1
|
Sattin A, Nardin C, Daste S, Moroni M, Reddy I, Liberale C, Panzeri S, Fleischmann A, Fellin T. Aberration correction in long GRIN lens-based microendoscopes for extended field-of-view two-photon imaging in deep brain regions. eLife 2025; 13:RP101420. [PMID: 40314426 PMCID: PMC12048154 DOI: 10.7554/elife.101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Abstract
Two-photon (2P) fluorescence imaging through gradient index (GRIN) lens-based endoscopes is fundamental to investigate the functional properties of neural populations in deep brain circuits. However, GRIN lenses have intrinsic optical aberrations, which severely degrade their imaging performance. GRIN aberrations decrease the signal-to-noise ratio (SNR) and spatial resolution of fluorescence signals, especially in lateral portions of the field-of-view (FOV), leading to restricted FOV and smaller number of recorded neurons. This is especially relevant for GRIN lenses of several millimeters in length, which are needed to reach the deeper regions of the rodent brain. We have previously demonstrated a novel method to enlarge the FOV and improve the spatial resolution of 2P microendoscopes based on GRIN lenses of length <4.1 mm (Antonini et al., 2020). However, previously developed microendoscopes were too short to reach the most ventral regions of the mouse brain. In this study, we combined optical simulations with fabrication of aspherical polymer microlenses through three-dimensional (3D) microprinting to correct for optical aberrations in long (length >6 mm) GRIN lens-based microendoscopes (diameter, 500 µm). Long corrected microendoscopes had improved spatial resolution, enabling imaging in significantly enlarged FOVs. Moreover, using synthetic calcium data we showed that aberration correction enabled detection of cells with higher SNR of fluorescent signals and decreased cross-contamination between neurons. Finally, we applied long corrected microendoscopes to perform large-scale and high-precision recordings of calcium signals in populations of neurons in the olfactory cortex, a brain region laying approximately 5 mm from the brain surface, of awake head-fixed mice. Long corrected microendoscopes are powerful new tools enabling population imaging with unprecedented large FOV and high spatial resolution in the most ventral regions of the mouse brain.
Collapse
Affiliation(s)
- Andrea Sattin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di TecnologiaGenovaItaly
- Neural Coding Laboratory, Istituto Italiano di TecnologiaGenova and RoveretoItaly
| | - Chiara Nardin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di TecnologiaGenovaItaly
- Neural Coding Laboratory, Istituto Italiano di TecnologiaGenova and RoveretoItaly
| | - Simon Daste
- Department of Neuroscience and Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Monica Moroni
- Neural Coding Laboratory, Istituto Italiano di TecnologiaGenova and RoveretoItaly
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di TecnologiaRoveretoItaly
| | - Innem Reddy
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Carlo Liberale
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Stefano Panzeri
- Neural Coding Laboratory, Istituto Italiano di TecnologiaGenova and RoveretoItaly
- Institute for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE)HamburgGermany
| | - Alexander Fleischmann
- Department of Neuroscience and Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di TecnologiaGenovaItaly
- Neural Coding Laboratory, Istituto Italiano di TecnologiaGenova and RoveretoItaly
| |
Collapse
|
2
|
Antonoudiou P, Teboul E, Amaya KA, Stone BT, Dorst KE, Maguire JL. Biased Information Routing Through the Basolateral Amygdala, Altered Valence Processing, and Impaired Affective States Associated With Psychiatric Illnesses. Biol Psychiatry 2025; 97:764-774. [PMID: 39395471 PMCID: PMC11954678 DOI: 10.1016/j.biopsych.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Accumulating evidence supports a role for altered circuit function in impaired valence processing and altered affective states as a core feature of psychiatric illnesses. We review the circuit mechanisms underlying normal valence processing and highlight evidence supporting altered function of the basolateral amygdala, valence processing, and affective states across psychiatric illnesses. The mechanisms controlling network activity that governs valence processing are reviewed in the context of potential pathophysiological mechanisms mediating circuit dysfunction and impaired valence processing in psychiatric illnesses. Finally, we review emerging data demonstrating experience-dependent, biased information routing through the basolateral amygdala promoting negative valence processing and discuss the potential relevance to impaired affective states and psychiatric illnesses.
Collapse
Affiliation(s)
- Pantelis Antonoudiou
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Eric Teboul
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Kenneth A Amaya
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Bradly T Stone
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Kaitlyn E Dorst
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
3
|
Liu J, Totty MS, Bayer H, Maren S. Integrating Aversive Memories in the Basolateral Amygdala. Biol Psychiatry 2025:S0006-3223(25)01107-2. [PMID: 40189005 DOI: 10.1016/j.biopsych.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 05/29/2025]
Abstract
Decades of research have established a critical role of the basolateral complex of the amygdala (BLA) in the encoding and storage of aversive memories. Much of this work has utilized Pavlovian fear conditioning procedures in which animals experience a single aversive event. Although this effort has produced great insight into the neural mechanisms that support fear memories for an isolated aversive experience, much less is known about how amygdala circuits encode and integrate multiple emotional experiences. The emergence of methods to label and record neuronal ensembles over days allows a deeper understanding of how amygdala neurons encode and integrate distinct aversive episodes over time. Here, we review evidence that the BLA is an essential site for the persistent storage of long-term fear memory. As a long-term storage site for fear memory, a challenge for encoding multiple fear memories is the mechanisms by which BLA neurons allocate, integrate, and discriminate distinct experiences from one another. In this review, we discuss the historical evidence supporting the BLA as a critical site for long-term memory storage, as well as new evidence that stems from technological advances that allow researchers to simultaneously study the encoding and storage of multiple memory traces, including recent versus remote experiences. We explore the possibility that dysfunction in ensemble coding schemes contributes to the pathophysiology of posttraumatic stress disorder and argue that future studies should place increased emphasis on potential subregional differences in memory coding schemes in the amygdala to deepen our understanding of both normal and pathological emotional memory.
Collapse
Affiliation(s)
- Jianfeng Liu
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China; School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
| | - Michael S Totty
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Hugo Bayer
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas; Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Stephen Maren
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, Illinois; Neuroscience Graduate Program, University of Illinois Urbana-Champaign, Urbana, Illinois; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
4
|
Koutlas I, Patrikiou L, van der Starre SE, Danko D, Wolterink-Donselaar IG, Luijendijk MCM, Adan RAH, Meye FJ. Distinct ventral tegmental area neuronal ensembles are indispensable for reward-driven approach and stress-driven avoidance behaviors. Nat Commun 2025; 16:3147. [PMID: 40175375 PMCID: PMC11965480 DOI: 10.1038/s41467-025-58384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 03/20/2025] [Indexed: 04/04/2025] Open
Abstract
Assigning valence to stimuli for adaptive behavior is an essential function, involving the ventral tegmental area (VTA). VTA cell types are often defined through neurotransmitters (NT). However, valence function in VTA does not parse along NT-boundaries as, within each NT-class, certain neurons are excited by reward and others by stressors. Here we identify, in male mice, the co-activated VTA neuronal ensembles for reward and stress, and determine their role in adaptive behaviors. We show that stimuli of opposite valence (opioid vs acute social stress) recruit two distinct VTA neuronal ensembles. These two ensembles continue to be preferentially engaged by congruent valence stimuli. Stimulation of VTA stress- or reward ensembles is aversive/reinforcing, respectively. Strikingly, external valence stimuli fully require activity of these small discrete VTA ensembles for conferring approach/avoidance outcomes. Overall, our study identifies distinct VTA ensembles for positive and negative valence coding and shows their indispensability for adaptive behavior.
Collapse
Affiliation(s)
- Ioannis Koutlas
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lefkothea Patrikiou
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Stef E van der Starre
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Diaz Danko
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Inge G Wolterink-Donselaar
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Mieneke C M Luijendijk
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Roger A H Adan
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Frank J Meye
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Xin Q, Zheng D, Zhou T, Xu J, Ni Z, Hu H. Deconstructing the neural circuit underlying social hierarchy in mice. Neuron 2025; 113:444-459.e7. [PMID: 39662472 DOI: 10.1016/j.neuron.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/29/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Social competition determines hierarchical social status, which profoundly influences animals' behavior and health. The dorsomedial prefrontal cortex (dmPFC) plays a fundamental role in regulating social competitions, but it was unclear how the dmPFC orchestrates win- and lose-related behaviors through its downstream neural circuits. Here, through whole-brain c-Fos mapping, fiber photometry, and optogenetics- or chemogenetics-based manipulations, we identified anatomically segregated win- and lose-related neural pathways downstream of the dmPFC in mice. Specifically, layer 5 neurons projecting to the dorsal raphe nucleus (DRN) and periaqueductal gray (PAG) promote social competition, whereas layer 2/3 neurons projecting to the anterior basolateral amygdala (aBLA) suppress competition. These two neuronal populations show opposite changes in activity during effortful pushes in competition. In vivo and in vitro electrophysiology recordings revealed inhibition from the lose-related pathway to the win-related pathway. Such antagonistic interplay may represent a central principle in how the mPFC orchestrates complex behaviors through top-down control.
Collapse
Affiliation(s)
- Qiuhong Xin
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Diyang Zheng
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Tingting Zhou
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jiayi Xu
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Zheyi Ni
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Hailan Hu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China.
| |
Collapse
|
6
|
Hirano K, Nomura H. [Deep brain imaging by using GRIN lens]. Nihon Yakurigaku Zasshi 2025; 160:53-57. [PMID: 39756907 DOI: 10.1254/fpj.24071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Elucidating the neural mechanisms governing changes in individual animal behavior is a key goal in neuroscience. Such research has important implications for behavioral pharmacology and could lead to the development of treatments for psychiatric and neurological disorders. Given that the brain likely represents vast amounts of information through the combined activity of multiple neurons, studying these mechanisms requires the simultaneous recording of many neurons. Recent years have seen significant advancements in techniques for multi-cellular activity recording. Calcium imaging utilizing fluorescent sensors has emerged as a powerful method, enabling the concurrent acquisition of spatial arrangements and temporal activity changes in neuronal populations. This article focuses on deep brain imaging using GRIN lenses, particularly deep brain calcium imaging in freely behaving animals with miniaturized head-mounted microscopes. We compare the strengths and limitations of this approach to other calcium imaging methods, electrophysiological techniques, and fiber photometry. Finally, we discuss future developments in this field, including two-photon microscopy for imaging beyond cell bodies, membrane potential imaging using voltage sensors, and single-cell resolution manipulation of neural activity by integrating spatial light modulators and electrically tunable lenses.
Collapse
Affiliation(s)
- Kyosuke Hirano
- Department of Neuropharmacology, Graduate School of Medicine, Hokkaido University
| | - Hiroshi Nomura
- Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences
| |
Collapse
|
7
|
Aukema RJ, Petrie GN, Matarasso AK, Baglot SL, Molina LA, Füzesi T, Kadhim S, Nastase AS, Rodriguez Reyes I, Bains JS, Morena M, Bruchas MR, Hill MN. Identification of a stress-responsive subregion of the basolateral amygdala in male rats. Neuropsychopharmacology 2024; 49:1989-1999. [PMID: 39117904 PMCID: PMC11480132 DOI: 10.1038/s41386-024-01927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
The basolateral amygdala (BLA) is reliably activated by psychological stress and hyperactive in conditions of pathological stress or trauma; however, subsets of BLA neurons are also readily activated by rewarding stimuli and can suppress fear and avoidance behaviours. The BLA is highly heterogeneous anatomically, exhibiting continuous molecular and connectivity gradients throughout the entire structure. A critical gap remains in understanding the anatomical specificity of amygdala subregions, circuits, and cell types explicitly activated by acute stress and how they are dynamically activated throughout stimulus exposure. Using a combination of topographical mapping for the activity-responsive protein FOS and fiber photometry to measure calcium transients in real-time, we sought to characterize the spatial and temporal patterns of BLA activation in response to a range of novel stressors (shock, swim, restraint, predator odour) and non-aversive, but novel stimuli (crackers, citral odour). We report four main findings: (1) the BLA exhibits clear spatial activation gradients in response to novel stimuli throughout the medial-lateral and dorsal-ventral axes, with aversive stimuli strongly biasing activation towards medial aspects of the BLA; (2) novel stimuli elicit distinct temporal activation patterns, with stressful stimuli exhibiting particularly enhanced or prolonged temporal activation patterns; (3) changes in BLA activity are associated with changes in behavioural state; and (4) norepinephrine enhances stress-induced activation of BLA neurons via the ß-noradrenergic receptor. Moving forward, it will be imperative to combine our understanding of activation gradients with molecular and circuit-specificity.
Collapse
Affiliation(s)
- Robert J Aukema
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Gavin N Petrie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Avi K Matarasso
- Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Samantha L Baglot
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Leonardo A Molina
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Tamás Füzesi
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Sandra Kadhim
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Andrei S Nastase
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Itzel Rodriguez Reyes
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Jaideep S Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Maria Morena
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, 00185, Italy
- Neuropsychopharmacology Unit, European Center for Brain Research, Santa Lucia Foundation, Rome, 00143, Italy
| | - Michael R Bruchas
- Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Psychiatry, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
8
|
Aukema RJ, Petrie GN, Baglot SL, Gilpin NW, Hill MN. Acute stress activates basolateral amygdala neurons expressing corticotropin-releasing hormone receptor type 1 (CRHR1): Topographical distribution and projection-specific activation in male and female rats. Neurobiol Stress 2024; 33:100694. [PMID: 39634490 PMCID: PMC11615582 DOI: 10.1016/j.ynstr.2024.100694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Although the basolateral amygdala (BLA) and corticotropin releasing hormone receptor type I (CRHR1) signaling are both central to the stress response, the spatial and circuit-specific distribution of CRHR1 have not been identified in the BLA at a high resolution. We used transgenic male and female CRHR1-Cre-tdTomato rats to topographically map the distribution of BLACRHR1 neurons and identify whether they are activated by acute stress. Additionally, we used the BLA circuits projecting to the central amygdala (CeA) and nucleus accumbens (NAc) as a model to test circuit-specific expression of CRHR1 in the BLA. We established several key findings. First, CRHR1 had the strongest expression in the lateral amygdala and in caudal portions of the BLA. Second, acute restraint stress increased FOS expression of CRHR1 neurons, and stress-induced activation was particularly strong in medial subregions of the BLA. Third, stress significantly increased FOS expression on BLA-NAc, but not BLA-CeA projectors, and BLA-NAc activation was more robust in males than females. Finally, CRHR1 was expressed on a subset of BLA-CeA and BLA-NAc projection neurons. Collectively, this expands our understanding of BLA molecular- and circuit-specific activation patterns following acute stress.
Collapse
Affiliation(s)
- Robert J. Aukema
- Neuroscience Graduate Program, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Gavin N. Petrie
- Neuroscience Graduate Program, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Samantha L. Baglot
- Neuroscience Graduate Program, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Nicholas W. Gilpin
- Department of Physiology, Louisiana State University, New Orleans, LA, 70112, USA
| | - Matthew N. Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Departments of Cell Biology & Anatomy and Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
9
|
Gergues MM, Lalani LK, Kheirbek MA. Identifying dysfunctional cell types and circuits in animal models for psychiatric disorders with calcium imaging. Neuropsychopharmacology 2024; 50:274-284. [PMID: 39122815 PMCID: PMC11525937 DOI: 10.1038/s41386-024-01942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
A central goal of neuroscience is to understand how the brain transforms external stimuli and internal bodily signals into patterns of activity that underlie cognition, emotional states, and behavior. Understanding how these patterns of activity may be disrupted in mental illness is crucial for developing novel therapeutics. It is well appreciated that psychiatric disorders are complex, circuit-based disorders that arise from dysfunctional activity patterns generated in discrete cell types and their connections. Recent advances in large-scale, cell-type specific calcium imaging approaches have shed new light on the cellular, circuit, and network-level dysfunction in animal models for psychiatric disorders. Here, we highlight a series of recent findings over the last ~10 years from in vivo calcium imaging studies that show how aberrant patterns of activity in discrete cell types and circuits may underlie behavioral deficits in animal models for several psychiatric disorders, including depression, anxiety, autism spectrum disorders, and schizophrenia. These advances in calcium imaging in pre-clinical models demonstrate the power of cell-type-specific imaging tools in understanding the underlying dysfunction in cell types, activity patterns, and neural circuits that may contribute to disease and provide new blueprints for developing more targeted therapeutics and treatment strategies.
Collapse
Affiliation(s)
- Mark M Gergues
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lahin K Lalani
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mazen A Kheirbek
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA.
- Center for Integrative Neuroscience, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Granata LE, Chang A, Shaheed H, Shinde A, Kulkarni P, Satpute A, Brenhouse HC, Honeycutt JA. Examining Brain Activity Responses during Rat Ultrasonic Vocalization Playback: Insights from a Novel fMRI Translational Paradigm. eNeuro 2024; 11:ENEURO.0179-23.2024. [PMID: 39299806 PMCID: PMC11451431 DOI: 10.1523/eneuro.0179-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
Despite decades of preclinical investigation, there remains limited understanding of the etiology and biological underpinnings of anxiety disorders. Sensitivity to potential threat is characteristic of anxiety-like behavior in humans and rodents, but traditional rodent behavioral tasks aimed to assess threat responsiveness lack translational value, especially with regard to emotionally valenced stimuli. Therefore, development of novel preclinical approaches to serve as analogues to patient assessments is needed. In humans, the fearful face task is widely used to test responsiveness to socially communicated threat signals. In rats, ultrasonic vocalizations (USVs) are analogous social cues associated with positive or negative affective states that can elicit behavioral changes in the receiver. It is therefore likely that when rats hear aversive alarm call USVs (22 kHz), they evoke translatable changes in brain activity comparable with the fearful face task. We used functional magnetic resonance imaging in male and female rats to assess changes in BOLD activity induced by exposure to aversive 22 kHz alarm calls emitted in response to threatening stimuli, prosocial (55 kHz) USVs emitted in response to appetitive stimuli, or a computer-generated 22 kHz tone. Results show patterns of regional activation that are specific to each USV stimulus. Notably, limbic regions clinically relevant to psychiatric disorders (e.g., amygdala, bed nucleus of the stria terminalis) are preferentially activated by either aversive 22 kHz or appetitive 55 kHz USVs. These results support the use of USV playback as a promising translational tool to investigate affective processing under conditions of distal threat in preclinical rat models.
Collapse
Affiliation(s)
- Lauren E Granata
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | - Arnold Chang
- Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | - Habiba Shaheed
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | - Anjali Shinde
- Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | - Praveen Kulkarni
- Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | - Ajay Satpute
- Affective and Brain Sciences Lab, Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | - Heather C Brenhouse
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | - Jennifer A Honeycutt
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, Massachusetts 02115
- Research in Affective and Translational Neuroscience Lab, Department of Psychology and Program in Neuroscience, Bowdoin College, Brunswick, Maine 04011
| |
Collapse
|
11
|
Bigot M, De Badts CH, Benchetrit A, Vicq É, Moigneu C, Meyrel M, Wagner S, Hennrich AA, Houenou J, Lledo PM, Henry C, Alonso M. Disrupted basolateral amygdala circuits supports negative valence bias in depressive states. Transl Psychiatry 2024; 14:382. [PMID: 39300117 DOI: 10.1038/s41398-024-03085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Negative bias is an essential characteristic of depressive episodes leading patients to attribute more negative valence to environmental cues. This negative bias affects all levels of information processing including emotional response, attention and memory, leading to the development and maintenance of depressive symptoms. In this context, pleasant stimuli become less attractive and unpleasant ones more aversive, yet the related neural circuits underlying this bias remain largely unknown. By studying a mice model for depression chronically receiving corticosterone (CORT), we showed a negative bias in valence attribution to olfactory stimuli that responds to antidepressant drug. This result paralleled the alterations in odor value assignment we observed in bipolar depressed patients. Given the crucial role of amygdala in valence coding and its strong link with depression, we hypothesized that basolateral amygdala (BLA) circuits alterations might support negative shift associated with depressive states. Contrary to humans, where limits in spatial resolution of imaging tools impair easy amygdala segmentation, recently unravelled specific BLA circuits implicated in negative and positive valence attribution could be studied in mice. Combining CTB and rabies-based tracing with ex vivo measurements of neuronal activity, we demonstrated that negative valence bias is supported by disrupted activity of specific BLA circuits during depressive states. Chronic CORT administration induced decreased recruitment of BLA-to-NAc neurons preferentially involved in positive valence encoding, while increasing recruitment of BLA-to-CeA neurons preferentially involved in negative valence encoding. Importantly, this dysfunction was dampened by chemogenetic hyperactivation of BLA-to-NAc neurons. Moreover, altered BLA activity correlated with durable presynaptic connectivity changes coming from the paraventricular nucleus of the thalamus, recently demonstrated as orchestrating valence assignment in the amygdala. Together, our findings suggest that specific BLA circuits alterations might support negative bias in depressive states and provide new avenues for translational research to understand the mechanisms underlying depression and treatment efficacy.
Collapse
Affiliation(s)
- Mathilde Bigot
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Action Unit, F-75015, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Claire-Hélène De Badts
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Action Unit, F-75015, Paris, France
| | - Axel Benchetrit
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Action Unit, F-75015, Paris, France
| | - Éléonore Vicq
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Action Unit, F-75015, Paris, France
| | - Carine Moigneu
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Action Unit, F-75015, Paris, France
| | - Manon Meyrel
- Assistance Publique-Hôpitaux de Paris, Department of psychiatry, Mondor University Hospital, Créteil, France
- NeuroSpin, PsyBrain Team, UNIACT Lab, CEA Saclay, Gif-sur-Yvette, France
- Université Paris Est Créteil, Faculté de Santé de Créteil, INSERM U955, IMRB, Translational Neuropsychiatry team, Créteil, France
| | - Sébastien Wagner
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Action Unit, F-75015, Paris, France
| | - Alexandru Adrian Hennrich
- Max von Pettenkofer-Institute Virology, Medical Faculty, and Gene Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Josselin Houenou
- Assistance Publique-Hôpitaux de Paris, Department of psychiatry, Mondor University Hospital, Créteil, France
- NeuroSpin, PsyBrain Team, UNIACT Lab, CEA Saclay, Gif-sur-Yvette, France
- Université Paris Est Créteil, Faculté de Santé de Créteil, INSERM U955, IMRB, Translational Neuropsychiatry team, Créteil, France
| | - Pierre-Marie Lledo
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Action Unit, F-75015, Paris, France
| | - Chantal Henry
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Action Unit, F-75015, Paris, France.
- Université de Paris Cité, Paris, France.
- Departement of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatrie & Neurosciences, Paris, France.
| | - Mariana Alonso
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Action Unit, F-75015, Paris, France.
| |
Collapse
|
12
|
Yau JOY, Li A, Abdallah L, Lisowksi L, McNally GP. State- and Circuit-Dependent Opponent Processing of Fear. J Neurosci 2024; 44:e0857242024. [PMID: 39060174 PMCID: PMC11411590 DOI: 10.1523/jneurosci.0857-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
The presence of valence coding neurons in the basolateral amygdala (BLA) that form distinct projections to other brain regions implies functional opposition between aversion and reward during learning. However, evidence for opponent interactions in fear learning is sparse and may only be apparent under certain conditions. Here we test this possibility by studying the roles of the BLA→central amygdala (CeA) and BLA→nucleus accumbens (Acb) pathways in fear learning in male rats. First, we assessed the organization of these pathways in the rat brain. BLA→CeA and BLA→Acb pathways were largely segregated in the BLA but shared overlapping molecular profiles. Then we assessed activity of the BLA→CeA and BLA→Acb pathways during two different forms of fear learning-fear learning in a neutral context and fear learning in a reward context. BLA→CeA neurons were robustly recruited by footshock regardless of where fear learning occurred, whereas recruitment of BLA→Acb neurons was state-dependent because footshock only recruited this pathway in a reward context. Finally, we assessed the causal roles of activity in these pathways in fear learning. Photoinhibition of the BLA→CeA pathway during the footshock US impaired fear learning, regardless of where fear learning occurred. In contrast, photoinhibition of the BLA→Acb pathway augmented fear learning, but only in the reward context. Taken together, our findings show circuit- and state-dependent opponent processing of fear. Footshock activity in the BLA→Acb pathway limits how much fear is learned.
Collapse
Affiliation(s)
- Joanna Oi-Yue Yau
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Amy Li
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lauren Abdallah
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Leszek Lisowksi
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
- Australian Genome Therapeutics Centre, Children's Medical Research Institute and Sydney Children's Hospitals Network, Westmead, New South Wales 2145, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Szaserów 128 Street, 04-141 Warszawa 44, Poland
| | - Gavan P McNally
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
13
|
Antonoudiou P, Stone BT, Colmers PLW, Evans-Strong A, Teboul E, Walton NL, Weiss GL, Maguire J. Experience-dependent information routing through the basolateral amygdala shapes behavioral outcomes. Cell Rep 2024; 43:114489. [PMID: 38990724 PMCID: PMC11330675 DOI: 10.1016/j.celrep.2024.114489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
It is well established that the basolateral amygdala (BLA) is an emotional processing hub that governs a diverse repertoire of behaviors. Selective engagement of a heterogeneous cell population in the BLA is thought to contribute to this flexibility in behavioral outcomes. However, whether this process is impacted by previous experiences that influence emotional processing remains unclear. Here we demonstrate that previous positive (enriched environment [EE]) or negative (chronic unpredictable stress [CUS]) experiences differentially influence the activity of populations of BLA principal neurons projecting to either the nucleus accumbens core or bed nucleus of the stria terminalis. Chemogenetic manipulation of these projection-specific neurons can mimic or occlude the effects of CUS and EE on behavioral outcomes to bidirectionally control avoidance behaviors and stress-induced helplessness. These data demonstrate that previous experiences influence the responsiveness of projection-specific BLA principal neurons, biasing information routing through the BLA, to drive divergent behavioral outcomes.
Collapse
Affiliation(s)
- Pantelis Antonoudiou
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Bradly T Stone
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Phillip L W Colmers
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Aidan Evans-Strong
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Eric Teboul
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Najah L Walton
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Grant L Weiss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
14
|
Clarke RE, Grant RI, Woods SN, Pagoota BE, Buchmaier S, Bordieanu B, Tsyrulnikov A, Westphal AM, Paniccia JE, Doncheck EM, Carroll-Deaton J, Vollmer KM, Ward AL, Winston KT, King DI, Baek J, Martino MR, Green LM, McGinty JF, Scofield MD, Otis JM. Corticostriatal ensemble dynamics across heroin self-administration to reinstatement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.599790. [PMID: 38979314 PMCID: PMC11230161 DOI: 10.1101/2024.06.21.599790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Corticostriatal projection neurons from prelimbic medial prefrontal cortex to the nucleus accumbens core critically regulate drug-seeking behaviors, yet the underlying encoding dynamics whereby these neurons contribute to drug seeking remain elusive. Here we use two-photon calcium imaging to visualize the activity of corticostriatal neurons in mice from the onset of heroin use to relapse. We find that the activity of these neurons is highly heterogeneous during heroin self-administration and seeking, with at least 8 distinct neuronal ensembles that display both excitatory and inhibitory encoding dynamics. These neuronal ensembles are particularly apparent during relapse, where excitatory responses are amplified compared to heroin self-administration. Moreover, we find that optogenetic inhibition of corticostriatal projection neurons attenuates heroin seeking regardless of the relapse trigger. Our results reveal the precise corticostriatal activity dynamics underlying drug-seeking behaviors and support a key role for this circuit in mediating relapse to drug seeking.
Collapse
Affiliation(s)
- Rachel E. Clarke
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Roger I. Grant
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shannon N. Woods
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bayleigh E. Pagoota
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sophie Buchmaier
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bogdan Bordieanu
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Anna Tsyrulnikov
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Annaka M. Westphal
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jacqueline E Paniccia
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth M Doncheck
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jayda Carroll-Deaton
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kelsey M Vollmer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Amy L. Ward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kion T. Winston
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Danielle I. King
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jade Baek
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mike R. Martino
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lisa M. Green
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jacqueline F. McGinty
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael D. Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Co-last authors
| | - James M. Otis
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Co-last authors
| |
Collapse
|
15
|
Báldi R, Muthuswamy S, Loomba N, Patel S. Synaptic Organization-Function Relationships of Amygdala Interneurons Supporting Associative Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599631. [PMID: 38948865 PMCID: PMC11212985 DOI: 10.1101/2024.06.18.599631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Coordinated activity of basolateral amygdala (BLA) GABAergic interneurons (INs) and glutamatergic principal cells (PCs) is critical for associative learning, however the microcircuit organization-function relationships of distinct IN classes remain uncertain. Here, we show somatostatin (SOM) INs provide inhibition onto, and are excited by, local PCs, whereas vasoactive intestinal peptide (VIP) INs are driven by extrinsic afferents. Parvalbumin (PV) INs inhibit PCs and are activated by local and extrinsic inputs. Thus, SOM and VIP INs exhibit complementary roles in feedback and feedforward inhibition, respectively, while PV INs contribute to both microcircuit motifs. Functionally, each IN subtype reveals unique activity patterns across fear- and extinction learning with SOM and VIP INs showing most divergent characteristics, and PV INs display an intermediate phenotype parallelling synaptic data. Finally, SOM and PV INs dynamically track behavioral state transitions across learning. These data provide insight into the synaptic microcircuit organization-function relationships of distinct BLA IN classes.
Collapse
|
16
|
Jared Ramirez Sanchez L, Li B. Driving valence-specific behavior through single-cell resolution control in the amygdala. Neuron 2024; 112:521-523. [PMID: 38387436 DOI: 10.1016/j.neuron.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
In this issue of Neuron, Piantadosi et al.1 demonstrate that by precisely controlling the activity of individual negative-valence neurons and positive-valence neurons in the basolateral amygdala, one can alter animals' appetitive or aversive responses, respectively, establishing a causal role of these neurons in valence-specific behavior.
Collapse
Affiliation(s)
| | - Bo Li
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, China.
| |
Collapse
|
17
|
Wojick JA, Paranjapye A, Chiu JK, Mahmood M, Oswell C, Kimmey BA, Wooldridge LM, McCall NM, Han A, Ejoh LL, Chehimi SN, Crist RC, Reiner BC, Korb E, Corder G. A nociceptive amygdala-striatal pathway for chronic pain aversion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579947. [PMID: 38405972 PMCID: PMC10888915 DOI: 10.1101/2024.02.12.579947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The basolateral amygdala (BLA) is essential for assigning positive or negative valence to sensory stimuli. Noxious stimuli that cause pain are encoded by an ensemble of nociceptive BLA projection neurons (BLAnoci ensemble). However, the role of the BLAnoci ensemble in mediating behavior changes and the molecular signatures and downstream targets distinguishing this ensemble remain poorly understood. Here, we show that the same BLAnoci ensemble neurons are required for both acute and chronic neuropathic pain behavior. Using single nucleus RNA-sequencing, we characterized the effect of acute and chronic pain on the BLA and identified enrichment for genes with known functions in axonal and synaptic organization and pain perception. We thus examined the brain-wide targets of the BLAnoci ensemble and uncovered a previously undescribed nociceptive hotspot of the nucleus accumbens shell (NAcSh) that mirrors the stability and specificity of the BLAnoci ensemble and is recruited in chronic pain. Notably, BLAnoci ensemble axons transmit acute and neuropathic nociceptive information to the NAcSh, highlighting this nociceptive amygdala-striatal circuit as a unique pathway for affective-motivational responses across pain states.
Collapse
Affiliation(s)
- Jessica A. Wojick
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Alekh Paranjapye
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Juliann K. Chiu
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malaika Mahmood
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corinna Oswell
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Blake A. Kimmey
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa M. Wooldridge
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nora M. McCall
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alan Han
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay L. Ejoh
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samar Nasser Chehimi
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard C. Crist
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin C. Reiner
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erica Korb
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Corder
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
LaFosse PK, Zhou Z, Friedman NG, Deng Y, Li AJ, Akitake B, Histed MH. Bicistronic Expression of a High-Performance Calcium Indicator and Opsin for All-Optical Stimulation and Imaging at Cellular Resolution. eNeuro 2023; 10:ENEURO.0378-22.2023. [PMID: 36858826 PMCID: PMC10062490 DOI: 10.1523/eneuro.0378-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
State-of-the-art all-optical systems promise unprecedented access to neural activity in vivo, using multiphoton optogenetics to allow simultaneous imaging and control of activity in selected neurons at cellular resolution. However, to achieve wide use of all-optical stimulation and imaging, simple strategies are needed to robustly and stably express opsins and indicators in the same cells. Here, we describe a bicistronic adeno-associated virus (AAV) that expresses both the fast and bright calcium indicator jGCaMP8s, and a soma-targeted (st) and two-photon-activatable opsin, ChrimsonR. With this method, stChrimsonR stimulation with two-photon holography in the visual cortex of mice drives robust spiking in targeted cells, and neural responses to visual sensory stimuli and spontaneous activity are strong and stable. Cells expressing this bicistronic construct show responses to both photostimulation and visual stimulation that are similar to responses measured from cells expressing the same opsin and indicator via separate viruses. This approach is a simple and robust way to prepare neurons in vivo for two-photon holography and imaging.
Collapse
Affiliation(s)
- Paul K LaFosse
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
- National Institutes of Health-University of Maryland Graduate Partnerships Program, Bethesda, MD 20892
- Neuroscience and Cognitive Science Program, University of Maryland College Park, College Park, MD 20742
| | - Zhishang Zhou
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Nina G Friedman
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
- National Institutes of Health-University of Maryland Graduate Partnerships Program, Bethesda, MD 20892
- Neuroscience and Cognitive Science Program, University of Maryland College Park, College Park, MD 20742
| | - Yanting Deng
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Anna J Li
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| | - Bradley Akitake
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Mark H Histed
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|