1
|
Cifuentes LV, Díaz-Hernández E, Granato MM, Tu W, Choi K, Fuccillo MV. Temporally and Functionally Distinct Contributions to Value Based Choice Along the Anterior-Posterior Dorsomedial Striatal Axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643367. [PMID: 40161810 PMCID: PMC11952573 DOI: 10.1101/2025.03.14.643367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
While the dorsoventral and mediolateral organization of striatum has resolved clear functional distinctions, far less is known about how the anterior-posterior striatal axis contributes to behavioral control. We explore this within the dorsomedial striatum (DMS), a key region for value-based choice, by comparing population neuronal activity and function within anterior (A-DMS) and posterior (P-DMS) subregions while mice operantly seek reward. Neural recordings show that P-DMS encoded action values and strategy information prior to choice selection while A-DMS activity represented recently selected choices and their anticipated values via a dynamic population reorganization immediately following action selection. Optogenetic perturbations were consistent with these temporally distinct coding properties as unilateral manipulation of the P-DMS prior to choice biased choice contralaterally in a value-dependent manner and unilateral inhibition of the A-DMS following choice impaired future value-based action selection. Using anterograde tracing, we found that the A-DMS and P-DMS projected to a common region within the ventromedial substantia nigra pars reticulata (vmSNr), which contained value-related signals combining aspects of upstream DMS processing. Together, our results support a model for temporally distributed influence on value-based choice across the anterior-posterior axis of the DMS.
Collapse
Affiliation(s)
- Luigim Vargas Cifuentes
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edgar Díaz-Hernández
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Myra M. Granato
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wenxin Tu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kyuhyun Choi
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, 24252, Republic of Korea
| | - Marc V. Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Martin H, Choi JE, Rodrigues AR, Eshel N. Review: Dopamine, Serotonin, and the Translational Neuroscience of Aggression in Autism Spectrum Disorder. JAACAP OPEN 2025; 3:29-41. [PMID: 40109493 PMCID: PMC11914923 DOI: 10.1016/j.jaacop.2024.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 03/22/2025]
Abstract
Objective Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a 1% to 2% prevalence in children. In addition to social communication deficits and restricted or repetitive behavior, ASD is often characterized by a heightened propensity for aggression. In fact, aggressive behavior is the primary reason for hospitalization in children with ASD, and current treatment options, despite some efficacy, are often associated with prominent side effects. Despite such high clinical toll, the neurobiology of aggression in ASD remains poorly understood. Method The neural circuits linked to both ASD and aggression were reviewed, with the goal of identifying overlapping components to help guide future treatment development. In discussing the clinical phenotype of aggression in ASD, some of the triggers and risk factors were noted to differ from those that cause aggression in neurotypical children. Preclinical and clinical studies on the neurobiology of aggression and ASD were synthesized to combine evidence from genetics, neuroimaging, pharmacology, and circuit manipulations. Dopamine and serotonin, 2 neuromodulators that contribute to development and behavioral control, were specifically studied. Results The literature indicates that the intricate interplay of the dopamine and serotonin systems has a pivotal role in shaping behavior, including the expression of aggression. Conclusion Understanding the balance between dopamine as an accelerator and serotonin as a brake may provide insights into the mechanisms of aggression in children with ASD. Although much work remains to be done, new perspectives promise to bridge the gap between human and animal studies and pinpoint the neurobiology of aggression in ASD. Diversity & Inclusion Statement One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented sexual and/or gender groups in science. We actively worked to promote sex and gender balance in our author group.
Collapse
Affiliation(s)
| | | | | | - Neir Eshel
- Stanford University, Stanford, California
| |
Collapse
|
3
|
Gong H, Lu Y, Deng SL, Lv KY, Luo J, Luo Y, Du ZL, Wu LF, Liu TY, Wang XQ, Zhao JH, Wang L, Xia ML, Zhu DM, Wang LW, Fan XT. Targeting S100A9 attenuates social dysfunction by modulating neuroinflammation and myelination in a mouse model of autism. Pharmacol Res 2025; 211:107568. [PMID: 39733843 DOI: 10.1016/j.phrs.2024.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/15/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
Growing evidence supports a role for dysregulated neuroinflammation in autism. However, the underlying mechanisms of microglia-evoked neuroinflammation in the development of autistic phenotypes have not been elucidated. This study aimed to investigate the role and underlying mechanisms of microglial S100 calcium-binding protein A9 (S100A9) in autistic phenotypes. We utilized the BTBR T + tf/J (BTBR) mouse, a reliable preclinical model for autism that displays core behavioral features of autism as well as persistent immune dysregulation. A combination of behavioral, pharmacological, immunological, genetic, molecular, and transcriptomics approaches were used to uncover the potential role of S100A9 in autism. Significant overexpression of microglial S100A9 was observed in the hippocampus of BTBR mice. BTBR mice displayed decreased social communication and increased repetitive behaviors compared to C57BL/6 mice. Interestingly, the above social dysfunction was attenuated by a pharmacological inhibitor of S100A9, accompanied by a significant reduction in the activated microglia morphological phenotype, inflammatory receptors, and proinflammatory cytokines. Notably, S100A9 inhibition decreased c-Fos+ cells and promoted myelination in the cornu ammonis 3 of BTBR mice. Furthermore, the promyelinating compound administration ameliorated the autism-relevant behaviors in BTBR mice. Our findings indicate that microglia-derived S100A9 triggers the neuroinflammation cascade, myelination deficits, and social dysfunction. Targeting S100A9 could, therefore, be a promising therapeutic strategy for neuroinflammation-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Yao Lu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 22100, China
| | - Shi-Long Deng
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China; Nursing Department, The Affiliated Hospital of Southwest Medical University, Sichuan Province, Luzhou 646000, China
| | - Ke-Yi Lv
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Jing Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Zhu-Lin Du
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Ling-Feng Wu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China; Battalion 7 of the Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Tian-Yao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Xia-Qing Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Jing-Hui Zhao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Lian Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Mei-Ling Xia
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Dong-Mei Zhu
- Department of Hospital Infection Control, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Hospital Infection Control, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Li-Wei Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou 221009, China; Department of Anesthesiology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221009, China.
| | - Xiao-Tang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| |
Collapse
|
4
|
Su X, Lei B, He J, Liu Y, Wang A, Tang Y, Liu W, Zhong Y. Identification of GABAergic subpopulations in the lateral hypothalamus for home-driven behaviors in mice. Cell Rep 2024; 43:114842. [PMID: 39412991 DOI: 10.1016/j.celrep.2024.114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/20/2024] [Accepted: 09/21/2024] [Indexed: 10/18/2024] Open
Abstract
Home information profoundly influences behavioral states in both humans and animals. However, how "home" is represented in the brain and its role in driving diverse related behaviors remain elusive. Here, we demonstrate that home bedding contains sufficient home information to modulate affective behaviors, including aversion responses, defensive aggression, and mating behaviors. These varied responses to home information are mediated by gama-aminobutyric acid (GABA)ergic neurons in the lateral hypothalamus (LHGABA). Inhibiting LHGABA abolishes, while activating mimics, the effects of home bedding on these behaviors across different contexts. Specifically, projections from LHGABA to the ventral tegmental area (VTA) mediate the relaxation of aversive emotion, while projections to the periaqueductal gray (PAG) initiate defensive concerns. Thus, our data suggest that home information in different contexts converges to activate distinct subgroups of the LHGABA, which, in turn, elicit appropriate affective behaviors in relieving aversion, fighting intruders, or enhancing mating through involving distinct downstream projections.
Collapse
Affiliation(s)
- Xiaoya Su
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China
| | - Bo Lei
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China; Beijing Academy of Artificial Intelligence, Beijing 100084, P.R. China.
| | - Junyue He
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China; Peking University, Tsinghua University, National Institute Biological Science Joint Graduate Program, Beijing, P.R. China
| | - Yunlong Liu
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ao Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China; School of Life Sciences, Peking University, Beijing 100871, P.R. China
| | - Yikai Tang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China
| | - Weixuan Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China
| | - Yi Zhong
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, P.R. China; MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, P.R. China.
| |
Collapse
|
5
|
Farmer AL, Febo M, Wilkes BJ, Lewis MH. Environmental Enrichment Attenuates Repetitive Behavior and Alters the Functional Connectivity of Pain and Sensory Pathways in C58 Mice. Cells 2024; 13:1933. [PMID: 39682680 PMCID: PMC11640393 DOI: 10.3390/cells13231933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Restricted repetitive behaviors (RRB) encompass a variety of inflexible behaviors, which are diagnostic for autism spectrum disorder (ASD). Despite being requisite diagnostic criteria, the neurocircuitry of these behaviors remains poorly understood, limiting treatment development. Studies in translational animal models show environmental enrichment (EE) reduces the expression of RRB, although the underlying mechanisms are largely unknown. This study used functional magnetic resonance imaging to identify functional connectivity alterations associated with RRB and its attenuation by EE in C58 mice, an animal model of RRB. Extensive differences were observed between C58 mice and C57BL/6 control mice. Higher RRB was associated with altered connectivity between the somatosensory network and reticular thalamic nucleus and between striatal and sensory processing regions. Animals housed in EE displayed increased connectivity between the somatosensory network and the anterior pretectal nucleus and hippocampus, as well as reduced connectivity between the visual network and area prostriata. These results suggest aberrant sensory perception is associated with RRB in C58 mice. EE may reduce RRB by altering functional connectivity in pain and visual networks. This study raises questions about the role of sensory processing and pain in RRB development and identifies new potential intervention targets.
Collapse
Affiliation(s)
- Anna L. Farmer
- Department of Psychology, University of Florida, Gainesville, FL 32603, USA;
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA;
| | - Bradley J. Wilkes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32608, USA;
| | - Mark H. Lewis
- Department of Psychology, University of Florida, Gainesville, FL 32603, USA;
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
6
|
Nasrin MSTZ, Kikuchi S, Uchimura Y, Yoshioka M, Morita SY, Kobayashi T, Kinoshita Y, Furusho Y, Tamiaki H, Yanagisawa D, Udagawa J. Ethanolamine and Vinyl-Ether Moieties in Brain Phospholipids Modulate Behavior in Rats. NEUROSCI 2024; 5:509-522. [PMID: 39585105 PMCID: PMC11587438 DOI: 10.3390/neurosci5040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Plasmalogens are brain-enriched phospholipids with a vinyl-ether bond at the sn-1 position between the glycerol backbone and the alkyl chain. Previous studies have suggested that plasmalogens modulate locomotor activity, anxiety-like behavior, and cognitive functions in rodents; however, the specific moieties contributing to behavioral regulation are unknown. In this study, we examined the behavioral modulation induced by specific phospholipid moieties. To confirm the permeability of phospholipids in injected liposomes, we measured the fluorescence intensity following intravenous injection of liposomes containing ATTO 740-labeled dioleoylphosphatidylethanolamine. Then, we compared the behavioral effects following injection of liposomes composed of egg phosphatidylcholine (PC) and 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (PE 18:0/22:6), PC 18:0/22:6, 1-(1Z-octadecenyl)-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (PE P-18:0/22:6), or PC P-18:0/22:6, into the tail vein of male rats. The time spent in the central region of the open field was significantly reduced after injection of PE 18:0/22:6, harboring an ester bond at sn-1 compared to controls. Furthermore, the discrimination ratio in the novel object recognition test was significantly higher in PC 18:0/22:6 compared to PE 18:0/22:6, suggesting that the substitution of ethanolamine with choline can enhance recognition memory. We demonstrate that the structures of the sn-1 bond and the hydrophilic moiety in the phospholipids can modulate exploratory behaviors and recognition memory in rodents.
Collapse
Affiliation(s)
- MST Zenika Nasrin
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (M.Z.N.); (S.K.); (Y.U.)
| | - Shuhei Kikuchi
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (M.Z.N.); (S.K.); (Y.U.)
| | - Yasuhiro Uchimura
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (M.Z.N.); (S.K.); (Y.U.)
| | - Mina Yoshioka
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (M.Z.N.); (S.K.); (Y.U.)
| | - Shin-ya Morita
- Department of Pharmacotherapeutics, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| | - Tomoya Kobayashi
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (M.Z.N.); (S.K.); (Y.U.)
| | - Yusuke Kinoshita
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Yoshio Furusho
- Department of Chemistry, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| | - Jun Udagawa
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (M.Z.N.); (S.K.); (Y.U.)
| |
Collapse
|
7
|
Green I, Amo R, Watabe-Uchida M. Shifting attention to orient or avoid: a unifying account of the tail of the striatum and its dopaminergic inputs. Curr Opin Behav Sci 2024; 59:101441. [PMID: 39247613 PMCID: PMC11376218 DOI: 10.1016/j.cobeha.2024.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The tail of the striatum (TS) is increasingly recognized as a unique subdivision of the striatum, characterized by its dense sensory inputs and projections received from a distinct group of dopamine neurons. Separate lines of research have characterized the functional role of TS, and TS-projecting dopamine neurons, in three realms: saccadic eye movement towards valuable visual stimuli; tone-guided choice between two options; and defensive responses to threatening stimuli. We propose a framework for reconciling these diverse roles as varied implementations of a conserved response to salient stimuli, with dopamine in TS providing a teaching signal to promote quick attentional shifts that facilitate stimulus-driven orientation and/or avoidance.
Collapse
Affiliation(s)
- Isobel Green
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Ryunosuke Amo
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Mitsuko Watabe-Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Chari T, Hernandez A, Couto J, Portera-Cailliau C. A failure to discriminate social from non-social touch at the circuit level may underlie social avoidance in autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599778. [PMID: 38948773 PMCID: PMC11212975 DOI: 10.1101/2024.06.19.599778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Social touch is critical for communication and to impart emotions and intentions. However, certain autistic individuals experience aversion to social touch, especially when it is unwanted. We used a novel social touch assay and Neuropixels probes to compare neural responses to social vs. non-social interactions in three relevant brain regions: vibrissal somatosensory cortex, tail of striatum, and basolateral amygdala. We find that wild type (WT) mice showed aversion to repeated presentations of an inanimate object but not of another mouse. Cortical neurons cared most about touch context (social vs. object) and showed a preference for social interactions, while striatal neurons changed their preference depending on whether mice could choose or not to interact. Amygdalar and striatal neurons were preferentially modulated by forced object touch, which was the most aversive. In contrast, the Fmr1 knockout (KO) model of autism found social and non-social interactions equally aversive and displayed more aversive facial expressions to social touch when it invaded their personal space. Importantly, when Fmr1 KO mice could choose to interact, neurons in all three regions did not discriminate social valence. Thus, a failure to differentially encode social from non-social stimuli at the circuit level may underlie social avoidance in autism.
Collapse
Affiliation(s)
- Trishala Chari
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
- Neuroscience Interdepartmental Program, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Ariana Hernandez
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - João Couto
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
9
|
Kikuchi S, Iwasaki Y, Yoshioka M, Hino K, Morita SY, Tada R, Uchimura Y, Kubo Y, Kobayashi T, Kinoshita Y, Hayashi M, Furusho Y, Tamiaki H, Ishiyama H, Kuroda M, Udagawa J. Solitary and Synergistic Effects of Different Hydrophilic and Hydrophobic Phospholipid Moieties on Rat Behaviors. Pharmaceutics 2024; 16:762. [PMID: 38931883 PMCID: PMC11207216 DOI: 10.3390/pharmaceutics16060762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Glycerophospholipids have hydrophobic and hydrophilic moieties. Previous studies suggest that phospholipids with different moieties have different effects on rodent behavior; however, the relationship between chemical structures and behavioral effects remains unclear. To clarify the functions of phospholipid moieties, we injected male rats with phospholipids with different moieties and conducted behavioral tests. Exploratory activity was reduced by phosphatidylethanolamine (PE)(18:0/22:6) but not PE(18:0/18:0) or PE(18:0/20:4). Conversely, exploratory activity was increased by plasmanyl PE(16:0/22:6), which harbors an alkyl-ether linkage, but not by phosphatidylcholine (PC)(16:0/22:6) or plasmanyl PC(16:0/22:6). Docosahexaenoic acid (DHA)(22:6) and an alkyl-ether linkage in PE were thus postulated to be involved in exploratory activity. Anxiety-like behavior was reduced by plasmenyl PC(18:0/20:4), which harbors a vinyl-ether linkage, but not by PC(18:0/20:4) or plasmanyl PC(18:0/20:4), suggesting the anxiolytic effects of vinyl-ether linkage. The activation of social interaction was suppressed by PE(18:0/18:0), PE(18:0/22:6), PC(16:0/22:6), plasmanyl PE(16:0/22:6), and plasmanyl PC(16:0/22:6) but not by PE(18:0/20:4), plasmenyl PE(18:0/20:4), or plasmanyl PC(18:0/22:6). DHA may suppress social interaction, whereas arachidonic acid(20:4) or a combination of alkyl-ether linkage and stearic acid(18:0) may restore social deficits. Our findings indicate the characteristic effects of different phospholipid moieties on rat behavior, and may help to elucidate patterns between chemical structures and their effects.
Collapse
Affiliation(s)
- Shuhei Kikuchi
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Yugo Iwasaki
- College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Aichi, Japan;
| | - Mina Yoshioka
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Kodai Hino
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Shin-ya Morita
- Department of Pharmacotherapeutics, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| | - Ryu Tada
- Molecular Engineering Institute, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| | - Yasuhiro Uchimura
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Yoshinori Kubo
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Tomoya Kobayashi
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Yusuke Kinoshita
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (Y.K.); (H.T.)
| | - Masahiro Hayashi
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Miyazaki, Japan;
| | - Yoshio Furusho
- Department of Chemistry, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (Y.K.); (H.T.)
| | - Hiroaki Ishiyama
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Minoru Kuroda
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Jun Udagawa
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| |
Collapse
|
10
|
Cao F, Guo Y, Guo S, Hao X, Yang L, Cao J, Zhou Z, Mi W, Tong L. Prelimbic cortical pyramidal neurons to ventral tegmental area projections promotes arousal from sevoflurane anesthesia. CNS Neurosci Ther 2024; 30:e14675. [PMID: 38488453 PMCID: PMC10941502 DOI: 10.1111/cns.14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/27/2024] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
AIMS General anesthesia has been used in surgical procedures for approximately 180 years, yet the precise mechanism of anesthetic drugs remains elusive. There is significant anatomical connectivity between the ventral tegmental area (VTA) and the prelimbic cortex (PrL). Projections from VTA dopaminergic neurons (VTADA ) to the PrL play a role in the transition from sevoflurane anesthesia to arousal. It is still uncertain whether the prelimbic cortex pyramidal neuron (PrLPyr ) and its projections to VTA (PrLPyr -VTA) are involved in anesthesia-arousal regulation. METHODS We employed chemogenetics and optogenetics to selectively manipulate neuronal activity in the PrLPyr -VTA pathway. Electroencephalography spectra and burst-suppression ratios (BSR) were used to assess the depth of anesthesia. Furthermore, the loss or recovery of the righting reflex was monitored to indicate the induction or emergence time of general anesthesia. To elucidate the receptor mechanisms in the PrLPyr -VTA projection's impact on anesthesia and arousal, we microinjected NMDA receptor antagonists (MK-801) or AMPA receptor antagonists (NBQX) into the VTA. RESULTS Our findings show that chemogenetic or optogenetic activation of PrLPyr neurons prolonged anesthesia induction and promoted emergence. Additionally, chemogenetic activation of the PrLPyr -VTA neural pathway delayed anesthesia induction and promoted anesthesia emergence. Likewise, optogenetic activation of the PrLPyr -VTA projections extended the induction time and facilitated emergence from sevoflurane anesthesia. Moreover, antagonizing NMDA receptors in the VTA attenuates the delayed anesthesia induction and promotes emergence caused by activating the PrLPyr -VTA projections. CONCLUSION This study demonstrates that PrLPyr neurons and their projections to the VTA are involved in facilitating emergence from sevoflurane anesthesia, with the PrLPyr -VTA pathway exerting its effects through the activation of NMDA receptors within the VTA.
Collapse
Affiliation(s)
- Fuyang Cao
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of AnesthesiologyThe Sixth Medical Center of Chinese PLA General HospitalBeijingChina
- Chinese PLA Medical SchoolBeijingChina
| | - Yongxin Guo
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Shuting Guo
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Chinese PLA Medical SchoolBeijingChina
| | - Xinyu Hao
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Chinese PLA Medical SchoolBeijingChina
| | - Lujia Yang
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Jiangbei Cao
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zhikang Zhou
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Weidong Mi
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Li Tong
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
11
|
Evans MM, Kim J, Abel T, Nickl-Jockschat T, Stevens HE. Developmental Disruptions of the Dorsal Striatum in Autism Spectrum Disorder. Biol Psychiatry 2024; 95:102-111. [PMID: 37652130 PMCID: PMC10841118 DOI: 10.1016/j.biopsych.2023.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Autism spectrum disorder (ASD) is an increasingly prevalent neurodevelopmental condition characterized by social and communication deficits as well as patterns of restricted, repetitive behavior. Abnormal brain development has long been postulated to underlie ASD, but longitudinal studies aimed at understanding the developmental course of the disorder have been limited. More recently, abnormal development of the striatum in ASD has become an area of interest in research, partially due to overlap of striatal functions and deficit areas in ASD, as well as the critical role of the striatum in early development, when ASD is first detected. Focusing on the dorsal striatum and the associated symptom domain of restricted, repetitive behavior, we review the current literature on dorsal striatal abnormalities in ASD, including studies on functional connectivity, morphometry, and cellular and molecular substrates. We highlight that observed striatal abnormalities in ASD are often dynamic across development, displaying disrupted developmental trajectories. Important findings include an abnormal trajectory of increasing corticostriatal functional connectivity with age and increased striatal growth during childhood in ASD. We end by discussing striatal findings from animal models of ASD. In sum, the studies reviewed here demonstrate a key role for developmental disruptions of the dorsal striatum in the pathogenesis of ASD. Directing attention toward these findings will improve our understanding of ASD and of how associated deficits may be better addressed.
Collapse
Affiliation(s)
- Maya M Evans
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Jaekyoon Kim
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Ted Abel
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa; Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
12
|
Rusu A, Chevalier C, de Chaumont F, Nalesso V, Brault V, Hérault Y, Ey E. Day-to-day spontaneous social behaviours is quantitatively and qualitatively affected in a 16p11.2 deletion mouse model. Front Behav Neurosci 2023; 17:1294558. [PMID: 38173978 PMCID: PMC10763239 DOI: 10.3389/fnbeh.2023.1294558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Background Autism spectrum disorders affect more than 1% of the population, impairing social communication and increasing stereotyped behaviours. A micro-deletion of the 16p11.2 BP4-BP5 chromosomic region has been identified in 1% of patients also displaying intellectual disabilities. In mouse models generated to understand the mechanisms of this deletion, learning and memory deficits were pervasive in most genetic backgrounds, while social communication deficits were only detected in some models. Methods To complement previous studies, we itemized the social deficits in the mouse model of 16p11.2 deletion on a hybrid C57BL/6N × C3H.Pde6b+ genetic background. We examined whether behavioural deficits were visible over long-term observation periods lasting several days and nights, to parallel everyday-life assessment of patients. We recorded the individual and social behaviours of mice carrying a heterozygous deletion of the homologous 16p11.2 chromosomic region (hereafter Del/+) and their wild-type littermates from both sexes over two or three consecutive nights during social interactions of familiar mixed-genotype quartets of males and of females, and of same-genotype unfamiliar female pairs. Results We observed that Del/+ mice of both sexes increased significantly their locomotor activity compared to wild-type littermates. In the social domain, Del/+ mice of both sexes displayed widespread deficits, even more so in males than in females in quartets of familiar individuals. In pairs, significant perturbations of the organisation of the social communication and behaviours appeared in Del/+ females. Discussion Altogether, this suggests that, over long recording periods, the phenotype of the 16p11.2 Del/+ mice was differently affected in the locomotor activity and the social domains and between the two sexes. These findings confirm the importance of testing models in long-term conditions to provide a comprehensive view of their phenotype that will refine the study of cellular and molecular mechanisms and complement pre-clinical targeted therapeutic trials.
Collapse
Affiliation(s)
- Anna Rusu
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire‑UMR 7104-UMR-S 1258, Illkirch, France
| | - Claire Chevalier
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire‑UMR 7104-UMR-S 1258, Illkirch, France
| | - Fabrice de Chaumont
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Valérie Nalesso
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire‑UMR 7104-UMR-S 1258, Illkirch, France
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire‑UMR 7104-UMR-S 1258, Illkirch, France
| | - Yann Hérault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire‑UMR 7104-UMR-S 1258, Illkirch, France
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Elodie Ey
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire‑UMR 7104-UMR-S 1258, Illkirch, France
| |
Collapse
|
13
|
Milman NE, Tinsley CE, Raju RM, Lim MM. Loss of sleep when it is needed most - Consequences of persistent developmental sleep disruption: A scoping review of rodent models. Neurobiol Sleep Circadian Rhythms 2023; 14:100085. [PMID: 36567958 PMCID: PMC9768382 DOI: 10.1016/j.nbscr.2022.100085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Sleep is an essential component of development. Developmental sleep disruption (DSD) impacts brain maturation and has been associated with significant consequences on socio-emotional development. In humans, poor sleep during infancy and adolescence affects neurodevelopmental outcomes and may be a risk factor for the development of autism spectrum disorder (ASD) or other neuropsychiatric illness. Given the wide-reaching and enduring consequences of DSD, identifying underlying mechanisms is critical to best inform interventions with translational capacity. In rodents, studies have identified some mechanisms and neural circuits by which DSD causes later social, emotional, sensorimotor, and cognitive changes. However, these studies spanned methodological differences, including different developmental timepoints for both sleep disruption and testing, different DSD paradigms, and even different rodent species. In this scoping review on DSD in rodents, we synthesize these various studies into a cohesive framework to identify common neural mechanisms underlying DSD-induced dysfunction in brain and behavior. Ultimately, this review serves the goal to inform the generation of novel translational interventions for human developmental disorders featuring sleep disruption.
Collapse
Affiliation(s)
- Noah E.P. Milman
- Oregon Health and Science University, Dept. of Behavioral and Systems Neuroscience, Portland, OR, 97214, USA
- Veterans Affairs Portland Health Care System, Portland, OR, 97214, USA
| | - Carolyn E. Tinsley
- Oregon Health and Science University, Dept. of Behavioral and Systems Neuroscience, Portland, OR, 97214, USA
- Veterans Affairs Portland Health Care System, Portland, OR, 97214, USA
| | - Ravikiran M. Raju
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Miranda M. Lim
- Oregon Health and Science University, Dept. of Behavioral and Systems Neuroscience, Portland, OR, 97214, USA
- Veterans Affairs Portland Health Care System, Portland, OR, 97214, USA
| |
Collapse
|
14
|
Ferhat AT, Verpy E, Biton A, Forget B, De Chaumont F, Mueller F, Le Sourd AM, Coqueran S, Schmitt J, Rochefort C, Rondi-Reig L, Leboucher A, Boland A, Fin B, Deleuze JF, Boeckers TM, Ey E, Bourgeron T. Excessive self-grooming, gene dysregulation and imbalance between the striosome and matrix compartments in the striatum of Shank3 mutant mice. Front Mol Neurosci 2023; 16:1139118. [PMID: 37008785 PMCID: PMC10061084 DOI: 10.3389/fnmol.2023.1139118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
Autism is characterized by atypical social communication and stereotyped behaviors. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are detected in 1-2% of patients with autism and intellectual disability, but the mechanisms underpinning the symptoms remain largely unknown. Here, we characterized the behavior of Shank3 Δ11/Δ11 mice from 3 to 12 months of age. We observed decreased locomotor activity, increased stereotyped self-grooming and modification of socio-sexual interaction compared to wild-type littermates. We then used RNAseq on four brain regions of the same animals to identify differentially expressed genes (DEGs). DEGs were identified mainly in the striatum and were associated with synaptic transmission (e.g., Grm2, Dlgap1), G-protein-signaling pathways (e.g., Gnal, Prkcg1, and Camk2g), as well as excitation/inhibition balance (e.g., Gad2). Downregulated and upregulated genes were enriched in the gene clusters of medium-sized spiny neurons expressing the dopamine 1 (D1-MSN) and the dopamine 2 receptor (D2-MSN), respectively. Several DEGs (Cnr1, Gnal, Gad2, and Drd4) were reported as striosome markers. By studying the distribution of the glutamate decarboxylase GAD65, encoded by Gad2, we showed that the striosome compartment of Shank3 Δ11/Δ11 mice was enlarged and displayed much higher expression of GAD65 compared to wild-type mice. Altogether, these results indicate altered gene expression in the striatum of Shank3-deficient mice and strongly suggest, for the first time, that the excessive self-grooming of these mice is related to an imbalance in the striatal striosome and matrix compartments.
Collapse
Affiliation(s)
- Allain-Thibeault Ferhat
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Elisabeth Verpy
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Anne Biton
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Benoît Forget
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Fabrice De Chaumont
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Florian Mueller
- Imagerie et Modélisation, Institut Pasteur, CNRS UMR 3691, Paris, France
| | - Anne-Marie Le Sourd
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Sabrina Coqueran
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Julien Schmitt
- Cerebellum Navigation and Memory Team, Institut de Biologie Paris Seine, Neurosciences Paris Seine, CNRS UMR 8246, Inserm UMR-S 1130, Sorbonne Université, Paris, France
| | - Christelle Rochefort
- Cerebellum Navigation and Memory Team, Institut de Biologie Paris Seine, Neurosciences Paris Seine, CNRS UMR 8246, Inserm UMR-S 1130, Sorbonne Université, Paris, France
| | - Laure Rondi-Reig
- Cerebellum Navigation and Memory Team, Institut de Biologie Paris Seine, Neurosciences Paris Seine, CNRS UMR 8246, Inserm UMR-S 1130, Sorbonne Université, Paris, France
| | - Aziliz Leboucher
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, Evry, France
| | - Bertrand Fin
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, Evry, France
- Centre d’Étude du Polymorphisme Humain, Paris, France
| | - Tobias M. Boeckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Ulm, Germany
| | - Elodie Ey
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, Inserm UMR-S 1258, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Thomas Bourgeron
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| |
Collapse
|
15
|
Huang M, Qi Q, Xu T. Targeting Shank3 deficiency and paresthesia in autism spectrum disorder: A brief review. Front Mol Neurosci 2023; 16:1128974. [PMID: 36846568 PMCID: PMC9948097 DOI: 10.3389/fnmol.2023.1128974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Autism spectrum disorder (ASD) includes a group of multifactorial neurodevelopmental disorders characterized by impaired social communication, social interaction, and repetitive behaviors. Several studies have shown an association between cases of ASD and mutations in the genes of SH3 and multiple ankyrin repeat domain protein 3 (SHANK3). These genes encode many cell adhesion molecules, scaffold proteins, and proteins involved in synaptic transcription, protein synthesis, and degradation. They have a profound impact on all aspects of synaptic transmission and plasticity, including synapse formation and degeneration, suggesting that the pathogenesis of ASD may be partially attributable to synaptic dysfunction. In this review, we summarize the mechanism of synapses related to Shank3 in ASD. We also discuss the molecular, cellular, and functional studies of experimental models of ASD and current autism treatment methods targeting related proteins.
Collapse
Affiliation(s)
- Min Huang
- Department of Anesthesiology, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Anesthesiology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Qi Qi
- Department of Anesthesiology, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Anesthesiology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Tao Xu
- Department of Anesthesiology, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Anesthesiology, Suzhou Hospital of Anhui Medical University, Suzhou, China,*Correspondence: Tao Xu,
| |
Collapse
|
16
|
Winiarski M, Kondrakiewicz L, Kondrakiewicz K, Jędrzejewska‐Szmek J, Turzyński K, Knapska E, Meyza K. Social deficits in BTBR T+ Itpr3tf/J mice vary with ecological validity of the test. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12814. [PMID: 35621219 PMCID: PMC9744492 DOI: 10.1111/gbb.12814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/15/2022]
Abstract
Translational value of mouse models of neuropsychiatric disorders depends heavily on the accuracy with which they replicate symptoms observed in the human population. In mouse models of autism spectrum disorder (ASD) these include, among others, social affiliation, and communication deficits as well as impairments in understanding and perception of others. Most studies addressing these issues in the BTBR T+ Itpr3tf/J mouse, an idiopathic model of ASD, were based on short dyadic interactions of often non-familiar partners placed in a novel environment. In such stressful and variable conditions, the reproducibility of the phenotype was low. Here, we compared physical conditions and the degree of habituation of mice at the time of testing in the three chambered social affiliation task, as well as parameters used to measure social deficits and found that both the level of stress and human bias profoundly affect the results of the test. To minimize these effects, we tested social preference and network dynamics in mice group-housed in the Eco-HAB system. This automated recording allowed for long-lasting monitoring of differences in social repertoire (including interest in social stimuli) in BTBR T+ Itpr3tf/J and normosocial c57BL/6J mice. With these observations we further validate the BTBR T+ Itpr3tf/J mouse as a model for ASD, but at the same time emphasize the need for more ecological testing of social behavior within all constructs of the Systems for Social Processes domain (as defined by the Research Domain Criteria framework).
Collapse
Affiliation(s)
- Maciej Winiarski
- Laboratory of Emotions Neurobiology, BRAINCITY – Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Ludwika Kondrakiewicz
- Laboratory of Emotions Neurobiology, BRAINCITY – Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Kacper Kondrakiewicz
- Laboratory of Emotions Neurobiology, BRAINCITY – Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland,NeuroElectronics Research FlandersLeuvenBelgium
| | - Joanna Jędrzejewska‐Szmek
- Laboratory of Neuroinformatics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | | | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, BRAINCITY – Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Ksenia Meyza
- Laboratory of Emotions Neurobiology, BRAINCITY – Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| |
Collapse
|
17
|
Xia QQ, Sekar P, Powell CM. "Déjà vu" in an autism gene mouse model modifies social mores. Neuron 2022; 110:1433-1435. [PMID: 35512633 PMCID: PMC9641719 DOI: 10.1016/j.neuron.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetic and environmental factors during development are involved in autism, and in this issue of Neuron Krüttner et al. (2022) find environment may play a more acute role in modulating autism behavior in a Shank3 exon 21 deletion mutant mouse (Shank3ΔC/ΔC). The authors explore the underlying circuit mechanisms in detail.
Collapse
Affiliation(s)
- Qiang-Qiang Xia
- Department of Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA; Civitan International Research Center at UAB Heersink School of Medicine, Birmingham, AL, USA
| | - Prathibha Sekar
- Department of Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA; Civitan International Research Center at UAB Heersink School of Medicine, Birmingham, AL, USA
| | - Craig M Powell
- Department of Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA; Civitan International Research Center at UAB Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|