1
|
Ramesh V, Tsoukala E, Kougianou I, Kozic Z, Burr K, Viswanath B, Hampton D, Story D, Reddy BK, Pal R, Dando O, Kind PC, Chattarji S, Selvaraj BT, Chandran S, Zoupi L. The Fragile X Messenger Ribonucleoprotein 1 Regulates the Morphology and Maturation of Human and Rat Oligodendrocytes. Glia 2025; 73:1203-1220. [PMID: 39928301 PMCID: PMC12012330 DOI: 10.1002/glia.24680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
The Fragile X Messenger Ribonucleoprotein (FMRP) is an RNA binding protein that regulates the translation of multiple mRNAs and is expressed by neurons and glia in the mammalian brain. Loss of FMRP leads to fragile X syndrome (FXS), a common inherited form of intellectual disability and autism. While most research has been focusing on the neuronal contribution to FXS pathophysiology, the role of glia, particularly oligodendrocytes, is largely unknown. FXS individuals are characterized by white matter changes, which imply impairments in oligodendrocyte differentiation and myelination. We hypothesized that FMRP regulates oligodendrocyte maturation and myelination during postnatal development. Using a combination of human pluripotent stem cell-derived oligodendrocytes and an Fmr1 knockout rat model, we studied the role of FMRP on mammalian oligodendrocyte development. We found that the loss of FMRP leads to shared defects in oligodendrocyte morphology in both rat and human systems in vitro, which persist in the presence of FMRP-expressing axons in chimeric engraftment models. Our findings point to species-conserved, cell-autonomous defects during oligodendrocyte maturation in FXS.
Collapse
|
2
|
Barnes SA, Thomazeau A, Finnie PSB, Heinrich MJ, Heynen AJ, Komiyama NH, Grant SGN, Menniti FS, Osterweil EK, Bear MF. Non-ionotropic signaling through the NMDA receptor GluN2B carboxy-terminal domain drives dendritic spine plasticity and reverses fragile X phenotypes. Cell Rep 2025; 44:115311. [PMID: 39983718 PMCID: PMC12006837 DOI: 10.1016/j.celrep.2025.115311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/03/2024] [Accepted: 01/23/2025] [Indexed: 02/23/2025] Open
Abstract
N-methyl-D-aspartate (NMDA)-induced spine shrinkage proceeds independently of ion flux and requires the initiation of de novo protein synthesis. Using subtype-selective pharmacological and genetic tools, we find that structural plasticity is dependent on ligand binding to GluN2B-containing NMDA receptors (NMDARs) and signaling via the GluN2B carboxy-terminal domain (CTD). Disruption of non-ionotropic signaling by replacing the GluN2B CTD with the GluN2A CTD leads to an increase in spine density, dysregulated basal protein synthesis, exaggerated long-term depression mediated by G-protein-coupled metabotropic glutamate receptors (mGluR-LTD), and epileptiform activity reminiscent of phenotypes observed in the Fmr1 knockout (KO) model of fragile X syndrome. By crossing the Fmr1 KO mice with animals in which the GluN2A CTD has been replaced with the GluN2B CTD, we observe a correction of these core fragile X phenotypes. These findings suggest that non-ionotropic NMDAR signaling through GluN2B may represent a novel therapeutic target for the treatment of fragile X and related causes of intellectual disability and autism.
Collapse
Affiliation(s)
- Stephanie A Barnes
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Aurore Thomazeau
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter S B Finnie
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maxwell J Heinrich
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arnold J Heynen
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Noburu H Komiyama
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; The Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Frank S Menniti
- MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
| | - Emily K Osterweil
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; F.M. Kirby Center for Neurobiology, Translational Neuroscience Center, Department of Neurology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mark F Bear
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Winden KD, Ruiz JF, Sahin M. Construction destruction: Contribution of dyregulated proteostasis to neurodevelopmental disorders. Curr Opin Neurobiol 2025; 90:102934. [PMID: 39612590 PMCID: PMC11839335 DOI: 10.1016/j.conb.2024.102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Genetic causes of neurodevelopmental disorders (NDDs) such as epilepsy and autism spectrum disorder are rapidly being uncovered. The genetic risk factors that are responsible for various NDDs fall into many categories, and while some genes such as those involved in synaptic transmission are expected, there are several other classes of genes whose involvement in these disorders is not intuitive. One such group of genes is involved in protein synthesis and degradation, and the balance between these opposing pathways is termed proteostasis. Here, we review these pathways, the genetics of the related neurological disorders, and some potential disease mechanisms. Improved understanding of this collection of genetic disorders will be informative for the pathogenesis of these disorders and imply novel therapeutic strategies.
Collapse
Affiliation(s)
- Kellen D Winden
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Juan F Ruiz
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Monday HR, Nieto AM, Yohannes SA, Luxu S, Wong KW, Bolio FE, Feldman DE. Physiological and molecular impairment of PV circuit homeostasis in mouse models of autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.632056. [PMID: 39829892 PMCID: PMC11741295 DOI: 10.1101/2025.01.08.632056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Circuit dysfunction in autism may involve a failure of homeostatic plasticity. To test this, we studied parvalbumin (PV) interneurons which exhibit rapid homeostatic plasticity of intrinsic excitability following whisker deprivation in mouse somatosensory cortex. Brief deprivation reduces PV excitability by increasing Kv1 current to increase PV spike threshold. We found that PV homeostatic plasticity is disrupted in Tsc2 +/- and Fmr1 -/- models of autism. In wildtype mice, deprivation elevates the transcription factor ER81 which drives Kcna1 transcription, increasing Kv1.1 protein in the axon initial segment and soma. These molecular signatures of homeostasis were absent in Tsc2 +/- and Fmr1 -/- . Whisker enrichment increased PV excitability, but not in Tsc2 +/- , indicating that homeostasis is lost bidirectionally. Deprivation reduced feedforward L4-L2/3 inhibition in wildtype but not Tsc2 +/- mice. Thus, two autism models show a convergent loss of PV circuit homeostasis at physiological and molecular levels, potentially contributing to sensory processing impairments.
Collapse
|
5
|
Barnes SA, Thomazeau A, Finnie PSB, Heinrich MJ, Heynen AJ, Komiyama NH, Grant SGN, Menniti FS, Osterweil EK, Bear MF. Non-ionotropic signaling through the NMDA receptor GluN2B carboxy terminal domain drives morphological plasticity of dendritic spines and reverses fragile X phenotypes in mouse hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.15.628559. [PMID: 39764032 PMCID: PMC11703159 DOI: 10.1101/2024.12.15.628559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
It is well known that activation of NMDA receptors can trigger long-term synaptic depression (LTD) and that a morphological correlate of this functional plasticity is spine retraction and elimination. Recent studies have led to the surprising conclusion that NMDA-induced spine shrinkage proceeds independently of ion flux and requires the initiation of de novo protein synthesis, highlighting an unappreciated contribution of mRNA translation to non-ionotropic NMDAR signaling. Here we used NMDA-induced spine shrinkage in slices of mouse hippocampus as a readout to investigate this novel modality of synaptic transmission. By using selective pharmacological and genetic tools, we find that structural plasticity is dependent on the ligand binding domain (LBD) of GluN2B-containing NMDA receptors and that metabotropic signaling occurs via the GluN2B carboxyterminal domain (CTD). Disruption of signaling by replacing the GluN2B CTD with the GluN2A CTD leads to increased spine density, dysregulated basal protein synthesis, and epileptiform activity in area CA3 reminiscent of phenotypes observed in the Fmr1 -/y model of fragile X syndrome. By crossing the Fmr1 -/y mice with animals in which the GluN2A CTD has been replaced with the GluN2B CTD, we observe a correction of these core fragile X phenotypes. These findings suggest that non-ionotropic NMDAR signaling through GluN2B may represent a novel therapeutic target for treatment of fragile X and related causes of intellectual disability and autism.
Collapse
|
6
|
Maio B, Elu N, Martinez-Gonzalez C, Osterweil EK, Louros SR. Protocol for identifying sound-activated neurons in the inferior colliculus by cFos immunostaining. STAR Protoc 2024; 5:103482. [PMID: 39666460 PMCID: PMC11697561 DOI: 10.1016/j.xpro.2024.103482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/20/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024] Open
Abstract
cfos is an immediate early gene commonly used to identify neuronal activation. After loud sound stimulation, neurons in the inferior colliculus are activated and cFos is expressed in the nucleus. Here, we present a protocol for quantifying neuronal activity in response to auditory stimulation using cFos immunostaining in the mouse inferior colliculus. We then detail procedures for image acquisition and analysis. For complete details on the use and execution of this protocol, please refer to Louros et al.1.
Collapse
Affiliation(s)
- Beatriz Maio
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | - Nagore Elu
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | - Cristina Martinez-Gonzalez
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | - Emily K Osterweil
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK; Rosamund Stone Zander Translational Neuroscience Center, F. M. Kirby Center, Department of Neurology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.
| | - Susana R Louros
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Elu N, Subash S, R Louros S. Crosstalk between ubiquitination and translation in neurodevelopmental disorders. Front Mol Neurosci 2024; 17:1398048. [PMID: 39286313 PMCID: PMC11402904 DOI: 10.3389/fnmol.2024.1398048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Ubiquitination is one of the most conserved post-translational modifications and together with mRNA translation contributes to cellular protein homeostasis (proteostasis). Temporal and spatial regulation of proteostasis is particularly important during synaptic plasticity, when translation of specific mRNAs requires tight regulation. Mutations in genes encoding regulators of mRNA translation and in ubiquitin ligases have been associated with several neurodevelopmental disorders. RNA metabolism and translation are regulated by RNA-binding proteins, critical for the spatial and temporal control of translation in neurons. Several ubiquitin ligases also regulate RNA-dependent mechanisms in neurons, with numerous ubiquitination events described in splicing factors and ribosomal proteins. Here we will explore how ubiquitination regulates translation in neurons, from RNA biogenesis to alternative splicing and how dysregulation of ubiquitin signaling can be the underlying cause of pathology in neurodevelopmental disorders, such as Fragile X syndrome. Finally we propose that targeting ubiquitin signaling is an attractive novel therapeutic strategy for neurodevelopmental disorders where mRNA translation and ubiquitin signaling are disrupted.
Collapse
Affiliation(s)
- Nagore Elu
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Srividya Subash
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Susana R Louros
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Stamenkovic V, Lautz JD, Harsh FM, Smith SEP. SRC family kinase inhibition rescues molecular and behavioral phenotypes, but not protein interaction network dynamics, in a mouse model of Fragile X syndrome. Mol Psychiatry 2024; 29:1392-1405. [PMID: 38297084 PMCID: PMC11524049 DOI: 10.1038/s41380-024-02418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Glutamatergic synapses encode information from extracellular inputs using dynamic protein interaction networks (PINs) that undergo widespread reorganization following synaptic activity, allowing cells to distinguish between signaling inputs and generate coordinated cellular responses. Here, we investigate how Fragile X Messenger Ribonucleoprotein (FMRP) deficiency disrupts signal transduction through a glutamatergic synapse PIN downstream of NMDA receptor or metabotropic glutamate receptor (mGluR) stimulation. In cultured cortical neurons or acute cortical slices from P7, P17 and P60 FMR1-/y mice, the unstimulated protein interaction network state resembled that of wildtype littermates stimulated with mGluR agonists, demonstrating resting state pre-activation of mGluR signaling networks. In contrast, interactions downstream of NMDAR stimulation were similar to WT. We identified the Src family kinase (SFK) Fyn as a network hub, because many interactions involving Fyn were pre-activated in FMR1-/y animals. We tested whether targeting SFKs in FMR1-/y mice could modify disease phenotypes, and found that Saracatinib (SCB), an SFK inhibitor, normalized elevated basal protein synthesis, novel object recognition memory and social behavior in FMR1-/y mice. However, SCB treatment did not normalize the PIN to a wild-type-like state in vitro or in vivo, but rather induced extensive changes to protein complexes containing Shank3, NMDARs and Fyn. We conclude that targeting abnormal nodes of a PIN can identify potential disease-modifying drugs, but behavioral rescue does not correlate with PIN normalization.
Collapse
Affiliation(s)
- Vera Stamenkovic
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Felicia M Harsh
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Hurtado Silva M, van Waardenberg AJ, Mostafa A, Schoch S, Dietrich D, Graham ME. Multiomics of early epileptogenesis in mice reveals phosphorylation and dephosphorylation-directed growth and synaptic weakening. iScience 2024; 27:109534. [PMID: 38600976 PMCID: PMC11005001 DOI: 10.1016/j.isci.2024.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 01/26/2024] [Accepted: 03/16/2024] [Indexed: 04/12/2024] Open
Abstract
To investigate the phosphorylation-based signaling and protein changes occurring early in epileptogenesis, the hippocampi of mice treated with pilocarpine were examined by quantitative mass spectrometry at 4 and 24 h post-status epilepticus at vast depth. Hundreds of posttranscriptional regulatory proteins were the major early targets of increased phosphorylation. At 24 h, many protein level changes were detected and the phosphoproteome continued to be perturbed. The major targets of decreased phosphorylation at 4 and 24 h were a subset of postsynaptic density scaffold proteins, ion channels, and neurotransmitter receptors. Many proteins targeted by dephosphorylation at 4 h also had decreased protein abundance at 24 h, indicating a phosphatase-mediated weakening of synapses. Increased translation was indicated by protein changes at 24 h. These observations, and many additional indicators within this multiomic resource, suggest that early epileptogenesis is characterized by signaling that stimulates both growth and a homeostatic response that weakens excitability.
Collapse
Affiliation(s)
- Mariella Hurtado Silva
- Synapse Proteomics, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | | | - Aya Mostafa
- Department of Neuropathology, University Hospital Bonn, Synaptic Neuroscience Unit, 53127 Bonn, North Rhine-Westphalia, Germany
| | - Susanne Schoch
- Department of Neuropathology, University Hospital Bonn, Synaptic Neuroscience Unit, 53127 Bonn, North Rhine-Westphalia, Germany
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Synaptic Neuroscience Unit, 53127 Bonn, North Rhine-Westphalia, Germany
| | - Mark E. Graham
- Synapse Proteomics, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
10
|
Liu M, Wang Y, Jiang L, Zhang X, Wang C, Zhang T. Research progress of the inferior colliculus: from Neuron, neural circuit to auditory disease. Brain Res 2024; 1828:148775. [PMID: 38244755 DOI: 10.1016/j.brainres.2024.148775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
The auditory midbrain, also known as the inferior colliculus (IC), serves as a crucial hub in the auditory pathway. Comprising diverse cell types, the IC plays a pivotal role in various auditory functions, including sound localization, auditory plasticity, sound detection, and sound-induced behaviors. Notably, the IC is implicated in several auditory central disorders, such as tinnitus, age-related hearing loss, autism and Fragile X syndrome. Accurate classification of IC neurons is vital for comprehending both normal and dysfunctional aspects of IC function. Various parameters, including dendritic morphology, neurotransmitter synthesis, potassium currents, biomarkers, and axonal targets, have been employed to identify distinct neuron types within the IC. However, the challenge persists in effectively classifying IC neurons into functional categories due to the limited clustering capabilities of most parameters. Recent studies utilizing advanced neuroscience technologies have begun to shed light on biomarker-based approaches in the IC, providing insights into specific cellular properties and offering a potential avenue for understanding IC functions. This review focuses on recent advancements in IC research, spanning from neurons and neural circuits to aspects related to auditory diseases.
Collapse
Affiliation(s)
- Mengting Liu
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yuyao Wang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Li Jiang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xiaopeng Zhang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Chunrui Wang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Tianhong Zhang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
11
|
López-Otín C, Kroemer G. The missing hallmark of health: psychosocial adaptation. Cell Stress 2024; 8:21-50. [PMID: 38476764 PMCID: PMC10928495 DOI: 10.15698/cst2024.03.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
The eight biological hallmarks of health that we initially postulated (Cell. 2021 Jan 7;184(1):33-63) include features of spatial compartmentalization (integrity of barriers, containment of local perturbations), maintenance of homeostasis over time (recycling & turnover, integration of circuitries, rhythmic oscillations) and an array of adequate responses to stress (homeostatic resilience, hormetic regulation, repair & regeneration). These hallmarks affect all eight somatic strata of the human body (molecules, organelles, cells, supracellular units, organs, organ systems, systemic circuitries and meta-organism). Here we postulate that mental and socioeconomic factors must be added to this 8×8 matrix as an additional hallmark of health ("psychosocial adaptation") and as an additional stratum ("psychosocial interactions"), hence building a 9×9 matrix. Potentially, perturbation of each of the somatic hallmarks and strata affects psychosocial factors and vice versa. Finally, we discuss the (patho)physiological bases of these interactions and their implications for mental health improvement.
Collapse
Affiliation(s)
- Carlos López-Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
12
|
Ledoux N, Lelong EIJ, Simard A, Hussein S, Adjibade P, Lambert JP, Mazroui R. The Identification of Nuclear FMRP Isoform Iso6 Partners. Cells 2023; 12:2807. [PMID: 38132127 PMCID: PMC10742089 DOI: 10.3390/cells12242807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
A deficiency of FMRP, a canonical RNA-binding protein, causes the development of Fragile X Syndrome (FXS), which is characterised by multiple phenotypes, including neurodevelopmental disorders, intellectual disability, and autism. Due to the alternative splicing of the encoding FMR1 gene, multiple FMRP isoforms are produced consisting of full-length predominantly cytoplasmic (i.e., iso1) isoforms involved in translation and truncated nuclear (i.e., iso6) isoforms with orphan functions. However, we recently implicated nuclear FMRP isoforms in DNA damage response, showing that they negatively regulate the accumulation of anaphase DNA genomic instability bridges. This finding provided evidence that the cytoplasmic and nuclear functions of FMRP are uncoupled played by respective cytoplasmic and nuclear isoforms, potentially involving specific interactions. While interaction partners of cytoplasmic FMRP have been reported, the identity of nuclear FMRP isoform partners remains to be established. Using affinity purification coupled with mass spectrometry, we mapped the nuclear interactome of the FMRP isoform iso6 in U2OS. In doing so, we found FMRP nuclear interaction partners to be involved in RNA processing, pre-mRNA splicing, ribosome biogenesis, DNA replication and damage response, chromatin remodeling and chromosome segregation. By comparing interactions between nuclear iso6 and cytoplasmic iso1, we report a set of partners that bind specifically to the nuclear isoforms, mainly proteins involved in DNA-associated processes and proteasomal proteins, which is consistent with our finding that proteasome targets the nuclear FMRP iso6. The specific interactions with the nuclear isoform 6 are regulated by replication stress, while those with the cytoplasmic isoform 1 are largely insensitive to such stress, further supporting a specific role of nuclear isoforms in DNA damage response induced by replicative stress, potentially regulated by the proteasome.
Collapse
Affiliation(s)
- Nassim Ledoux
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| | - Emeline I. J. Lelong
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| | - Alexandre Simard
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| | - Samer Hussein
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| | - Pauline Adjibade
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| | - Jean-Philippe Lambert
- Centre de Recherche du CHU de Québec—Université Laval, Axe Endocrinologie et néphrologie, Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada;
- PROTEO, Le Regroupement Québécois De Recherche Sur La Fonction, L’ingénierie et Les Applications des Protéines, Université Laval, Québec, QC G1V 0A6, Canada
| | - Rachid Mazroui
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| |
Collapse
|
13
|
Takeda R, Ishii R, Parvin S, Shiozawa A, Nogi T, Sasaki Y. Novel presynaptic assay system revealed that metformin ameliorates exaggerated synaptic release and Munc18-1 accumulation in presynapses of neurons from Fragile X syndrome mouse model. Neurosci Lett 2023; 810:137317. [PMID: 37286070 DOI: 10.1016/j.neulet.2023.137317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/13/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Fragile X syndrome (FXS) is a developmental disorder characterized by intellectual disability and autistic-like behaviors. These symptoms are supposed to result from dysregulated translation in pre- and postsynapses, resulting in aberrant synaptic plasticity. Although most drug development research on FXS has focused on aberrant postsynaptic functions by excess translation in postsynapses, the effect of drug candidates on FXS in presynaptic release is largely unclear. In this report, we developed a novel assay system using neuron ball culture with beads to induce presynapse formation, allowing for the analysis of presynaptic phenotypes, including presynaptic release. Metformin, which is shown to rescue core phenotypes in FXS mouse model by normalizing dysregulated translation, ameliorated the exaggerated presynaptic release of neurons of FXS model mouse using this assay system. Furthermore, metformin suppressed the excess accumulation of the active zone protein Munc18-1, which is supposed to be locally translated in presynapses. These results suggest that metformin rescues both postsynaptic and presynaptic phenotypes by inhibiting excess translation in FXS neurons.
Collapse
Affiliation(s)
- Renoma Takeda
- Functional Structure Science Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ward, Yokohama 230-0045, Japan
| | - Rie Ishii
- Functional Structure Science Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ward, Yokohama 230-0045, Japan
| | - Shumaia Parvin
- Functional Structure Science Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ward, Yokohama 230-0045, Japan
| | - Aki Shiozawa
- Structural Biology Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ward, Yokohama 230-0045, Japan
| | - Terukazu Nogi
- Structural Biology Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ward, Yokohama 230-0045, Japan
| | - Yukio Sasaki
- Functional Structure Science Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ward, Yokohama 230-0045, Japan.
| |
Collapse
|