1
|
Weekley BH, Ahmed NI, Maze I. Elucidating neuroepigenetic mechanisms to inform targeted therapeutics for brain disorders. iScience 2025; 28:112092. [PMID: 40160416 PMCID: PMC11951040 DOI: 10.1016/j.isci.2025.112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
The evolving field of neuroepigenetics provides important insights into the molecular foundations of brain function. Novel sequencing technologies have identified patient-specific mutations and gene expression profiles involved in shaping the epigenetic landscape during neurodevelopment and in disease. Traditional methods to investigate the consequences of chromatin-related mutations provide valuable phenotypic insights but often lack information on the biochemical mechanisms underlying these processes. Recent studies, however, are beginning to elucidate how structural and/or functional aspects of histone, DNA, and RNA post-translational modifications affect transcriptional landscapes and neurological phenotypes. Here, we review the identification of epigenetic regulators from genomic studies of brain disease, as well as mechanistic findings that reveal the intricacies of neuronal chromatin regulation. We then discuss how these mechanistic studies serve as a guideline for future neuroepigenetics investigations. We end by proposing a roadmap to future therapies that exploit these findings by coupling them to recent advances in targeted therapeutics.
Collapse
Affiliation(s)
- Benjamin H. Weekley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Newaz I. Ahmed
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Pagani M, Zerbi V, Gini S, Alvino F, Banerjee A, Barberis A, Basson MA, Bozzi Y, Galbusera A, Ellegood J, Fagiolini M, Lerch J, Matteoli M, Montani C, Pozzi D, Provenzano G, Scattoni ML, Wenderoth N, Xu T, Lombardo M, Milham MP, Martino AD, Gozzi A. Biological subtyping of autism via cross-species fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.04.641400. [PMID: 40093106 PMCID: PMC11908180 DOI: 10.1101/2025.03.04.641400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
It is frequently assumed that the phenotypic heterogeneity in autism spectrum disorder reflects underlying pathobiological variation. However, direct evidence in support of this hypothesis is lacking. Here, we leverage cross-species functional neuroimaging to examine whether variability in brain functional connectivity reflects distinct biological mechanisms. We find that fMRI connectivity alterations in 20 distinct mouse models of autism (n=549 individual mice) can be clustered into two prominent hypo- and hyperconnectivity subtypes. We show that these connectivity profiles are linked to distinct signaling pathways, with hypoconnectivity being associated with synaptic dysfunction, and hyperconnectivity reflecting transcriptional and immune-related alterations. Extending these findings to humans, we identify analogous hypo- and hyperconnectivity subtypes in a large, multicenter resting state fMRI dataset of n=940 autistic and n=1036 neurotypical individuals. Remarkably, hypo- and hyperconnectivity autism subtypes are replicable across independent cohorts (accounting for 25.1% of all autism data), exhibit distinct functional network architecture, are behaviorally dissociable, and recapitulate synaptic and immune mechanisms identified in corresponding mouse subtypes. Our cross-species investigation, thus, decodes the heterogeneity of fMRI connectivity in autism into distinct pathway-specific etiologies, offering a new empirical framework for targeted subtyping of autism.
Collapse
Affiliation(s)
- Marco Pagani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
- Autism Center, Child Mind Institute, New York, NY, USA
- IMT School for Advanced Studies, Lucca, Italy
| | - Valerio Zerbi
- Department of Psychiatry, University of Geneva, Switzerland
- Department of Basic Neurosciences, University of Geneva, Switzerland
| | - Silvia Gini
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
- Center for Mind and Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Filomena Alvino
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | | | - Andrea Barberis
- Synaptic Plasticity of Inhibitory Networks, Istituto Italiano di Tecnologia, Genova, Italy
| | - M. Albert Basson
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Yuri Bozzi
- Center for Mind and Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Jacob Ellegood
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | | | - Jason Lerch
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Michela Matteoli
- Humanitas University, Milan, Italy
- CNR Institute of Neuroscience c/o Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Caterina Montani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Davide Pozzi
- CNR Institute of Neuroscience c/o Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Giovanni Provenzano
- Department of Cellular, Computational and Integrative Biology. University of Trento, Trento, Italy
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy
| | | | - Ting Xu
- Center for Integrative Developing Brain, Child Mind Institute, New York, NY, USA
| | - Michael Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| | - Michael P Milham
- Center for the Integrative Developmental Neuroscience, Child Mind Institute, New York, NY, USA
| | | | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| |
Collapse
|
3
|
Tabbaa M, Gamez A, Dust A, Mataric M, Levitt P. Offspring genetic diversity regulates rearing experiences that predict differential susceptibility to Chd8 haploinsufficiency. RESEARCH SQUARE 2025:rs.3.rs-6058389. [PMID: 40092436 PMCID: PMC11908356 DOI: 10.21203/rs.3.rs-6058389/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Mouse models of human disease focus on determining the direct impact of genetic mutations on phenotypes related to clinical presentations. For example, loss of function mutations in the autism-associated CHD8 gene is highly penetrant for trait and behavioral abnormalities in children, but there is substantial clinical heterogeneity in the occurrence and extent of disruptions between individuals. Using a large genetic reference panel of mice, we recently showed that genetic background strongly regulates variability in trait disruptions caused by Chd8 haploinsufficiency. Here, we hypothesized that genetics could also impact the variability in response to early life experiences, thus contributing to differential susceptibility to neurodevelopmental disorders. To examine how genetic diversity impacts rearing experience, we systematically observed the behavior of genetically diverse offspring raised by genetically identical mothers. The results reveal strain differences in pup and maternal behaviors. Machine learning analysis reveals that early life litter experiences are strong predictors of sex-dependent postweaning social, anxiety-like, and cognitive trait disruptions due to Chd8 haploinsufficiency. The study suggests that offspring phenotypes in mutant models of disease are due to a combination of heritable and early experience factors, demonstrating the utility of incorporating genetic diversity in studies to model the mechanisms that underlie the heterogeneity of disrupted phenotypes in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Manal Tabbaa
- Division of Neurology, Department of Pediatrics and Developmental Neuroscience and Neurogenetics Program, Children's Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA 90027, USA
- Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Alexis Gamez
- Division of Neurology, Department of Pediatrics and Developmental Neuroscience and Neurogenetics Program, Children's Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA 90027, USA
| | - A'Di Dust
- Department of Computer Science, University of Southern California, Los Angeles, CA 90027, USA
| | - Maja Mataric
- Department of Computer Science, University of Southern California, Los Angeles, CA 90027, USA
| | - Pat Levitt
- Division of Neurology, Department of Pediatrics and Developmental Neuroscience and Neurogenetics Program, Children's Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA 90027, USA
- Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
4
|
LaMantia AS. Polygenicity in a box: Copy number variants, neural circuit development, and neurodevelopmental disorders. Curr Opin Neurobiol 2024; 89:102917. [PMID: 39305678 PMCID: PMC11611645 DOI: 10.1016/j.conb.2024.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 11/20/2024]
Abstract
Clinically defined neurodevelopmental disorders (cd-NDDs), including Autistic Spectrum Disorder (ASD) and Schizophrenia (Scz), are primarily polygenic: Multiple risk genes distributed across the genome, in potentially infinite combinations, account for variable pathology. Polygenicity raises a fundamental question: Can "core" cd-NDD pathogenic mechanisms be identified given this genomic complexity? With the right models and analytic targets, a distinct class of polygenic mutations-Copy Number Variants (CNVs): contiguous gene deletions or duplications associated with cd-NDD risk-provide a singular opportunity to define cd-NDD pathology. CNVs orthologous to those that confer cd-NDD risk have been engineered in animals as well as human stem cells. Using these tools, one can determine how altered function of multiple genes cause serial stumbles over cell biological steps typically taken to build optimal "polygenic" neural circuits. Thus, cd-NDD pathology may be a consequence of polygenic deviations-stumbles-that exceed limits of adaptive variation for key developmental steps.
Collapse
Affiliation(s)
- Anthony-Samuel LaMantia
- The Fralin Biomedical Research Institute at Virginia Tech-Carilion School of Medicine, Roanoke, VA 24016, United States; Department of Biological Sciences, Virginia Tech, Blacksburg VA, 24061, United States.
| |
Collapse
|
5
|
Bagyinszky E, An SSA. Haploinsufficiency and Alzheimer's Disease: The Possible Pathogenic and Protective Genetic Factors. Int J Mol Sci 2024; 25:11959. [PMID: 39596030 PMCID: PMC11594089 DOI: 10.3390/ijms252211959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder influenced by various genetic factors. In addition to the well-established amyloid precursor protein (APP), Presenilin-1 (PSEN1), Presenilin-2 (PSEN2), and apolipoprotein E (APOE), several other genes such as Sortilin-related receptor 1 (SORL1), Phospholipid-transporting ATPase ABCA7 (ABCA7), Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), Phosphatidylinositol-binding clathrin assembly protein (PICALM), and clusterin (CLU) were implicated. These genes contribute to neurodegeneration through both gain-of-function and loss-of-function mechanisms. While it was traditionally thought that heterozygosity in autosomal recessive mutations does not lead to disease, haploinsufficiency was linked to several conditions, including cancer, autism, and intellectual disabilities, indicating that a single functional gene copy may be insufficient for normal cellular functions. In AD, the haploinsufficiency of genes such as ABCA7 and SORL1 may play significant yet under-explored roles. Paradoxically, heterozygous knockouts of PSEN1 or PSEN2 can impair synaptic plasticity and alter the expression of genes involved in oxidative phosphorylation and cell adhesion. Animal studies examining haploinsufficient AD risk genes, such as vacuolar protein sorting-associated protein 35 (VPS35), sirtuin-3 (SIRT3), and PICALM, have shown that their knockout can exacerbate neurodegenerative processes by promoting amyloid production, accumulation, and inflammation. Conversely, haploinsufficiency in APOE, beta-secretase 1 (BACE1), and transmembrane protein 59 (TMEM59) was reported to confer neuroprotection by potentially slowing amyloid deposition and reducing microglial activation. Given its implications for other neurodegenerative diseases, the role of haploinsufficiency in AD requires further exploration. Modeling the mechanisms of gene knockout and monitoring their expression patterns is a promising approach to uncover AD-related pathways. However, challenges such as identifying susceptible genes, gene-environment interactions, phenotypic variability, and biomarker analysis must be addressed. Enhancing model systems through humanized animal or cell models, utilizing advanced research technologies, and integrating multi-omics data will be crucial for understanding disease pathways and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
6
|
Kim Y, Hrncir H, Meyer CE, Tabbaa M, Moats RA, Levitt P, Harris NG, MacKenzie-Graham A, Shattuck DW. Mouse Brain Extractor: Brain segmentation of mouse MRI using global positional encoding and SwinUNETR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611106. [PMID: 39282435 PMCID: PMC11398355 DOI: 10.1101/2024.09.03.611106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
In spite of the great progress that has been made towards automating brain extraction in human magnetic resonance imaging (MRI), challenges remain in the automation of this task for mouse models of brain disorders. Researchers often resort to editing brain segmentation results manually when automated methods fail to produce accurate delineations. However, manual corrections can be labor-intensive and introduce interrater variability. This motivated our development of a new deep-learning-based method for brain segmentation of mouse MRI, which we call Mouse Brain Extractor. We adapted the existing SwinUNETR architecture (Hatamizadeh et al., 2021) with the goal of making it more robust to scale variance. Our approach is to supply the network model with supplementary spatial information in the form of absolute positional encoding. We use a new scheme for positional encoding, which we call Global Positional Encoding (GPE). GPE is based on a shared coordinate frame that is relative to the entire input image. This differs from the positional encoding used in SwinUNETR, which solely employs relative pairwise image patch positions. GPE also differs from the conventional absolute positional encoding approach, which encodes position relative to a subimage rather than the entire image. We trained and tested our method on a heterogeneous dataset of N=223 mouse MRI, for which we generated a corresponding set of manually-edited brain masks. These data were acquired previously in other studies using several different scanners and imaging protocols and included in vivo and ex vivo images of mice with heterogeneous brain structure due to different genotypes, strains, diseases, ages, and sexes. We evaluated our method's results against those of seven existing rodent brain extraction methods and two state-of-the art deep-learning approaches, nnU-Net (Isensee et al., 2018) and SwinUNETR. Overall, our proposed method achieved average Dice scores on the order of 0.98 and average HD95 measures on the order of 100 μm when compared to the manually-labeled brain masks. In statistical analyses, our method significantly outperformed the conventional approaches and performed as well as or significantly better than the nnU-Net and SwinUNETR methods. These results suggest that Global Positional Encoding provides additional contextual information that enables our Mouse Brain Extractor to perform competitively on datasets containing multiple resolutions.
Collapse
Affiliation(s)
- Yeun Kim
- Ahmanson-Lovelace Brain Mapping Center, Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Haley Hrncir
- Ahmanson-Lovelace Brain Mapping Center, Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Cassandra E. Meyer
- Ahmanson-Lovelace Brain Mapping Center, Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Manal Tabbaa
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California 90027, USA
- Dept. of Biomedical Engineering, University of Southern California, Los Angeles, California, 90089 USA
| | - Rex A. Moats
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California 90027, USA
- Dept. of Biomedical Engineering, University of Southern California, Los Angeles, California, 90089 USA
| | - Pat Levitt
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California 90027, USA
- Dept. of Biomedical Engineering, University of Southern California, Los Angeles, California, 90089 USA
| | - Neil G. Harris
- UCLA Brain Injury Research Center, Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- Intellectual Development and Disabilities Research Center, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Allan MacKenzie-Graham
- Ahmanson-Lovelace Brain Mapping Center, Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - David W. Shattuck
- Ahmanson-Lovelace Brain Mapping Center, Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| |
Collapse
|
7
|
Pera M, Greene A, Cardon L, Carter GW, Chesler EJ, Churchill G, Kumar V, Lutz C, Munger S, Murray S, O'Connell K, Reinholdt L, Rosenthal NA. Improving the predictive power of mouse models. Nat Biotechnol 2024; 42:1175-1177. [PMID: 39143158 DOI: 10.1038/s41587-024-02349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
| | | | - Lon Cardon
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | | | | | | | | | | | | | | | | - Nadia A Rosenthal
- The Jackson Laboratory, Bar Harbor, ME, USA.
- National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK.
| |
Collapse
|
8
|
Glenn RA, Do SC, Guruvayurappan K, Corrigan EK, Santini L, Medina-Cano D, Singer S, Cho H, Liu J, Broman K, Czechanski A, Reinholdt L, Koche R, Furuta Y, Kunz M, Vierbuchen T. A PLURIPOTENT STEM CELL PLATFORM FOR IN VITRO SYSTEMS GENETICS STUDIES OF MOUSE DEVELOPMENT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597758. [PMID: 38895226 PMCID: PMC11185710 DOI: 10.1101/2024.06.06.597758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The directed differentiation of pluripotent stem cells (PSCs) from panels of genetically diverse individuals is emerging as a powerful experimental system for characterizing the impact of natural genetic variation on developing cell types and tissues. Here, we establish new PSC lines and experimental approaches for modeling embryonic development in a genetically diverse, outbred mouse stock (Diversity Outbred mice). We show that a range of inbred and outbred PSC lines can be stably maintained in the primed pluripotent state (epiblast stem cells -- EpiSCs) and establish the contribution of genetic variation to phenotypic differences in gene regulation and directed differentiation. Using pooled in vitro fertilization, we generate and characterize a genetic reference panel of Diversity Outbred PSCs (n = 230). Finally, we demonstrate the feasibility of pooled culture of Diversity Outbred EpiSCs as "cell villages", which can facilitate the differentiation of large numbers of EpiSC lines for forward genetic screens. These data can complement and inform similar efforts within the stem cell biology and human genetics communities to model the impact of natural genetic variation on phenotypic variation and disease-risk.
Collapse
Affiliation(s)
- Rachel A. Glenn
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Stephanie C. Do
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Emily K. Corrigan
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Present address: Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA and Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Santini
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Medina-Cano
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah Singer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hyein Cho
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jing Liu
- Mouse Genetics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karl Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI USA
| | | | | | - Richard Koche
- Center for Epigenetics Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yasuhide Furuta
- Mouse Genetics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meik Kunz
- The Bioinformatics CRO, Sanford Florida, 32771 USA
| | - Thomas Vierbuchen
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
9
|
Ellingford R, Tojo M, Basson MA, Andreae LC. Male-Dominant Effects of Chd8 Haploinsufficiency on Synaptic Phenotypes during Development in Mouse Prefrontal Cortex. ACS Chem Neurosci 2024; 15:1635-1642. [PMID: 38557009 PMCID: PMC11027092 DOI: 10.1021/acschemneuro.3c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
CHD8 is a high penetrance, high confidence risk gene for autism spectrum disorder (ASD), a neurodevelopmental disorder that is substantially more prevalent among males than among females. Recent studies have demonstrated variable sex differences in the behaviors and synaptic phenotypes of mice carrying different heterozygous ASD-associated mutations in Chd8. We examined functional and structural cellular phenotypes linked to synaptic transmission in deep layer pyramidal neurons of the prefrontal cortex in male and female mice carrying a heterozygous, loss-of-function Chd8 mutation in the C57BL/6J strain across development from postnatal day 2 to adulthood. Notably, excitatory neurotransmission was decreased only in Chd8+/- males with no differences in Chd8+/- females, and the majority of alterations in inhibitory transmission were found in males. Similarly, analysis of cellular morphology showed male-specific effects of reduced Chd8 expression. Both functional and structural phenotypes were most prominent at postnatal days 14-20, a stage approximately corresponding to childhood. Our findings suggest that the effects of Chd8 mutation are predominantly seen in males and are maximal during childhood.
Collapse
Affiliation(s)
- Robert
A. Ellingford
- Centre
for Developmental Neurobiology, Institute of Psychiatry, Psychology
& Neuroscience, King’s College
London, London SE1 1UL, U.K.
- Centre
for Craniofacial & Regenerative Biology, King’s College London, London SE1 9RT, U.K.
| | - Mizuki Tojo
- Centre
for Developmental Neurobiology, Institute of Psychiatry, Psychology
& Neuroscience, King’s College
London, London SE1 1UL, U.K.
| | - M. Albert Basson
- Centre
for Craniofacial & Regenerative Biology, King’s College London, London SE1 9RT, U.K.
- MRC
Centre for Neurodevelopmental Disorders, King’s College London, London, U.K.
| | - Laura C. Andreae
- Centre
for Developmental Neurobiology, Institute of Psychiatry, Psychology
& Neuroscience, King’s College
London, London SE1 1UL, U.K.
- MRC
Centre for Neurodevelopmental Disorders, King’s College London, London, U.K.
| |
Collapse
|
10
|
Cortes DE, Escudero M, Korgan AC, Mitra A, Edwards A, Aydin SC, Munger SC, Charland K, Zhang ZW, O'Connell KMS, Reinholdt LG, Pera MF. An in vitro neurogenetics platform for precision disease modeling in the mouse. SCIENCE ADVANCES 2024; 10:eadj9305. [PMID: 38569042 PMCID: PMC10990289 DOI: 10.1126/sciadv.adj9305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
The power and scope of disease modeling can be markedly enhanced through the incorporation of broad genetic diversity. The introduction of pathogenic mutations into a single inbred mouse strain sometimes fails to mimic human disease. We describe a cross-species precision disease modeling platform that exploits mouse genetic diversity to bridge cell-based modeling with whole organism analysis. We developed a universal protocol that permitted robust and reproducible neural differentiation of genetically diverse human and mouse pluripotent stem cell lines and then carried out a proof-of-concept study of the neurodevelopmental gene DYRK1A. Results in vitro reliably predicted the effects of genetic background on Dyrk1a loss-of-function phenotypes in vivo. Transcriptomic comparison of responsive and unresponsive strains identified molecular pathways conferring sensitivity or resilience to Dyrk1a1A loss and highlighted differential messenger RNA isoform usage as an important determinant of response. This cross-species strategy provides a powerful tool in the functional analysis of candidate disease variants identified through human genetic studies.
Collapse
Affiliation(s)
| | | | | | - Arojit Mitra
- The Jackson Laboratory, Bar Harbor, ME 04660, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tabbaa M, Levitt P. Chd8 haploinsufficiency impacts rearing experience in C57BL/6 mice. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12892. [PMID: 38560770 PMCID: PMC10982810 DOI: 10.1111/gbb.12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Mutations in CHD8 are one of the highest genetic risk factors for autism spectrum disorder. Studies in mice that investigate underlying mechanisms have shown Chd8 haploinsufficient mice display some trait disruptions that mimic clinical phenotypes, although inconsistencies have been reported in some traits across different models on the same strain background. One source of variation across studies may be the impact of Chd8 haploinsufficiency on maternal-offspring interactions. While differences in maternal care as a function of Chd8 genotype have not been studied directly, a previous study showed that pup survival was reduced when reared by Chd8 heterozygous dams compared with wild-type (WT) dams, suggesting altered maternal care as a function of Chd8 genotype. Through systematic observation of the C57BL/6 strain, we first determined the impact of Chd8 haploinsufficiency in the offspring on WT maternal care frequencies across preweaning development. We next determined the impact of maternal Chd8 haploinsufficiency on pup care. Compared with litters with all WT offspring, WT dams exhibited less frequent maternal behaviors toward litters consisting of offspring with mixed Chd8 genotypes, particularly during postnatal week 1. Dam Chd8 haploinsufficiency decreased litter survival and increased active maternal care also during postnatal week 1. Determining the impact of Chd8 haploinsufficiency on early life experiences provides an important foundation for interpreting offspring outcomes and determining mechanisms that underlie heterogeneous phenotypes.
Collapse
Affiliation(s)
- Manal Tabbaa
- Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA
- Keck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Pat Levitt
- Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA
- Keck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
12
|
Basson MA. Neurodevelopmental functions of CHD8: new insights and questions. Biochem Soc Trans 2024; 52:15-27. [PMID: 38288845 PMCID: PMC10903457 DOI: 10.1042/bst20220926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Heterozygous, de novo, loss-of-function variants of the CHD8 gene are associated with a high penetrance of autism and other neurodevelopmental phenotypes. Identifying the neurodevelopmental functions of high-confidence autism risk genes like CHD8 may improve our understanding of the neurodevelopmental mechanisms that underlie autism spectrum disorders. Over the last decade, a complex picture of pleiotropic CHD8 functions and mechanisms of action has emerged. Multiple brain and non-brain cell types and progenitors appear to be affected by CHD8 haploinsufficiency. Behavioural, cellular and synaptic phenotypes are dependent on the nature of the gene mutation and are modified by sex and genetic background. Here, I review some of the CHD8-interacting proteins and molecular mechanisms identified to date, as well as the impacts of CHD8 deficiency on cellular processes relevant to neurodevelopment. I endeavour to highlight some of the critical questions that still require careful and concerted attention over the next decade to bring us closer to the goal of understanding the salient mechanisms whereby CHD8 deficiency causes neurodevelopmental disorders.
Collapse
Affiliation(s)
- M. Albert Basson
- Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, U.K
- Centre for Craniofacial and Regenerative Biology and MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 9RT, U.K
| |
Collapse
|
13
|
Schamiloglu S, Wu H, Zhou M, Kwan AC, Bender KJ. Dynamic Foraging Behavior Performance Is Not Affected by Scn2a Haploinsufficiency. eNeuro 2023; 10:ENEURO.0367-23.2023. [PMID: 38151324 PMCID: PMC10755640 DOI: 10.1523/eneuro.0367-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Dysfunction in the gene SCN2A, which encodes the voltage-gated sodium channel Nav1.2, is strongly associated with neurodevelopmental disorders including autism spectrum disorder and intellectual disability (ASD/ID). This dysfunction typically manifests in these disorders as a haploinsufficiency, where loss of one copy of a gene cannot be compensated for by the other allele. Scn2a haploinsufficiency affects a range of cells and circuits across the brain, including associative neocortical circuits that are important for cognitive flexibility and decision-making behaviors. Here, we tested whether Scn2a haploinsufficiency has any effect on a dynamic foraging task that engages such circuits. Scn2a +/- mice and wild-type (WT) littermates were trained on a choice behavior where the probability of reward between two options varied dynamically across trials and where the location of the high reward underwent uncued reversals. Despite impairments in Scn2a-related neuronal excitability, we found that both male and female Scn2a +/- mice performed these tasks as well as wild-type littermates, with no behavioral difference across genotypes in learning or performance parameters. Varying the number of trials between reversals or probabilities of receiving reward did not result in an observable behavioral difference, either. These data suggest that, despite heterozygous loss of Scn2a, mice can perform relatively complex foraging tasks that make use of higher-order neuronal circuits.
Collapse
Affiliation(s)
- Selin Schamiloglu
- Neuroscience Graduate Program, University of California, San Francisco, CA 94158
- Center for Integrative Neuroscience, Department of Neurology, University of California, San Francisco, CA 94158
| | - Hao Wu
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511
| | - Mingkang Zhou
- Neuroscience Graduate Program, University of California, San Francisco, CA 94158
- Center for Integrative Neuroscience, Department of Neurology, University of California, San Francisco, CA 94158
| | - Alex C Kwan
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Kevin J Bender
- Center for Integrative Neuroscience, Department of Neurology, University of California, San Francisco, CA 94158
| |
Collapse
|
14
|
Falck-Ytter T, Bussu G. The sensory-first account of autism. Neurosci Biobehav Rev 2023; 153:105405. [PMID: 37742990 DOI: 10.1016/j.neubiorev.2023.105405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Terje Falck-Ytter
- Development and Neurodiversity Lab, Department of Psychology, Uppsala University, Uppsala, Sweden; Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Giorgia Bussu
- Development and Neurodiversity Lab, Department of Psychology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Xing L, Simon JM, Ptacek TS, Yi JJ, Loo L, Mao H, Wolter JM, McCoy ES, Paranjape SR, Taylor-Blake B, Zylka MJ. Autism-linked UBE3A gain-of-function mutation causes interneuron and behavioral phenotypes when inherited maternally or paternally in mice. Cell Rep 2023; 42:112706. [PMID: 37389991 PMCID: PMC10530456 DOI: 10.1016/j.celrep.2023.112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/15/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023] Open
Abstract
The E3 ubiquitin ligase Ube3a is biallelically expressed in neural progenitors and glial cells, suggesting that UBE3A gain-of-function mutations might cause neurodevelopmental disorders irrespective of parent of origin. Here, we engineered a mouse line that harbors an autism-linked UBE3AT485A (T503A in mouse) gain-of-function mutation and evaluated phenotypes in animals that inherited the mutant allele paternally, maternally, or from both parents. We find that paternally and maternally expressed UBE3AT503A results in elevated UBE3A activity in neural progenitors and glial cells. Expression of UBE3AT503A from the maternal allele, but not the paternal one, leads to a persistent elevation of UBE3A activity in neurons. Mutant mice display behavioral phenotypes that differ by parent of origin. Expression of UBE3AT503A, irrespective of its parent of origin, promotes transient embryonic expansion of Zcchc12 lineage interneurons. Phenotypes of Ube3aT503A mice are distinct from Angelman syndrome model mice. Our study has clinical implications for a growing number of disease-linked UBE3A gain-of-function mutations.
Collapse
Affiliation(s)
- Lei Xing
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeremy M Simon
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA; Department of Genetics, The University of North Carolina at Chapel Hill, Campus Box #7264, Chapel Hill, NC 27599, USA
| | - Travis S Ptacek
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA
| | - Jason J Yi
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA
| | - Lipin Loo
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hanqian Mao
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA
| | - Justin M Wolter
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA; Department of Genetics, The University of North Carolina at Chapel Hill, Campus Box #7264, Chapel Hill, NC 27599, USA
| | - Eric S McCoy
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Smita R Paranjape
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bonnie Taylor-Blake
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark J Zylka
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA.
| |
Collapse
|
16
|
Li M, Yang L, Qian W, Ray S, Lu Z, Liu T, Zou YY, Naumann RK, Wang H. A novel rat model of Dravet syndrome recapitulates clinical hallmarks. Neurobiol Dis 2023:106193. [PMID: 37295561 DOI: 10.1016/j.nbd.2023.106193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Dravet syndrome (DS) is a debilitating infantile epileptic encephalopathy characterized by seizures induced by high body temperature (hyperthermia), sudden unexpected death in epilepsy (SUDEP), cognitive impairment, and behavioral disturbances. The most common cause of DS is haploinsufficiency of the SCN1A gene, which encodes the voltage-gated sodium channel Nav1.1. In current mouse models of DS, the epileptic phenotype is strictly dependent on the genetic background and most mouse models exhibit drastically higher SUDEP rates than patients. Therefore, we sought to develop an alternative animal model for DS. Here, we report the generation and characterization of a Scn1a halploinsufficiency rat model of DS by disrupting the Scn1a allele. Scn1a+/- rats show reduced Scn1a expression in the cerebral cortex, hippocampus and thalamus. Homozygous null rats die prematurely. Heterozygous animals are highly susceptible to heat-induced seizures, the clinical hallmark of DS, but are otherwise normal in survival, growth, and behavior without seizure induction. Hyperthermia-induced seizures activate distinct sets of neurons in the hippocampus and hypothalamus in Scn1a+/- rats. Electroencephalogram (EEG) recordings in Scn1a+/- rats reveal characteristic ictal EEG with high amplitude bursts with significantly increased delta and theta power. After the initial hyperthermia-induced seizures, non-convulsive, and convulsive seizures occur spontaneously in Scn1a+/- rats. In conclusion, we generate a Scn1a haploinsufficiency rat model with phenotypes closely resembling DS, providing a unique platform for establishing therapies for DS.
Collapse
Affiliation(s)
- Miao Li
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lixin Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weixin Qian
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Saikat Ray
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Zhonghua Lu
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying-Ying Zou
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Robert K Naumann
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hong Wang
- The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Key Laboratory of Drug Addiction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
17
|
Kawamura A, Nishiyama M. Deletion of the autism-related gene Chd8 alters activity-dependent transcriptional responses in mouse postmitotic neurons. Commun Biol 2023; 6:593. [PMID: 37268684 DOI: 10.1038/s42003-023-04968-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
CHD8 encodes chromodomain helicase DNA-binding protein 8 and its mutation is a highly penetrant risk factor for autism spectrum disorder (ASD). CHD8 serves as a key transcriptional regulator on the basis of its chromatin-remodeling activity and thereby controls the proliferation and differentiation of neural progenitor cells. However, the function of CHD8 in postmitotic neurons and the adult brain has remained unclear. Here we show that Chd8 homozygous deletion in mouse postmitotic neurons results in downregulation of the expression of neuronal genes as well as alters the expression of activity-dependent genes induced by KCl-mediated neuronal depolarization. Furthermore, homozygous ablation of CHD8 in adult mice was associated with attenuation of activity-dependent transcriptional responses in the hippocampus to kainic acid-induced seizures. Our findings implicate CHD8 in transcriptional regulation in postmitotic neurons and the adult brain, and they suggest that disruption of this function might contribute to ASD pathogenesis associated with CHD8 haploinsufficiency.
Collapse
Affiliation(s)
- Atsuki Kawamura
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Masaaki Nishiyama
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
18
|
Ulrich M, Pollali E, Çalışkan G, Stork O, Albrecht A. Sex differences in anxiety and threat avoidance in GAD65 knock-out mice. Neurobiol Dis 2023; 183:106165. [PMID: 37230180 DOI: 10.1016/j.nbd.2023.106165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Anxiety disorders have been linked to a disbalance of excitation and inhibition in a network of brain structures comprising frontal cortical regions, the amygdala and the hippocampus, among others. Recent imaging studies suggest sex differences in the activation of this anxiety network during the processing of emotional information. Rodent models with genetically altered ϒ-amino butyric acid (GABA) neurotransmission allow studying the neuronal basis of such activation shifts and their relation to anxiety endophenotypes, but to date sex effects have rarely been addressed. Using mice with a null mutation of the GABA synthetizing enzyme glutamate decarboxylase 65 (GAD65-/-), we started to compare anxiety-like behavior and avoidance in male vs. female GAD65-/- mice and their wildtype littermates. In an open field, female GAD65-/- mice displayed increased activity, while male GAD65-/- mice showed an increased adaptation of anxiety-like behavior over time. GAD65-/- mice of both sexes had a higher preference for social interaction partners, which was further heightened in male mice. In male mice higher escape responses were observed during an active avoidance task. Together, female mice showed more stable emotional responses despite GAD65 deficiency. To gain insights into interneuron function in network structures controlling anxiety and threat perception, fast oscillations (10-45 Hz) were measured in ex vivo slice preparations of the anterior cingulate cortex (ACC). GAD65-/- mice of both sexes displayed increased gamma power in the ACC and a higher density of PV-positive interneurons, which are crucial for generating such rhythmic activity. In addition, GAD65-/- mice had lower numbers of somatostatin-positive interneurons in the basolateral amygdala and in the dorsal dentate gyrus especially in male mice, two key regions important for anxiety and active avoidance responses. Our data suggest sex differences in the configuration of GABAergic interneurons in a cortico-amygdala-hippocampal network controlling network activity patterns, anxiety and threat avoidance behavior.
Collapse
Affiliation(s)
- Michelle Ulrich
- Institute of Anatomy, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Evangelia Pollali
- Institute of Biology, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Gürsel Çalışkan
- Institute of Biology, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, 39106 Magdeburg, Germany; Research Group "Synapto-Oscillopathies", Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany.
| | - Oliver Stork
- Institute of Biology, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, 39106 Magdeburg, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| | - Anne Albrecht
- Institute of Anatomy, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, 39106 Magdeburg, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| |
Collapse
|
19
|
Veenstra-VanderWeele J, O'Reilly KC, Dennis MY, Uribe-Salazar JM, Amaral DG. Translational Neuroscience Approaches to Understanding Autism. Am J Psychiatry 2023; 180:265-276. [PMID: 37002692 DOI: 10.1176/appi.ajp.20230153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
While autism spectrum disorder affects nearly 2% of children in the United States, little is known with certainty concerning the etiologies and brain systems involved. This is due, in part, to the substantial heterogeneity in the presentation of the core symptoms of autism as well as the great number of co-occurring conditions that are common in autistic individuals. Understanding the neurobiology of autism is further hampered by the limited availability of postmortem brain tissue to determine the cellular and molecular alterations that take place in the autistic brain. Animal models therefore provide great translational value in helping to define the neural systems that constitute the social brain and mediate repetitive behaviors or interests. If they are based on genetic or environmental factors that contribute to autism, organisms from flies to nonhuman primates may serve as models of the neural structure or function of the autistic brain. Ultimately, successful models can also be employed to test the safety and effectiveness of potential therapeutics. This is an overview of the major animal species that are currently used as models of autism, including an appraisal of the advantages and limitations of each.
Collapse
Affiliation(s)
- Jeremy Veenstra-VanderWeele
- New York State Psychiatric Institute and Department of Psychiatry, Columbia University, New York (Veenstra-VanderWeele, O'Reilly); Department of Biochemistry and Molecular Medicine, Genome Center (Dennis, Uribe-Salazar), MIND Institute (Dennis, Uribe-Salazar, Amaral), and Department of Psychiatry and Behavioral Sciences (Amaral), University of California, Davis
| | - Kally C O'Reilly
- New York State Psychiatric Institute and Department of Psychiatry, Columbia University, New York (Veenstra-VanderWeele, O'Reilly); Department of Biochemistry and Molecular Medicine, Genome Center (Dennis, Uribe-Salazar), MIND Institute (Dennis, Uribe-Salazar, Amaral), and Department of Psychiatry and Behavioral Sciences (Amaral), University of California, Davis
| | - Megan Y Dennis
- New York State Psychiatric Institute and Department of Psychiatry, Columbia University, New York (Veenstra-VanderWeele, O'Reilly); Department of Biochemistry and Molecular Medicine, Genome Center (Dennis, Uribe-Salazar), MIND Institute (Dennis, Uribe-Salazar, Amaral), and Department of Psychiatry and Behavioral Sciences (Amaral), University of California, Davis
| | - José M Uribe-Salazar
- New York State Psychiatric Institute and Department of Psychiatry, Columbia University, New York (Veenstra-VanderWeele, O'Reilly); Department of Biochemistry and Molecular Medicine, Genome Center (Dennis, Uribe-Salazar), MIND Institute (Dennis, Uribe-Salazar, Amaral), and Department of Psychiatry and Behavioral Sciences (Amaral), University of California, Davis
| | - David G Amaral
- New York State Psychiatric Institute and Department of Psychiatry, Columbia University, New York (Veenstra-VanderWeele, O'Reilly); Department of Biochemistry and Molecular Medicine, Genome Center (Dennis, Uribe-Salazar), MIND Institute (Dennis, Uribe-Salazar, Amaral), and Department of Psychiatry and Behavioral Sciences (Amaral), University of California, Davis
| |
Collapse
|
20
|
Fair T, Pollen AA. Genetic architecture of human brain evolution. Curr Opin Neurobiol 2023; 80:102710. [PMID: 37003107 DOI: 10.1016/j.conb.2023.102710] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 04/03/2023]
Abstract
Comparative studies of hominids have long sought to identify mutational events that shaped the evolution of the human nervous system. However, functional genetic differences are outnumbered by millions of nearly neutral mutations, and the developmental mechanisms underlying human nervous system specializations are difficult to model and incompletely understood. Candidate-gene studies have attempted to map select human-specific genetic differences to neurodevelopmental functions, but it remains unclear how to contextualize the relative effects of genes that are investigated independently. Considering these limitations, we discuss scalable approaches for probing the functional contributions of human-specific genetic differences. We propose that a systems-level view will enable a more quantitative and integrative understanding of the genetic, molecular and cellular underpinnings of human nervous system evolution.
Collapse
Affiliation(s)
- Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA. https://twitter.com/@TylerFair_
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|