1
|
Liang TZ, Jin ZY, Lin YJ, Chen ZY, Li Y, Xu JK, Yang F, Qin L. Targeting the central and peripheral nervous system to regulate bone homeostasis: mechanisms and potential therapies. Mil Med Res 2025; 12:13. [PMID: 40108680 PMCID: PMC11924829 DOI: 10.1186/s40779-025-00600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
The skeleton is innervated by different types of nerves and receives signaling from the nervous system to maintain homeostasis and facilitate regeneration or repair. Although the role of peripheral nerves and signals in regulating bone homeostasis has been extensively investigated, the intimate relationship between the central nervous system and bone remains less understood, yet it has emerged as a hot topic in the bone field. In this review, we discussed clinical observations and animal studies that elucidate the connection between the nervous system and bone metabolism, either intact or after injury. First, we explored mechanistic studies linking specific brain nuclei with bone homeostasis, including the ventromedial hypothalamus, arcuate nucleus, paraventricular hypothalamic nucleus, amygdala, and locus coeruleus. We then focused on the characteristics of bone innervation and nerve subtypes, such as sensory, sympathetic, and parasympathetic nerves. Moreover, we summarized the molecular features and regulatory functions of these nerves. Finally, we included available translational approaches that utilize nerve function to improve bone homeostasis and promote bone regeneration. Therefore, considering the nervous system within the context of neuromusculoskeletal interactions can deepen our understanding of skeletal homeostasis and repair process, ultimately benefiting future clinical translation.
Collapse
Affiliation(s)
- Tong-Zhou Liang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Zhe-Yu Jin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Yue-Jun Lin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Zi-Yi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Jian-Kun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong, China.
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Sha Tin, 999077, Hong Kong, China.
| |
Collapse
|
2
|
Yu J, Ji L, Liu Y, Wang X, Wang J, Liu C. Bone-brain interaction: mechanisms and potential intervention strategies of biomaterials. Bone Res 2025; 13:38. [PMID: 40097409 PMCID: PMC11914511 DOI: 10.1038/s41413-025-00404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/02/2024] [Accepted: 12/31/2024] [Indexed: 03/19/2025] Open
Abstract
Following the discovery of bone as an endocrine organ with systemic influence, bone-brain interaction has emerged as a research hotspot, unveiling complex bidirectional communication between bone and brain. Studies indicate that bone and brain can influence each other's homeostasis via multiple pathways, yet there is a dearth of systematic reviews in this area. This review comprehensively examines interactions across three key areas: the influence of bone-derived factors on brain function, the effects of brain-related diseases or injuries (BRDI) on bone health, and the concept of skeletal interoception. Additionally, the review discusses innovative approaches in biomaterial design inspired by bone-brain interaction mechanisms, aiming to facilitate bone-brain interactions through materiobiological effects to aid in the treatment of neurodegenerative and bone-related diseases. Notably, the integration of artificial intelligence (AI) in biomaterial design is highlighted, showcasing AI's role in expediting the formulation of effective and targeted treatment strategies. In conclusion, this review offers vital insights into the mechanisms of bone-brain interaction and suggests advanced approaches to harness these interactions in clinical practice. These insights offer promising avenues for preventing and treating complex diseases impacting the skeleton and brain, underscoring the potential of interdisciplinary approaches in enhancing human health.
Collapse
Affiliation(s)
- Jiaze Yu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Luli Ji
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yongxian Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaogang Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Changsheng Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China.
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
3
|
Liu N, Deng Q, Peng Z, Mao D, Huang Y, Meng F, Zhang X, Shen J, Li Z, Yan W, Peng J. Characterization of gene expression profiles in Alzheimer's disease and osteoarthritis: A bioinformatics study. PLoS One 2025; 20:e0316708. [PMID: 39919076 PMCID: PMC11805404 DOI: 10.1371/journal.pone.0316708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/16/2024] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and Osteoarthritis (OA) have been shown to have a close association in previous studies, but the pathogenesis of both diseases are unclear. This study explores the potential common molecular mechanisms between AD and OA through bioinformatics analysis, providing new insights for clinical treatment strategies. METHODS The AD and OA-related datasets were downloaded from the gene expression database GEO. The datasets were analyzed to obtain differentially expressed gene (DEG) datasets for OA and AD, respectively. The intersection of these DEGs was analyzed to identify common DEGs (Co-DEGs). Subsequently, the Co-DEGs were enriched, and a protein-protein interaction network was constructed to identify core genes. The expression of these genes was validated in a separate dataset, and their diagnostic value for the diseases was analyzed. In addition, the core genes were analyzed using gene set enrichment analysis and single-gene genome variation analysis. RESULTS Analysis of DEGs on gene chips from OA and AD patients revealed significant changes in gene expression patterns. Notably, EFEMP2 and TSPO, genes associated with inflammatory responses, showed lower expression levels in both AD and OA patients, suggesting a downregulation in the pathological backgrounds of these diseases. Additionally, GABARAPL1, which is crucial for the maturation of autophagosomes, was found to be upregulated in both conditions. These findings suggest the potential of these genes as diagnostic biomarkers and potential therapeutic targets. However, to confirm the effectiveness of these genes as therapeutic targets, more in-depth mechanistic studies are needed in the future, particularly to explore the feasibility and specific mechanisms of combating disease progression by regulating the expression of these genes. CONCLUSIONS This study suggests that AD and OA shares common molecular mechanisms. The identification of EFEMP2, GABARAPL1, and TSPO as key target genes highlights potential common factors in both diseases. Further investigation into these findings could lead to new candidate targets and treatment directions for AD and OA, offering promising avenues for developing more effective and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Nian Liu
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, PR China
| | - Qian Deng
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, PR China
| | - Zining Peng
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, PR China
| | - Danning Mao
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, PR China
| | - Yuanbo Huang
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, PR China
| | - Fanyu Meng
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, PR China
| | - Xiaoyu Zhang
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, PR China
| | - Jiayan Shen
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, PR China
| | - Zhaofu Li
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, PR China
| | - Weitian Yan
- Department of Rheumatology, The No.1 Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, PR China
| | - Jiangyun Peng
- Department of Rheumatology, The No.1 Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, PR China
| |
Collapse
|
4
|
Zhao Y, Cai Y, Wang W, Bai Y, Liu M, Wang Y, Niu W, Luo Z, Xia L, Zhu J, Zhao F, Tay FR, Niu L. Periosteum-bone inspired hierarchical scaffold with endogenous piezoelectricity for neuro-vascularized bone regeneration. Bioact Mater 2025; 44:339-353. [PMID: 39512423 PMCID: PMC11541236 DOI: 10.1016/j.bioactmat.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024] Open
Abstract
The development of scaffolds for repairing critical-sized bone defects heavily relies on establishing a neuro-vascularized network for proper penetration of nerves and blood vessels. Despite significant advancements in using artificial bone-like scaffolds infused with various agents, challenges remain. Natural bone tissue consists of a porous bone matrix surrounded by a neuro-vascularized periosteum, with unique piezoelectric properties essential for bone growth. Drawing inspiration from this assembly, we developed a periosteum-bone-mimicking bilayer scaffold with piezoelectric properties for regeneration of critical-sized bone defects. The periosteum-like layer of this scaffold features a double network hydrogel composed of chelated alginate, gelatin methacrylate, and sintered whitlockite nanoparticles, emulating the viscoelastic and piezoelectric properties of the natural periosteum. The bone-like layer is composed of a porous structure of chitosan and bioactive hydroxyapatite created through a biomineralization process. Unlike conventional bone-like scaffolds, this bioinspired bilayer scaffold significantly enhances osteogenesis, angiogenesis, and neurogenesis combined with low-intensity pulsed ultrasound-assisted piezoelectric stimulation. Such a scheme enhances neuro-vascularized bone regeneration in vivo. The results suggest that the bilayer scaffold could serve as an effective self-powered electrical stimulator to expedite bone regeneration under dynamic physical stimulation.
Collapse
Affiliation(s)
- Yao Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Yunfan Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Wenkai Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Yongkang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Mingyi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Yan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Zhixiao Luo
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Juanfang Zhu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Fei Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Franklin R. Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Lina Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| |
Collapse
|
5
|
Fan Y, Lyu P, Wang J, Wei Y, Li Z, Zhang S, Ouchi T, Jing J, Yuan Q, Rosen CJ, Zhou C. Negative feedback between PTH1R and IGF1 through the Hedgehog pathway in mediating craniofacial bone remodeling. JCI Insight 2024; 10:e183684. [PMID: 39688917 PMCID: PMC11948590 DOI: 10.1172/jci.insight.183684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024] Open
Abstract
Regeneration of orofacial bone defects caused by inflammation-related diseases or trauma remains an unmet challenge. Parathyroid hormone 1 receptor (PTH1R) signaling is a key mediator of bone remodeling whereas the regulatory mechanisms of PTH1R signaling in oral bone under homeostatic or inflammatory conditions have not been demonstrated by direct genetic evidence. Here, we observed that deletion of PTH1R in Gli1+ progenitors led to increased osteogenesis and osteoclastogenesis. Single-cell and bulk RNA-Seq analysis revealed that PTH1R suppressed the osteogenic potential of Gli1+ progenitors during inflammation. Moreover, we identified upregulated IGF1 expression upon PTH1R deletion. Dual deletion of IGF1 and PTH1R ameliorated the bone-remodeling phenotypes in PTH1R-deficient mice. Furthermore, in vivo evidence revealed an inverse relationship between PTH1R and Hedgehog signaling, which was responsible for the upregulated IGF1 production. Our work underscored the negative feedback between PTH1R and IGF1 in craniofacial bone turnover and revealed mechanisms modulating orofacial bone remodeling.
Collapse
Affiliation(s)
- Yi Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases
- Department of Cariology and Endodontics
| | - Ping Lyu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases
- Department of Cariology and Endodontics
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases
- Department of Pediatric Dentistry, and
| | - Yali Wei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases
- Department of Cariology and Endodontics
| | - Zucen Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases
- Department of Cariology and Endodontics
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Junjun Jing
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases
- Department of Pediatric Dentistry, and
| |
Collapse
|
6
|
Zhang J, Xie C, Xu P, Tong Q, Xiao L, Zhong J. Projections from subfornical organ to bed nucleus of the stria terminalis modulate inflammation-induced anxiety-like behaviors in mice. SCIENCE ADVANCES 2024; 10:eadp9413. [PMID: 39602546 PMCID: PMC11601211 DOI: 10.1126/sciadv.adp9413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Peripheral inflammation is closely related to the pathogenesis of sickness behaviors and psychiatric disorders such as anxiety and depression. The circumventricular organs (CVOs) are important brain sites to perceive peripheral inflammatory signals, but few studies have reported their role in inflammation-induced anxiety or depression. Using a mouse model of lipopolysaccharide (LPS)-induced inflammation, we identified a previously unreported role of the subfornical organ (SFO), one of the CVOs, in combating inflammation-induced anxiety. LPS treatment induced anxiety-like and sickness behaviors in mice. Although both the SFO and the organum vasculosum of the lamina terminalis (a CVO) neurons were activated after LPS treatment, only manipulating SFO neurons modulated LPS-induced anxiety-like behaviors. Activating or inhibiting SFO neurons alleviated or aggravated LPS-induced anxiety-like behaviors. In addition, SFO exerted this effect through glutamatergic projections to the bed nucleus of the stria terminalis. Manipulating SFO neurons did not affect LPS-induced sickness behaviors. Thus, we uncovered an active role of SFO neurons in counteracting peripheral inflammation-induced anxiety.
Collapse
Affiliation(s)
- Jinlin Zhang
- Department of Anesthesiology, Zhongshan Hospital Fudan University, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Chuantong Xie
- Department of Anesthesiology, Zhongshan Hospital Fudan University, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Peiyao Xu
- Department of Anesthesiology, Zhongshan Hospital Fudan University, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qiuping Tong
- Department of Anesthesiology, Zhongshan Hospital Fudan University, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lei Xiao
- Department of Anesthesiology, Zhongshan Hospital Fudan University, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Jing Zhong
- Department of Anesthesiology, Zhongshan Hospital Fudan University, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai 200032, China
- Department of Anesthesiology, Wusong Hospital Branch, Zhongshan Hospital Affiliated to Fudan University, Shanghai 201999, China
| |
Collapse
|
7
|
Liu Z, Liu M, Xiong Y, Wang Y, Bu X. Crosstalk between bone and brain in Alzheimer's disease: Mechanisms, applications, and perspectives. Alzheimers Dement 2024; 20:5720-5739. [PMID: 38824621 PMCID: PMC11350061 DOI: 10.1002/alz.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 06/04/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that involves multiple systems in the body. Numerous recent studies have revealed bidirectional crosstalk between the brain and bone, but the interaction between bone and brain in AD remains unclear. In this review, we summarize human studies of the association between bone and brain and provide an overview of their interactions and the underlying mechanisms in AD. We review the effects of AD on bone from the aspects of AD pathogenic proteins, AD risk genes, neurohormones, neuropeptides, neurotransmitters, brain-derived extracellular vesicles (EVs), and the autonomic nervous system. Correspondingly, we elucidate the underlying mechanisms of the involvement of bone in the pathogenesis of AD, including bone-derived hormones, bone marrow-derived cells, bone-derived EVs, and inflammation. On the basis of the crosstalk between bone and the brain, we propose potential strategies for the management of AD with the hope of offering novel perspectives on its prevention and treatment. HIGHLIGHTS: The pathogenesis of AD, along with its consequent changes in the brain, may involve disturbing bone homeostasis. Degenerative bone disorders may influence the progression of AD through a series of pathophysiological mechanisms. Therefore, relevant bone intervention strategies may be beneficial for the comprehensive management of AD.
Collapse
Affiliation(s)
- Zhuo‐Ting Liu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease (Third Military Medical University)ChongqingChina
| | - Ming‐Han Liu
- Department of OrthopaedicsXinqiao Hospital, Third Military Medical UniversityChongqingChina
| | - Yan Xiong
- Department of OrthopaedicsDaping Hospital, Third Military Medical UniversityChongqingChina
| | - Yan‐Jiang Wang
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease (Third Military Medical University)ChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
| | - Xian‐Le Bu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease (Third Military Medical University)ChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
| |
Collapse
|
8
|
Fu L, Zhang P, Wang Y, Liu X. Microbiota-bone axis in ageing-related bone diseases. Front Endocrinol (Lausanne) 2024; 15:1414350. [PMID: 39076510 PMCID: PMC11284018 DOI: 10.3389/fendo.2024.1414350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Bone homeostasis in physiology depends on the balance between bone formation and resorption, and in pathology, this homeostasis is susceptible to disruption by different influences, especially under ageing condition. Gut microbiota has been recognized as a crucial factor in regulating host health. Numerous studies have demonstrated a significant association between gut microbiota and bone metabolism through host-microbiota crosstalk, and gut microbiota is even an important factor in the pathogenesis of bone metabolism-related diseases that cannot be ignored. This review explores the interplay between gut microbiota and bone metabolism, focusing on the roles of gut microbiota in bone ageing and aging-related bone diseases, including osteoporosis, fragility fracture repair, osteoarthritis, and spinal degeneration from different perspectives. The impact of gut microbiota on bone metabolism during aging through modification of endocrinology system, immune system and gut microbiota metabolites are summarized, facilitating a better grasp of the pathogenesis of aging-related bone metabolic diseases. This review offers innovative insights into targeting the gut microbiota for the treatment of bone ageing-related diseases as a clinical therapeutic strategy.
Collapse
Affiliation(s)
| | | | | | - Xiaonan Liu
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Yang S, Yu S, Du Y, Feng Z, Jiao X, Li Q, Wu J, Sun L, Zuo J, Fu X, Li Z, Huang H, Zhou G, Yu F, Ba Y. Correlations between bone metabolism biomarkers and fluoride exposure in adults and children. J Trace Elem Med Biol 2024; 84:127419. [PMID: 38461620 DOI: 10.1016/j.jtemb.2024.127419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/14/2024] [Accepted: 02/24/2024] [Indexed: 03/12/2024]
Abstract
Increased exposure to fluoride, which notably affects bone metabolism, is a global concern. However, the correlations and sensitivity of bone metabolism to fluoride remain controversial. In this cross-sectional study, 549 children (aged 7-12 years) and 504 adults (≥ 18 years old) were recruited in the high-fluoride areas of the Henan Province. Urinary fluoride (UF) level was determined using a fluoride electrode. Fasting venous blood serum was collected to measure bone metabolism biomarkers. The selected bone metabolism biomarkers for children included bone alkaline phosphatase (BALP), serum alkaline phosphatase (ALP), osteocalcin (OCN), calcitonin (CT), parathyroid hormone (PTH), phosphorus (P5+), and calcium (Ca2+). For adults, the biomarkers included ALP, CT, PTH, β-CrossLaps (β-CTX), P5+, and Ca2+. The correlations between UF and bone metabolism biomarkers were analyzed using binary logistic regression, a trend test, a generalized additive model, and threshold effect analysis. Regression analysis indicated a significant correlation between serum OCN, PTH, and UF levels in children aged 7-9 years. Serum OCN, PTH, and BALP contents were significantly correlated with UF in boys (P < 0.05). Furthermore, the interaction between age and UF affected serum P5+ and PTH (P < 0.05). The generalized additive model revealed nonlinear dose-response relationships between P5+, BALP, and UF contents in children (P < 0.05). Serum OCN level was linearly correlated with the UF concentration (P < 0.05). Similarly, a significant correlation was observed between β-CTX and UF levels in adults. In addition, significant correlations were observed between UF-age and serum Ca2+, β-CTX, and PTH contents. There was a non-linear correlation between serum Ca2+, P5+, and β- CTX and UF levels (P < 0.05). Overall, serum OCN, BALP, and P5+ levels can serve as sensitive bone metabolism biomarkers in children, while β-CTX, P5+, and Ca2+ can be considered fluoride-sensitive bone metabolism biomarkers in adults.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Shuiyuan Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yuhui Du
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Zichen Feng
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xuecheng Jiao
- Department of Endemic Disease, Puyang Center for Disease Control and Prevention, Puyang, Henan 457000, China
| | - Qinyang Li
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Jingjing Wu
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Lei Sun
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Juan Zuo
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xiaoli Fu
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Zhiyuan Li
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hui Huang
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Guoyu Zhou
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Fangfang Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
10
|
Gao F, Hu Q, Chen W, Li J, Qi C, Yan Y, Qian C, Wan M, Ficke J, Zheng J, Cao X. Brain regulates weight bearing bone through PGE2 skeletal interoception: implication of ankle osteoarthritis and pain. Bone Res 2024; 12:16. [PMID: 38443372 PMCID: PMC10914853 DOI: 10.1038/s41413-024-00316-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 03/07/2024] Open
Abstract
Bone is a mechanosensitive tissue and undergoes constant remodeling to adapt to the mechanical loading environment. However, it is unclear whether the signals of bone cells in response to mechanical stress are processed and interpreted in the brain. In this study, we found that the hypothalamus of the brain regulates bone remodeling and structure by perceiving bone prostaglandin E2 (PGE2) concentration in response to mechanical loading. Bone PGE2 levels are in proportion to their weight bearing. When weight bearing changes in the tail-suspension mice, the PGE2 concentrations in bones change in line with their weight bearing changes. Deletion of cyclooxygenase-2 (COX2) in the osteoblast lineage cells or knockout of receptor 4 (EP4) in sensory nerve blunts bone formation in response to mechanical loading. Moreover, knockout of TrkA in sensory nerve also significantly reduces mechanical load-induced bone formation. Moreover, mechanical loading induces cAMP-response element binding protein (CREB) phosphorylation in the hypothalamic arcuate nucleus (ARC) to inhibit sympathetic tyrosine hydroxylase (TH) expression in the paraventricular nucleus (PVN) for osteogenesis. Finally, we show that elevated PGE2 is associated with ankle osteoarthritis (AOA) and pain. Together, our data demonstrate that in response to mechanical loading, skeletal interoception occurs in the form of hypothalamic processing of PGE2-driven peripheral signaling to maintain physiologic bone homeostasis, while chronically elevated PGE2 can be sensed as pain during AOA and implication of potential treatment.
Collapse
Affiliation(s)
- Feng Gao
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Qimiao Hu
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Wenwei Chen
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Jilong Li
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Cheng Qi
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Yiwen Yan
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Cheng Qian
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Mei Wan
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - James Ficke
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Junying Zheng
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Xu Cao
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
| |
Collapse
|
11
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
12
|
Sun W, Ye B, Chen S, Zeng L, Lu H, Wan Y, Gao Q, Chen K, Qu Y, Wu B, Lv X, Guo X. Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges. Bone Res 2023; 11:65. [PMID: 38123549 PMCID: PMC10733346 DOI: 10.1038/s41413-023-00302-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
The skeleton is a highly innervated organ in which nerve fibers interact with various skeletal cells. Peripheral nerve endings release neurogenic factors and sense skeletal signals, which mediate bone metabolism and skeletal pain. In recent years, bone tissue engineering has increasingly focused on the effects of the nervous system on bone regeneration. Simultaneous regeneration of bone and nerves through the use of materials or by the enhancement of endogenous neurogenic repair signals has been proven to promote functional bone regeneration. Additionally, emerging information on the mechanisms of skeletal interoception and the central nervous system regulation of bone homeostasis provide an opportunity for advancing biomaterials. However, comprehensive reviews of this topic are lacking. Therefore, this review provides an overview of the relationship between nerves and bone regeneration, focusing on tissue engineering applications. We discuss novel regulatory mechanisms and explore innovative approaches based on nerve-bone interactions for bone regeneration. Finally, the challenges and future prospects of this field are briefly discussed.
Collapse
Affiliation(s)
- Wenzhe Sun
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bing Ye
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Siyue Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lian Zeng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongwei Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yizhou Wan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qing Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kaifang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanzhen Qu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bin Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Xiaodong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
13
|
Gugala Z. What's New in Musculoskeletal Basic Science. J Bone Joint Surg Am 2023; 105:1831-1836. [PMID: 38063778 DOI: 10.2106/jbjs.23.01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Affiliation(s)
- Zbigniew Gugala
- Department of Orthopaedic Surgery and Rehabilitation, The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
14
|
Shi XY, Ju J, Lu Q, Hu LY, Tian YP, Guo GH, Liu ZS, Wu GF, Zhu HM, Zhang YQ, Li D, Gao L, Yang L, Wang CY, Liao JX, Wang JW, Zhou SZ, Wang H, Li XJ, Gao JY, Zhang L, Shu XM, Li D, Li Y, Chen CH, Zhang XJ, Zhong JM, Zhai QX, Sun YH, Lin XF, Ren RN, Yin F, Chen YH, Jia FY, Yang ZX, Wang JL, Xia ZZ, Wang LW, Luo R, Zou LP. Both epilepsy and anti-seizure medications affect bone metabolism in children with self-limited epilepsy with centrotemporal spikes. Epilepsia 2023; 64:2667-2678. [PMID: 37522416 DOI: 10.1111/epi.17733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE Bone metabolism can be influenced by a range of factors. We selected children with self-limited epilepsy with centrotemporal spikes (SeLECTS) and lifestyles similar to those of healthy children to control for the confounding factors that may influence bone metabolism. We aimed to identify the specific effects of epilepsy and/or anti-seizure medications (ASMs) on bone metabolism. METHODS Patients with SeLECTS were divided into an untreated group and a monotherapy group, and the third group was a healthy control group. We determined the levels of various biochemical markers of bone metabolism, including procollagen type I nitrogenous propeptide (PINP), alkaline phosphatase (ALP), osteocalcin (OC), collagen type I cross-linked C-telopeptide (CTX), calcium, magnesium, phosphorus, parathyroid hormone (PTH), and vitamin D3 (VD3 ). RESULTS A total of 1487 patients (from 19 centers) were diagnosed with SeLECTS; 1032 were analyzed, including 117 patients who did not receive any ASMs (untreated group), 643 patients who received only one ASM (monotherapy group), and 272 children in the healthy control group. Except for VD3 , other bone metabolism of the three groups were different (p < .001). Bone metabolism was significantly lower in the untreated group than the healthy control group (p < .05). There were significant differences between the monotherapy and healthy control group in the level of many markers. However, when comparing the monotherapy and untreated groups, the results were different; oxcarbazepine, levetiracetam, and topiramate had no significant effect on bone metabolism. Phosphorus and magnesium were significantly lower in the valproic acid group than the untreated group (adjusted p < .05, Cliff's delta .282-.768). CTX was significantly higher in the lamotrigine group than in the untreated group (adjusted p = .012, Cliff's delta = .316). SIGNIFICANCE Epilepsy can affect many aspects of bone metabolism. After controlling epilepsy and other confounders that affect bone metabolism, we found that the effects of ASMs on bone metabolism differed. Oxcarbazepine, levetiracetam, and topiramate did not affect bone metabolism, and lamotrigine corrected some of the abnormal markers of bone metabolism in patients with epilepsy.
Collapse
Affiliation(s)
- Xiu-Yu Shi
- Department of Pediatrics, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jun Ju
- Department of Pediatrics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qian Lu
- Department of Pediatrics, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lin-Yan Hu
- Department of Pediatrics, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ya-Ping Tian
- Research Center of Birth Defect Prevention Technology, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Guang-Hong Guo
- Department of Laboratory Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhi-Sheng Liu
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ge-Fei Wu
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hong-Min Zhu
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yu-Qin Zhang
- Department of Neurology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin, China
| | - Dong Li
- Department of Neurology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin, China
| | - Li Gao
- Department of Pediatrics, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Liu Yang
- Department of Pediatrics, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Chun-Yu Wang
- Department of Neurology, Harbin Children's Hospital, Harbin, China
| | - Jian-Xiang Liao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Ji-Wen Wang
- Department of Neurology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shui-Zhen Zhou
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Hua Wang
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Jing Li
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jing-Yun Gao
- Department of Pediatric Neurology, Hebei Tangshan City Maternal and Child Health Care Hospital, Tangshan, China
| | - Li Zhang
- Department of Pediatrics, Linyi People's Hospital, Linyi, China
| | - Xiao-Mei Shu
- Department of Pediatrics, Zunyi Medical College, Zunyi, China
| | - Dan Li
- Department of Pediatrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Li
- Department of Neurology, Children's Hospital Affiliated to Soochow University, Suzhou, China
| | - Chun-Hong Chen
- Department of Neurology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Xiu-Ju Zhang
- Department of Pediatrics, Xingtai People's Hospital, Xingtai, China
| | - Jian-Min Zhong
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong General Hospital, Guangzhou, China
| | - Yan-Hong Sun
- Department of Pediatrics, Cangzhou Central Hospital, Cangzhou, China
| | - Xue-Feng Lin
- Department of Neurology, Quanzhou Children's Hospital, Quanzhou, China
| | - Rong-Na Ren
- Department of Pediatrics, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yan-Hui Chen
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fei-Yong Jia
- Department of Development and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Zhi-Xian Yang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Ju-Li Wang
- Department of Epilepsy, The Central Hospital of Jiamusi City, Jiamusi, China
| | - Zhe-Zhi Xia
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Wen Wang
- Department of Neurology, Capital Institute of Pediatrics, Beijing, China
| | - Rong Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li-Ping Zou
- Department of Pediatrics, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- Center for Brain Disorders Research, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Ducy P. A central regulation of PTH secretion and function. Neuron 2023; 111:1847-1849. [PMID: 37348456 DOI: 10.1016/j.neuron.2023.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/24/2023]
Abstract
PTH orchestrates calcium homeostasis and doubles as a potent, clinically important regulator of bone mass. Adding to the known peripheral regulation of PTH secretion and function, a study by Zhang et al.1 in this issue of Neuron identifies centrally mediated pathways regulating these processes.
Collapse
Affiliation(s)
- Patricia Ducy
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10033, USA.
| |
Collapse
|