1
|
Yin M, Wang R, Cai Z, Liang Y, Mai F, Wu K, Kong D, Tang P, Pan Y, Ji X, Li F, Liang F, Zhang HF. Synchronicity of pyramidal neurones in the neocortex dominates isoflurane-induced burst suppression in mice. Br J Anaesth 2025; 134:1122-1133. [PMID: 39890488 PMCID: PMC11947606 DOI: 10.1016/j.bja.2024.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Anaesthesia-induced burst suppression signifies profound cerebral inactivation. Although considerable efforts have been directed towards elucidating the electroencephalographic manifestation of burst suppression, the neuronal underpinnings that give rise to isoflurane-induced burst suppression are unclear. METHODS Electroencephalography combined with micro-endoscopic calcium imaging was used to investigate the neural mechanisms of isoflurane-induced burst suppression. Synchronous activities of pyramidal neurones in the auditory cortex and medial prefrontal cortex and inhibitory neurones in the auditory cortex (including parvalbumin [PV], somatostatin [SST], and vasoactive intestinal peptide [Vip]) and subcortical regions (including the medial geniculate body, locus coeruleus, and thalamic reticular nucleus) were recorded during isoflurane anaesthesia. In addition, the effects of chemogenetic manipulation inhibitory neurones in the auditory cortex on isoflurane-induced burst suppression were studied. RESULTS Isoflurane-induced burst suppression was highly correlated with the synchronous activities of excitatory neurones in the cortex (∼65% positively and ∼20% negatively correlated neurones). Conversely, a minimal or absent correlation was observed with the neuronal synchrony of inhibitory interneurones and with neuronal activities within subcortical areas. Only activation or inhibition of PV neurones, but not SST or Vip neurones, decreased (P<0.0001) or increased (P<0.0001) isoflurane-induced neuronal synchrony. CONCLUSIONS Isoflurane-induced burst suppression might be primarily driven by the synchronous activities of excitatory pyramidal neurones in the cortex, which could be bidirectionally regulated by manipulating the activity of inhibitory PV interneurones. Our findings provide new insights into the neuronal mechanisms underlying burst suppression.
Collapse
Affiliation(s)
- Mengyu Yin
- Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China; School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, China
| | - Ransheng Wang
- Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China; School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, China
| | - Zhiwei Cai
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, China
| | - Yi Liang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, China
| | - Fangcai Mai
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, China
| | - Kaibin Wu
- Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China; School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, China
| | - Deyi Kong
- Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China; School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, China
| | - Peiwen Tang
- Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China; School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, China
| | - Yidi Pan
- Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China; School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, China
| | - Xuying Ji
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, China
| | - Fengxian Li
- Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Feixue Liang
- Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China; School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Southern Medical University, Guangzhou, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, China.
| | - Hong-Fei Zhang
- Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China; Institute of Perioperative Medicine and Organ Protection, Zhujiang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Gu H, Zhao F, Liu Z, Cao P. Defense or death? A review of the neural mechanisms underlying sensory modality-triggered innate defensive behaviors. Curr Opin Neurobiol 2025; 92:102977. [PMID: 40015135 DOI: 10.1016/j.conb.2025.102977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Defense or death presents a canonical dilemma for animals when encountering predators. Threatening sensory cues provide essential information that signals predator presence, driving the evolution of a spectrum of defensive behaviors. In rodents, these behaviors, as described by the classic "predatory imminence continuum" model, range from risk assessment and freezing to rapid escape responses. During the pre-encounter phase, risk assessment and avoidance responses are crucial for monitoring the environment with vigilance and cautiousness. Once detected during the post-encounter phase or physically attacked during the circa-strike phase, multiple sensory systems are rapidly activated, triggering escape responses to increase the distance from the threat. Although there are species-specific variations, the brain regions underpinning these defensive strategies, including the thalamus, hypothalamus, and midbrain, are evolutionarily conserved. This review aims to provide a comprehensive overview of the universal innate defensive circuit framework to enrich our understanding of how animals respond to life-threatening situations.
Collapse
Affiliation(s)
- Huating Gu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Feiran Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhihui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
3
|
Mederos S, Blakely P, Vissers N, Clopath C, Hofer SB. Overwriting an instinct: Visual cortex instructs learning to suppress fear responses. Science 2025; 387:682-688. [PMID: 39913581 DOI: 10.1126/science.adr2247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/06/2025] [Indexed: 04/23/2025]
Abstract
Fast instinctive responses to environmental stimuli can be crucial for survival but are not always optimal. Animals can adapt their behavior and suppress instinctive reactions, but the neural pathways mediating such ethologically relevant forms of learning remain unclear. We found that posterolateral higher visual areas (plHVAs) are crucial for learning to suppress escapes from innate visual threats through a top-down pathway to the ventrolateral geniculate nucleus (vLGN). plHVAs are no longer necessary after learning; instead, the learned behavior relies on plasticity within vLGN populations that exert inhibitory control over escape responses. vLGN neurons receiving input from plHVAs enhance their responses to visual threat stimuli during learning through endocannabinoid-mediated long-term suppression of their inhibitory inputs. We thus reveal the detailed circuit, cellular, and synaptic mechanisms underlying experience-dependent suppression of fear responses.
Collapse
Affiliation(s)
- Sara Mederos
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Patty Blakely
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Nicole Vissers
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Claudia Clopath
- Sainsbury Wellcome Centre, University College London, London, UK
- Bioengineering Department, Imperial College London, London, UK
| | - Sonja B Hofer
- Sainsbury Wellcome Centre, University College London, London, UK
| |
Collapse
|
4
|
Huang W, Hall AF, Kawalec N, Opalka AN, Liu J, Wang DV. Anterior cingulate cortex in complex associative learning: monitoring action state and action content. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635442. [PMID: 39975180 PMCID: PMC11838375 DOI: 10.1101/2025.01.29.635442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Environmental changes necessitate adaptive responses, and thus the ability to monitor one's actions and their connection to specific cues and outcomes is crucial for survival. The anterior cingulate cortex (ACC) is implicated in these processes, yet its precise role in action monitoring and outcome evaluation remains unclear. To investigate this, we developed a novel discrimination-avoidance task for mice, designed with clear temporal separation between actions and outcomes. Our findings show that ACC neurons primarily encode post-action variables over extended periods, reflecting the animal's preceding actions rather than the outcomes or values of those actions. Specifically, we identified two distinct subpopulations of ACC neurons: one encoding the action state (whether an action was taken) and the other encoding the action content (which action was taken). Importantly, increased post-action ACC activity was associated with better performance in subsequent trials. These findings suggest that the ACC supports complex associative learning through extended signaling of rich action-relevant information, thereby bridging cue, action, and outcome associations.
Collapse
Affiliation(s)
- Wenqiang Huang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Arron F Hall
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Natalia Kawalec
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
- School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Ashley N Opalka
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Jun Liu
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Dong V Wang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
5
|
Trier HA, Khalighinejad N, Hamilton S, Harbison C, Priestley L, Laubach M, Klein-Flügge M, Scholl J, Rushworth MFS. A distributed subcortical circuit linked to instrumental information-seeking about threat. Proc Natl Acad Sci U S A 2025; 122:e2410955121. [PMID: 39813246 PMCID: PMC11761969 DOI: 10.1073/pnas.2410955121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/07/2024] [Indexed: 01/18/2025] Open
Abstract
Daily life for humans and other animals requires switching between periods of threat- and reward-oriented behavior. We investigated neural activity associated with spontaneous switching, in a naturalistic task, between foraging for rewards and seeking information about potential threats with 7T fMRI in healthy humans. Switching was driven by estimates of likelihood of threat and reward. Both tracking of threat and switching to a vigilant mode in which people sought more information about potential threats were associated with specific but distributed patterns of activity spanning habenula, dorsal raphe nucleus (DRN), anterior cingulate cortex, and anterior insula cortex. Different aspects of the distributed activity patterns were linked to monitoring the threat level, seeking information about the threat, and actual threat detection. A distinct pattern of activity in the same circuit and elsewhere occurred during returns to reward-oriented behavior. Individual variation in DRN activity reflected individual variation in the seeking of information about threats.
Collapse
Affiliation(s)
- Hailey A. Trier
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Nima Khalighinejad
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Sorcha Hamilton
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Caroline Harbison
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Luke Priestley
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Mark Laubach
- Department of Neuroscience, American University, Washington, DC20016
| | - Miriam Klein-Flügge
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
- Department of Psychiatry, University of Oxford, Warneford Hospital, OxfordOX3 7JX, United Kingdom
| | - Jacqueline Scholl
- Department of Psychiatry, University of Oxford, Warneford Hospital, OxfordOX3 7JX, United Kingdom
- Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon Neuroscience Research Center U1028 UMR5292, PsyR2 Team, Centre Hospitalier Le Vinatier, 9678Bron, France
| | - Matthew F. S. Rushworth
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, University of Oxford, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, OxfordOX3 9DU, United Kingdom
| |
Collapse
|
6
|
Sugino H, Tanno S, Yoshida T, Isomura Y, Hira R. Functional segregation and dynamic integration of the corticotectal descending signal in rat. Neurosci Res 2025; 210:38-50. [PMID: 39306244 DOI: 10.1016/j.neures.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
The superior colliculus (SC) receives inputs from various brain regions in a layer- and radial subregion-specific manner, but whether the SC exhibits subregion-specific dynamics remains unclear. To address this issue, we recorded the spiking activity of single SC neurons while photoactivating cortical areas in awake head-fixed Thy1-ChR2 rats. We classified 309 neurons that responded significantly into 8 clusters according to the response dynamics. Among them, neurons with monophasic excitatory responses (7-12 ms latency) that returned to baseline within 20 ms were commonly observed in the optic and intermediate gray layers of centromedial and centrolateral SC. In contrast, neurons with complex polyphasic responses were commonly observed in the deep layers of the anterolateral SC. Cross-correlation analysis suggested that the complex pattern could be only partly explained by an internal circuit of the deep gray layer. Our results indicate that medial to centrolateral SC neurons simply relay cortical activity, whereas neurons in the deep layers of the anterolateral SC dynamically integrate inputs from the cortex, SNr, CN, and local circuits. These findings suggest a spatial gradient in SC integration, with a division of labor between simple relay circuits and those integrating complex dynamics.
Collapse
Affiliation(s)
- Hikaru Sugino
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sho Tanno
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsumi Yoshida
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshikazu Isomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Riichiro Hira
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
7
|
Guillamón-Vivancos T, Favaloro F, Dori F, López-Bendito G. The superior colliculus: New insights into an evolutionarily ancient structure. Curr Opin Neurobiol 2024; 89:102926. [PMID: 39383569 DOI: 10.1016/j.conb.2024.102926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
The superior colliculus is a structure located in the dorsal midbrain with well conserved function and connectivity across species. Essential for survival, the superior colliculus has evolved to trigger rapid orientation and avoidance movements in response to external stimuli. The increasing recognition of the widespread connectivity of the superior colliculus, not only with brainstem and spinal cord, but also with virtually all brain structures, has rekindled the interest on this structure and revealed novel roles in the past few years. In this review, we focus on the most recent advancements in understanding its cellular composition, connectivity and function, with a particular focus on how the cellular diversity and connectivity arises during development, as well as on its recent role in the emergence of sensory circuits.
Collapse
Affiliation(s)
- Teresa Guillamón-Vivancos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain.
| | - Fabrizio Favaloro
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain. https://twitter.com@F_Favaloro22
| | - Francesco Dori
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain. https://twitter.com@francesco_dori
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain.
| |
Collapse
|
8
|
Shi Y, Zhang J, Xiu M, Xie R, Liu Y, Xie J, Shi L. The zona incerta system: Involvement in Parkinson's disease. Exp Neurol 2024; 382:114992. [PMID: 39393673 DOI: 10.1016/j.expneurol.2024.114992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Parkinson's disease (PD) is characterized by degeneration of the nigrostriatal dopamine system, resulting in progressive motor and nonmotor symptoms. Although most studies have focused on the basal ganglia network, recent evidence suggests that the zona incerta (ZI), a subthalamic structure composed of 4 neurochemically defined regions, is emerging as a therapeutic target in PD. This review summarizes the clinical and animal studies that indicate the importance of ZI in PD. Human clinical studies have shown that subthalamotomy or deep brain stimulation (DBS) of the ZI alleviates muscle rigidity, bradykinesia, tremors and speech dysfunction in patients with PD. Researchers have also studied the impact of DBS of the ZI on nonmotor signs such as pain, anxiety, and depression. Animal studies combining optogenetics, chemogenetics, behavioral assays, and neural activity recordings reveal the functional roles of ZI GABAergic and glutamatergic neurons in locomotion, gait, and coordination of the symptoms of PD, all of which are discussed in this review. Controversies and possible future studies are also discussed.
Collapse
Affiliation(s)
- Yaying Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Jing Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Minxia Xiu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Ruyi Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Yanhong Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Su X, Lei B, He J, Liu Y, Wang A, Tang Y, Liu W, Zhong Y. Identification of GABAergic subpopulations in the lateral hypothalamus for home-driven behaviors in mice. Cell Rep 2024; 43:114842. [PMID: 39412991 DOI: 10.1016/j.celrep.2024.114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/20/2024] [Accepted: 09/21/2024] [Indexed: 10/18/2024] Open
Abstract
Home information profoundly influences behavioral states in both humans and animals. However, how "home" is represented in the brain and its role in driving diverse related behaviors remain elusive. Here, we demonstrate that home bedding contains sufficient home information to modulate affective behaviors, including aversion responses, defensive aggression, and mating behaviors. These varied responses to home information are mediated by gama-aminobutyric acid (GABA)ergic neurons in the lateral hypothalamus (LHGABA). Inhibiting LHGABA abolishes, while activating mimics, the effects of home bedding on these behaviors across different contexts. Specifically, projections from LHGABA to the ventral tegmental area (VTA) mediate the relaxation of aversive emotion, while projections to the periaqueductal gray (PAG) initiate defensive concerns. Thus, our data suggest that home information in different contexts converges to activate distinct subgroups of the LHGABA, which, in turn, elicit appropriate affective behaviors in relieving aversion, fighting intruders, or enhancing mating through involving distinct downstream projections.
Collapse
Affiliation(s)
- Xiaoya Su
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China
| | - Bo Lei
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China; Beijing Academy of Artificial Intelligence, Beijing 100084, P.R. China.
| | - Junyue He
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China; Peking University, Tsinghua University, National Institute Biological Science Joint Graduate Program, Beijing, P.R. China
| | - Yunlong Liu
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ao Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China; School of Life Sciences, Peking University, Beijing 100871, P.R. China
| | - Yikai Tang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China
| | - Weixuan Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China
| | - Yi Zhong
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, P.R. China; MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, P.R. China.
| |
Collapse
|
10
|
Cao Y, Zhang J, He X, Wu C, Liu Z, Zhu B, Miao L. Empathic pain: Exploring the multidimensional impacts of biological and social aspects in pain. Neuropharmacology 2024; 258:110091. [PMID: 39059575 DOI: 10.1016/j.neuropharm.2024.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Empathic pain refers to an individual's perception, judgment, and emotional response to others' pain. This complex social cognitive ability is crucial for healthy interactions in human society. In recent years, with the development of multidisciplinary research in neuroscience, psychology and sociology, empathic pain has become a focal point of widespread attention in these fields. However, the neural mechanism underlying empathic pain remain a controversial and unresolved area. This review aims to comprehensively summarize the history, influencing factors, neural mechanisms and pharmacological interventions of empathic pain. We hope to provide a comprehensive scientific perspective on how humans perceive and respond to others' pain experiences and to provide guidance for future research directions and clinical applications. This article is part of the Special Issue on "Empathic Pain".
Collapse
Affiliation(s)
- Yuchun Cao
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Jiahui Zhang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Xiaofang He
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Chenye Wu
- Department of Emergency Medicine, Changshu Hospital Affiliated to Soochow University, Changshu, 215500, China
| | - Zeyuan Liu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China.
| | - Liying Miao
- Department of Blood Purification Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
11
|
Giachero M, Belén Sacson A, Belén Vitullo M, Bekinschtein P, Weisstaub N. Targeting fear memories: Examining pharmacological disruption in a generalized fear framework. Neurobiol Learn Mem 2024; 213:107960. [PMID: 39004160 DOI: 10.1016/j.nlm.2024.107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Labilization-reconsolidation, which relies on retrieval, has been considered an opportunity to attenuate the negative aspects of traumatic memories. A therapeutic strategy based on reconsolidation blockade is deemed more effective than current therapies relying on memory extinction. Nevertheless, extremely stressful memories frequently prove resistant to this process. Here, after inducing robust fear memory in mice through strong fear conditioning, we examined the possibility of rendering it susceptible to pharmacological modulation based on the degree of generalized fear (GF). To achieve this, we established an ordered gradient of GF, determined by the perceptual similarity between the associated context (CA) and non-associated contexts (CB, CC, CD, and CE) to the aversive event. We observed that as the exposure context became less similar to CA, the defensive pattern shifted from passive to active behaviors in both male and female mice. Subsequently, in conditioned animals, we administered propranolol after exposure to the different contexts (CA, CB, CC, CD or CE). In males, propranolol treatment resulted in reduced freezing time and enhanced risk assessment behaviors when administered following exposure to CA or CB, but not after CC, CD, or CE, compared to the control group. In females, a similar change in behavioral pattern was observed with propranolol administered after exposure to CC, but not after the other contexts. These results highlight the possibility of indirectly manipulating a robust contextual fear memory by controlling the level of generalization during recall. Additionally, it was demonstrated that the effect of propranolol on reconsolidation would not lead to a reduction in fear memory per se, but rather to its reorganization resulting in greater behavioral flexibility (from passive to active behaviors). Finally, from a clinical viewpoint, this would be of considerable relevance since following this strategy could make the treatment of psychiatric disorders associated with traumatic memory formation more effective and less stressful.
Collapse
Affiliation(s)
- Marcelo Giachero
- Instituto de Neurociencia Cognitiva y Traslacional (INCYT), CONICET, Fundación INECO, Universidad Favaloro, Buenos Aires, Argentina.
| | - Agostina Belén Sacson
- Instituto de Neurociencia Cognitiva y Traslacional (INCYT), CONICET, Fundación INECO, Universidad Favaloro, Buenos Aires, Argentina
| | - María Belén Vitullo
- Instituto de Neurociencia Cognitiva y Traslacional (INCYT), CONICET, Fundación INECO, Universidad Favaloro, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Instituto de Neurociencia Cognitiva y Traslacional (INCYT), CONICET, Fundación INECO, Universidad Favaloro, Buenos Aires, Argentina
| | - Noelia Weisstaub
- Instituto de Neurociencia Cognitiva y Traslacional (INCYT), CONICET, Fundación INECO, Universidad Favaloro, Buenos Aires, Argentina
| |
Collapse
|
12
|
Li X, You J, Pan Y, Song C, Li H, Ji X, Liang F. Effective Regulation of Auditory Processing by Parvalbumin Interneurons in the Tail of the Striatum. J Neurosci 2024; 44:e1171232023. [PMID: 38296650 PMCID: PMC10860494 DOI: 10.1523/jneurosci.1171-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 02/02/2024] Open
Abstract
Parvalbumin (PV) interneurons in the auditory cortex (AC) play a crucial role in shaping auditory processing, including receptive field formation, temporal precision enhancement, and gain regulation. PV interneurons are also the primary inhibitory neurons in the tail of the striatum (TS), which is one of the major descending brain regions in the auditory nervous system. However, the specific roles of TS-PV interneurons in auditory processing remain elusive. In this study, morphological and slice recording experiments in both male and female mice revealed that TS-PV interneurons, compared with AC-PV interneurons, were present in fewer numbers but exhibited longer projection distances, which enabled them to provide sufficient inhibitory inputs to spiny projection neurons (SPNs). Furthermore, TS-PV interneurons received dense auditory input from both the AC and medial geniculate body (MGB), particularly from the MGB, which rendered their auditory responses comparable to those of AC-PV interneurons. Optogenetic manipulation experiments demonstrated that TS-PV interneurons were capable of bidirectionally regulating the auditory responses of SPNs. Our findings suggest that PV interneurons can effectively modulate auditory processing in the TS and may play a critical role in auditory-related behaviors.
Collapse
Affiliation(s)
- Xuan Li
- Guangdong-Hong Kong-Macaoh Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220 China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Jiapeng You
- Guangdong-Hong Kong-Macaoh Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220 China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Yidi Pan
- Guangdong-Hong Kong-Macaoh Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220 China
| | - Changbao Song
- Guangdong-Hong Kong-Macaoh Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220 China
| | - Haifu Li
- Guangdong-Hong Kong-Macaoh Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220 China
| | - Xuying Ji
- Guangdong-Hong Kong-Macaoh Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220 China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Feixue Liang
- Guangdong-Hong Kong-Macaoh Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220 China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
13
|
Arena G, Londei F, Ceccarelli F, Ferrucci L, Borra E, Genovesio A. Disentangling the identity of the zona incerta: a review of the known connections and latest implications. Ageing Res Rev 2024; 93:102140. [PMID: 38008404 DOI: 10.1016/j.arr.2023.102140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
The zona incerta (ZI) is a subthalamic region composed by loosely packed neurochemically mixed neurons, juxtaposed to the main ascending and descending bundles. The extreme neurochemical diversity that characterizes this area, together with the diffuseness of its connections with the entire neuraxis and its hard-to-reach positioning in the brain caused the ZI to keep its halo of mystery for over a century. However, in the last decades, a rich albeit fragmentary body of knowledge regarding both the incertal anatomical connections and functional implications has been built mostly based on rodent studies and its lack of cohesion makes difficult to depict an integrated, exhaustive picture regarding the ZI and its roles. This review aims to provide a unified resource that summarizes the current knowledge regarding the anatomical profile of interactions of the ZI in rodents and non-human primates and the functional significance of its connections, highlighting the aspects still unbeknown to research.
Collapse
Affiliation(s)
- Giulia Arena
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Londei
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Francesco Ceccarelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Elena Borra
- University of Parma, Department of Medicine and Surgery, Neuroscience Unit, Italy
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|