | - Weikang Xue
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430070, China
| | - Yuanhua Chen
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430070, China
| |
Collapse
|
25
|
Keen SC, Wackett AA, Willenbring JK, Yoo K, Jonsson H, Clow T, Klaminder J. Non-native species change the tune of tundra soils: Novel access to soundscapes of the Arctic earthworm invasion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155976. [PMID: 35618134 DOI: 10.1016/j.scitotenv.2022.155976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Over the last decade, an increasing number of studies have used soundscapes to address diverse ecological questions. Sound represents one of the few sources of information capable of providing in situ insights into processes occurring within opaque soil matrices. To date, the use of soundscapes for soil macrofauna monitoring has been experimentally tested only in controlled laboratory environments. Here we assess the validity of laboratory predictions and explore the use of soil soundscape proxies for monitoring soil macrofauna (i.e., earthworm) activities in an outdoor context. In a common garden experiment in northern Sweden, we constructed outdoor mesocosm plots (N = 36) containing two different Arctic vegetation types (meadow and heath) and introduced earthworms to half of these plots. Earthworms substantially altered the ambient soil soundscape under both vegetation types, as measured by both traditional soundscape indices and frequency band power levels, although their acoustic impacts were expressed differently in heath versus meadow soils. While these findings support the as-of-yet untapped promise of using belowground soundscape analyses to monitor soil ecosystem health, direct acoustic emissions from earthworm activities appear to be an unlikely proxy for tracking worm activities at daily timescales. Instead, earthworms indirectly altered the soil soundscape by 're-engineering' the soil matrix: an effect that was dependent on vegetation type. Our findings suggest that long-term (i.e., seasonal) earthworm activities in natural soil settings can likely be monitored indirectly via their impacts on soundscape measures and acoustic indices. Analyzing soil soundscapes may enable larger-scale monitoring of high-latitude soils and is directly applicable to the specific case of earthworm invasions within Arctic soils, which has recently been identified as a potential threat to the resilience of high-latitude ecosystems. Soil soundscapes could also offer a novel means to monitor soils and soil-plant-faunal interactions in situ across diverse pedogenic, agronomic, and ecological systems.
Collapse
Affiliation(s)
- Sara C Keen
- Department of Geological Sciences, Stanford University, Stanford, CA, USA.
| | - Adrian A Wackett
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Jane K Willenbring
- Department of Geological Sciences, Stanford University, Stanford, CA, USA
| | - Kyungsoo Yoo
- Department of Soil, Water, and Climate, University of Minnesota, MN, USA
| | - Hanna Jonsson
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Travis Clow
- Department of Geological Sciences, Stanford University, Stanford, CA, USA
| | - Jonatan Klaminder
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
26
|
Li Z, Xu XZS. Chemosensation: Corollary discharge filters out self-generated chemical cues. Curr Biol 2022; 32:R788-R790. [PMID: 35882202 PMCID: PMC10903528 DOI: 10.1016/j.cub.2022.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Corollary discharge allows organisms to discriminate external sensory inputs from self-generated cues. However, the underlying synaptic and molecular mechanisms are not well understood. A new study has identified a tyraminergic corollary discharge signal that extrasynaptically modulates chemosensory neurons in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Zhaoyu Li
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia.
| | - X Z Shawn Xu
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
27
|
Ackley C, Washiashi L, Krishnamurthy R, Rothman JH. Large-Scale Gravitaxis Assay of Caenorhabditis Dauer Larvae. J Vis Exp 2022:10.3791/64062. [PMID: 35723485 PMCID: PMC9359452 DOI: 10.3791/64062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024] Open
Abstract
Gravity sensation is an important and relatively understudied process. Sensing gravity enables animals to navigate their surroundings and facilitates movement. Additionally, gravity sensation, which occurs in the mammalian inner ear, is closely related to hearing - thus, understanding this process has implications for auditory and vestibular research. Gravitaxis assays exist for some model organisms, including Drosophila. Single worms have previously been assayed for their orientation preference as they settle in solution. However, a reliable and robust assay for Caenorhabditis gravitaxis has not been described. The present protocol outlines a procedure for performing gravitaxis assays that can be used to test hundreds of Caenorhabditis dauers at a time. This large-scale, long-distance assay allows for detailed data collection, revealing phenotypes that may be missed on a standard plate-based assay. Dauer movement along the vertical axis is compared with horizontal controls to ensure that directional bias is due to gravity. Gravitactic preference can then be compared between strains or experimental conditions. This method can determine molecular, cellular, and environmental requirements for gravitaxis in worms.
Collapse
Affiliation(s)
- Caroline Ackley
- Molecular Cellular and Developmental Biology, University of California;
| | - Lindsey Washiashi
- Molecular Cellular and Developmental Biology, University of California
| | | | - Joel H Rothman
- Molecular Cellular and Developmental Biology, University of California
| |
Collapse
|
28
|
Al-Sheikh U, Kang L. Mechanosensation: Alpha-7 nAChR transduces sound signals in earless C. elegans. Neuron 2021; 109:3539-3541. [PMID: 34793704 DOI: 10.1016/j.neuron.2021.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
How do organisms without specialized auditory systems perceive and transduce sound? In this issue of Neuron, Iliff et al. (2021) investigate the functional mechanism of airborne sound sensation in Caenorhabditis elegans and highlight the crucial role of alpha-7 nicotinic acetylcholine receptor subunits in mechanotransduction.
Collapse
Affiliation(s)
- Umar Al-Sheikh
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310053, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Lijun Kang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310053, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|