1
|
Wadan AHS, Raza ML, Moradikor N. Synaptic modulation by coffee compounds: Insights into neural plasticity. PROGRESS IN BRAIN RESEARCH 2024; 289:181-191. [PMID: 39168580 DOI: 10.1016/bs.pbr.2024.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The physiological structure and functioning of the brain are determined by activity-dependent processes and affected by "synapse plasticity." Because chemical transmitters target and regulate synapses, exogenous chemical stimulants and transmitters can alter their physiological functions by interacting with synaptic surface receptors or chemical modulators. Caffeine, a commonly used pharmacologic substance, can target and alter synapses. It impact various biological, chemical, and metabolic processes related to synaptic function. This chapter investigates how caffeine affects fluctuations in structure and function in the hippocampus formation and neocortical structure, regions known for their high synaptic plasticity profile. Specifically, caffeine modulates various synaptic receptors and channel activities by mobilizing intracellular calcium, inhibiting phosphodiesterase, and blocking adenosine and GABA cellular receptors. These caffeine-induced pathways and functions allow neurons to generate plastic modulations in synaptic actions such as efficient and morphological transmission. Moreover, at a network level, caffeine can stimulate neural oscillators in the cortex, resulting in repetitive signals that strengthen long-range communication between cortical areas reliant on N-methyl-d-aspartate receptors. This suggests that caffeine could facilitate the reorganization of cortical network functions through its effects on synaptic mobilization.
Collapse
Affiliation(s)
- Al-Hassan Soliman Wadan
- Sinai University, Faculty of Dentistry, Arish, North Sinai, Egypt; Sinai University Research Center (SURC), Sinai University, Sinai Governorate, Egypt.
| | - Muhammad Liaquat Raza
- Department of Infection Prevention & Control, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Nasrollah Moradikor
- International Center for Neuroscience Research, Institute for Intelligent Research, Tbilisi, Georgia
| |
Collapse
|
2
|
Miziak B, Błaszczyk B, Chrościńska-Krawczyk M, Czuczwar SJ. Caffeine and Its Interactions with Antiseizure Medications-Is There a Correlation between Preclinical and Clinical Data? Int J Mol Sci 2023; 24:17569. [PMID: 38139396 PMCID: PMC10744211 DOI: 10.3390/ijms242417569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Experimental studies reveal that caffeine (trimethylxanthine) at subconvulsive doses, distinctly reduced the anticonvulsant activity of numerous antiseizure medications (ASMs) in rodents, oxcarbazepine, tiagabine and lamotrigine being the exceptions. Clinical data based on low numbers of patients support the experimental results by showing that caffeine (ingested in high quantities) may sharply increase seizure frequency, considerably reducing the quality of patients' lives. In contrast, this obviously negative activity of caffeine was not found in clinical studies involving much higher numbers of patients. ASMs vulnerable to caffeine in experimental models of seizures encompass carbamazepine, phenobarbital, phenytoin, valproate, gabapentin, levetiracetam, pregabalin and topiramate. An inhibition of R-calcium channels by lamotrigine and oxcarbazepine may account for their resistance to the trimethylxanthine. This assumption, however, is complicated by the fact that topiramate also seems to be a blocker of R-calcium channels. A question arises why large clinical studies failed to confirm the results of experimental and case-report studies. A possibility exists that the proportion of patients taking ASMs resistant to caffeine may be significant and such patients may be sufficiently protected against the negative activity of caffeine.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Barbara Błaszczyk
- Faculty of Medical Sciences, Lipinski University, 25-734 Kielce, Poland;
| | | | | |
Collapse
|
3
|
Yavuz M, Albayrak N, Özgür M, Gülçebi İdriz Oğlu M, Çavdar S, Onat F. The effect of prenatal and postnatal caffeine exposure on pentylentetrazole induced seizures in the non-epileptic and epileptic offsprings. Neurosci Lett 2019; 713:134504. [PMID: 31539618 DOI: 10.1016/j.neulet.2019.134504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 11/29/2022]
Abstract
Caffeine, a central nervous system stimulant, has been reported to modulate seizure activity in various studies. In this study the effects of caffeine exposure on the pentylenetetrazole (PTZ) induced seizure thresholds and seizure stages in the Wistar and genetic absence epilepsy model offsprings were examined. Adult female and male Wistar rats and genetic absence epilepsy rats from Strasbourg (GAERS) consumed caffeine dissolved in water (0.3 g/L) before conception, during the gestational periods and lactation period whereas control groups of each strain received tap water. All offsprings at postnatal day 30 (PN30) subjected to 70 mg/kg of PTZ were evaluated in terms of overall seizure stages, the latency to the first generalized seizure and the c-Fos protein activity in the brain regions of somatosensorial cortex (SSCx), reticular thalamic nucleus (Rt), ventrobasal thalamus (VB), centromedial nucleus (CM) and lateral geniculate nucleus (LGN). The Wistar caffeine group had significantly shorter latency to the first generalized seizure (1.53 ± 0.49 min) comparing to the Wistar control offsprings (3.40 ± 0.68 min). GAERS caffeine group (6.52 ± 2.48 min) showed significantly longer latency comparing to Wistar caffeine group (1.53 ± 0.49 min). Although statistically not significant, GAERS caffeine group showed a longer latency comparing to the GAERS control group (4.71 ± 1.82 min). In all regions of SSCx, Rt, VB, CM and LGN, GAERS caffeine group had lower c-Fos protein expression comparing to the GAERS control group (p < 0.05). Wistar caffeine rats had lower expression of c-Fos protein comparing to the Wistar control group only in SSCx. In CM, GAERS rats expressed lower c-Fos protein comparing to the Wistar control (p < 0.05). In conclusion differential effects of caffeine in the seizure modulation may involve c-Fos protein activity-dependent protection mechanisms.
Collapse
Affiliation(s)
- Melis Yavuz
- Department of Medical Pharmacology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Nazlı Albayrak
- School of Medicine, Acibadem M. A. Aydınlar University, Istanbul, Turkey
| | - Merve Özgür
- Department of Anatomy, School of Medicine, Koç University, Istanbul, Turkey
| | - Medine Gülçebi İdriz Oğlu
- Department of Medical Pharmacology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Epilepsy Research Centre (EPAM), Marmara University, Istanbul, Turkey
| | - Safiye Çavdar
- Department of Anatomy, School of Medicine, Koç University, Istanbul, Turkey
| | - Filiz Onat
- Department of Medical Pharmacology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Epilepsy Research Centre (EPAM), Marmara University, Istanbul, Turkey.
| |
Collapse
|
4
|
Lopes JP, Pliássova A, Cunha RA. The physiological effects of caffeine on synaptic transmission and plasticity in the mouse hippocampus selectively depend on adenosine A 1 and A 2A receptors. Biochem Pharmacol 2019; 166:313-321. [PMID: 31199895 DOI: 10.1016/j.bcp.2019.06.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/07/2019] [Indexed: 12/25/2022]
Abstract
Caffeine is the most consumed psychoactive drug worldwide and its intake in moderate amounts prevents neurodegenerative disorders. However, the molecular targets of caffeine to modulate activity in brain circuits are ill-defined. By electrophysiologically recording synaptic transmission and plasticity in Schaffer fibers-CA1 pyramid synapses of mouse hippocampal slices, we characterized the impact of caffeine using a concentration reached in the brain parenchyma upon moderate caffeine consumption. Caffeine (50 µM) facilitated synaptic transmission by 40%, while decreasing paired-pulse facilitation, and also decreased by 35% the amplitude of long-term potentiation (LTP). Clearance of extracellular adenosine with adenosine deaminase (2 U/mL) blunted all the effects of caffeine on synaptic transmission and plasticity. The A1R antagonist DPCPX (100 nM) only eliminated caffeine-induced facilitation of synaptic transmission while not affecting caffeine-induced depression of LTP; conversely, the genetic (using A2AR knockout mice) or the pharmacological blockade (with SCH58261, 50 nM) of A2AR eliminated the effect of caffeine on LTP while not affecting caffeine-induced facilitation of synaptic transmission. Finally, blockade of GABAA or of ryanodine receptors with bicuculline (10 μM) or dantrolene (10 μM), respectively, did not affect the ability of caffeine to alter synaptic transmission or plasticity. These results show that the effects of caffeine on synaptic transmission and plasticity in the hippocampus are selectively mediated by antagonizing adenosine receptors, where A1R are responsible for the impact of caffeine on synaptic transmission and A2AR regulate the impact of caffeine on LTP.
Collapse
Affiliation(s)
- João P Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| | - Anna Pliássova
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
5
|
Synaptopodin Deficiency Ameliorates Symptoms in the 3xTg Mouse Model of Alzheimer's Disease. J Neurosci 2019; 39:3983-3992. [PMID: 30872324 DOI: 10.1523/jneurosci.2920-18.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/18/2019] [Accepted: 02/18/2019] [Indexed: 11/21/2022] Open
Abstract
Disruption in calcium homeostasis is linked to several pathologies and is suggested to play a pivotal role in the cascade of events leading to Alzheimer's disease (AD). Synaptopodin (SP) residing in dendritic spines has been associated with ryanodine receptor (RyR), such that spines lacking SP release less calcium from stores. In this work, we mated SPKO with 3xTg mice (3xTg/SPKO) to test the effect of SP deficiency in the AD mouse. We found that 6-month-old male 3xTg/SPKO mice restored normal spatial learning in the Barns maze, LTP in hippocampal slices, and expression levels of RyR in the hippocampus that were altered in the 3xTg mice. In addition, there was a marked reduction in 3xTg-associated phosphorylated tau, amyloid β plaques, and activated microglia in 3xTg/SPKO male and female mice. These experiments indicate that a reduction in the expression of SP ameliorates AD-associated phenotype in 3xTg mice.SIGNIFICANCE STATEMENT This study strengthens the proposed role of calcium stores in the development of AD-associated phenotype in the 3xTg mouse model, in that a genetic reduction of the functioning of ryanodine receptors using synaptopodin-knock-out mice ameliorates AD symptoms at the behavioral, electrophysiological, and morphological levels of analysis.
Collapse
|
6
|
Kerkhofs A, Xavier AC, da Silva BS, Canas PM, Idema S, Baayen JC, Ferreira SG, Cunha RA, Mansvelder HD. Caffeine Controls Glutamatergic Synaptic Transmission and Pyramidal Neuron Excitability in Human Neocortex. Front Pharmacol 2018; 8:899. [PMID: 29354052 PMCID: PMC5758559 DOI: 10.3389/fphar.2017.00899] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022] Open
Abstract
Caffeine is the most widely used psychoactive drug, bolstering attention and normalizing mood and cognition, all functions involving cerebral cortical circuits. Whereas studies in rodents showed that caffeine acts through the antagonism of inhibitory A1 adenosine receptors (A1R), neither the role of A1R nor the impact of caffeine on human cortical neurons is known. We here provide the first characterization of the impact of realistic concentrations of caffeine experienced by moderate coffee drinkers (50 μM) on excitability of pyramidal neurons and excitatory synaptic transmission in the human temporal cortex. Moderate concentrations of caffeine disinhibited several of the inhibitory A1R-mediated effects of adenosine, similar to previous observations in the rodent brain. Thus, caffeine restored the adenosine-induced decrease of both intrinsic membrane excitability and excitatory synaptic transmission in the human pyramidal neurons through antagonism of post-synaptic A1R. Indeed, the A1R-mediated effects of endogenous adenosine were more efficient to inhibit synaptic transmission than neuronal excitability. This was associated with a distinct affinity of caffeine for synaptic versus extra-synaptic human cortical A1R, probably resulting from a different molecular organization of A1R in human cortical synapses. These findings constitute the first neurophysiological description of the impact of caffeine on pyramidal neuron excitability and excitatory synaptic transmission in the human temporal cortex, providing adequate ground for the effects of caffeine on cognition in humans.
Collapse
Affiliation(s)
- Amber Kerkhofs
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana C Xavier
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Beatriz S da Silva
- Portuguese National Institute of Legal Medicine and Forensic Sciences, Coimbra, Portugal
| | - Paula M Canas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sander Idema
- Department of Neurosurgery, Neuroscience Amsterdam, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Johannes C Baayen
- Department of Neurosurgery, Neuroscience Amsterdam, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Samira G Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Chrościńska-Krawczyk M, Jargiełło-Baszak M, Andres-Mach M, Łuszczki JJ, Czuczwar SJ. Influence of caffeine on the protective activity of gabapentin and topiramate in a mouse model of generalized tonic-clonic seizures. Pharmacol Rep 2016; 68:680-5. [DOI: 10.1016/j.pharep.2016.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 11/25/2022]
|
8
|
Maggio N, Vlachos A. Synaptic plasticity at the interface of health and disease: New insights on the role of endoplasmic reticulum intracellular calcium stores. Neuroscience 2014; 281:135-46. [PMID: 25264032 DOI: 10.1016/j.neuroscience.2014.09.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
Work from the past 40years has unraveled a wealth of information on the cellular and molecular mechanisms underlying synaptic plasticity and their relevance in physiological brain function. At the same time, it has been recognized that a broad range of neurological diseases may be accompanied by severe alterations in synaptic plasticity, i.e., 'maladaptive synaptic plasticity', which could initiate and sustain the remodeling of neuronal networks under pathological conditions. Nonetheless, our current knowledge on the specific contribution and interaction of distinct forms of synaptic plasticity (including metaplasticity and homeostatic plasticity) in the context of pathological brain states remains limited. This review focuses on recent experimental evidence, which highlights the fundamental role of endoplasmic reticulum-mediated Ca(2+) signals in modulating the duration, direction, extent and type of synaptic plasticity. We discuss the possibility that intracellular Ca(2+) stores may regulate synaptic plasticity and hence behavioral and cognitive functions at the interface between physiology and pathology.
Collapse
Affiliation(s)
- N Maggio
- Talpiot Medical Leadership Program, Department of Neurology, The Chaim Sheba Medical Center, 52621 Tel HaShomer, Israel
| | - A Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
9
|
Tchekalarova JD, Kubová H, Mareš P. Different effects of postnatal caffeine treatment on two pentylenetetrazole-induced seizure models persist into adulthood. Pharmacol Rep 2014; 65:847-53. [PMID: 24145078 DOI: 10.1016/s1734-1140(13)71065-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/05/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Postnatal treatment with caffeine from P7 to P11 (10 or 20 mg/kg daily) resulted in transient changes in two pentylenetetrazole (PTZ)-induced models of epileptic seizures characterized by spike-and-wave EEG rhythm in immature rats. To know if some changes persist into adulthood we studied these models in young adult Wistar rats. METHODS Caffeine treatment at a daily dose of 10 and/or 20 mg/kg, sc was executed during postnatal days 7-11. Rhythmic metrazol activity (RMA, model of human absences) was induced in 60-day old rats by two successive doses of PTZ (20 + 20 mg/kg, ip) while for induction of minimal clonic seizures (model of human myoclonic seizures) the second dose of PTZ was 40 mg/kg. RESULTS RMA episodes elicited by the 20 + 20 mg/kg dose of PTZ in adult rats exposed to caffeine at P7 to P11 were decreased. This effect was more pronounced in group treated with the higher dose of caffeine. In contrast, the lower dose of caffeine exacerbated minimal clonic seizures (both incidence and intensity were increased). In addition, some animals from the 20-mg/kg caffeine group exhibited transition to generalized tonic-clonic seizures. CONCLUSION Different effects of postnatal caffeine exposure persist into adulthood; the seizure ameliorating effects in a model of absences and seizure exacerbating action in a model of myoclonic seizures are dose-specific.
Collapse
Affiliation(s)
- Jana D Tchekalarova
- CZ-142 20, Academy of Sciences of Czech Republic, Institute of Physiology, Videňská 1083, Prague 4, Czech Republic.
| | | | | |
Collapse
|
10
|
Chrościńska-Krawczyk M, Radzik I, Miziak B, Czuczwar SJ. Safety considerations for patients with epilepsy taking antiepileptic drugs alongside caffeine or other methylxanthine derivatives. Expert Opin Drug Metab Toxicol 2014; 10:981-9. [DOI: 10.1517/17425255.2014.920822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Klitgaard H, Verdru P. Levetiracetam: the first SV2A ligand for the treatment of epilepsy. Expert Opin Drug Discov 2013; 2:1537-45. [PMID: 23484603 DOI: 10.1517/17460441.2.11.1537] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Levetiracetam is a multiple action drug that primarily acts through an interaction with the synaptic vesicle protein 2A. Levetiracetam is the first drug of its kind to be approved for the treatment of epilepsy and is now the most prescribed among the newer antiepileptic drugs. The discovery process identifying levetiracetam's antiepileptic potential was unique because it challenged several dogmas of antiepileptic drug discovery, and thereby encountered skepticism from the epilepsy community. This was contrasted by a very successful development programme leading to rapid regulatory approval by the FDA. The history of levetiracetam proves that a small core group of committed scientists and physicians, who dare to challenge the conventional scientific doctrine, can be successful in bringing to market a truly novel therapy for epilepsy patients.
Collapse
Affiliation(s)
- Henrik Klitgaard
- UCB Pharma SA, Chemin du Foriest, B-1420 Braine-l'Alleud, Belgium +32 (0)2 386 2660 ; +32 (0)2 386 3141 ;
| | | |
Collapse
|
12
|
Abstract
Synchronization of neuronal responses, which allows coordination of distributed activity patterns, is instrumental in brain functioning, as altered neuronal synchronization is involved in a variety of brain pathologies. Epileptic hypersynchrony chiefly relies on brain wiring, which, in a broader sense, means including astrocytic release of gliotransmitters and electrotonic coupling through gap junctions, beyond classical synaptic connections. Epileptic hypersynchrony also relies on electrical field effects and ion concentration changes in the extracellular space, and it relates to intracellular mechanisms underlying neuronal hyperexcitability. The current lack of a specific impact of hypersynchrony on antiepileptic drug development might be next surpassed, as hypersynchrony seems to be a worthy and approachable, though challenging target of antiepileptic pharmacology.
Collapse
|
13
|
Chrościńska-Krawczyk M, Jargiełło-Baszak M, Wałek M, Tylus B, Czuczwar SJ. Caffeine and the anticonvulsant potency of antiepileptic drugs: experimental and clinical data. Pharmacol Rep 2011; 63:12-8. [DOI: 10.1016/s1734-1140(11)70394-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/14/2010] [Indexed: 11/26/2022]
|
14
|
Yoshimura H. The potential of caffeine for functional modification from cortical synapses to neuron networks in the brain. Curr Neuropharmacol 2010; 3:309-16. [PMID: 18369398 DOI: 10.2174/157015905774322543] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 07/08/2005] [Indexed: 11/22/2022] Open
Abstract
Structure and function of the brain are use-dependent variables based on "synapse plasticity". Since synapses are driven by chemical transmitters, synaptic functions are liable to be modified by extrinsic chemicals displaying affinities for synaptic receptors or modulators. Caffeine is a widely used chemical substance that can invade synapses, and has several biochemical and metabolic actions on synaptic activities. This review focuses on the actions of caffeine on changes in structure and function in the region of the hippocampal formation and neocortex, which exhibit high synapse plasticity. At the synapse level, various synaptic receptors and channel activities are modulated by caffeine via mobilization of intracellular calcium, inhibition of phosphodiesterase, antagonism of adenosine receptors and GABA receptors. These actions of caffeine enable neurons to induce plastic changes in the properties of synaptic activities, such as synaptic transmission efficiency and morphology. At the network level, caffeine has the ability to activate cortical neural oscillators that deliver repetitive N-methyl-D-aspartate receptor-dependent signals to surrounding areas, causing strengthening of long-range inter-cortical communications. Caffeine might thus allow reorganization of cortical network functions via synaptic mobilizations.
Collapse
Affiliation(s)
- Hiroshi Yoshimura
- Departments of Oral and Maxillofacial Surgery, Kanazawa Medical University, Uchinada-cho 920-0293, Japan.
| |
Collapse
|
15
|
Dasari S, Yuan Y. In vivo methylmercury exposure induced long-lasting epileptiform activity in layer II/III neurons in cortical slices from the rat. Toxicol Lett 2010; 193:138-43. [PMID: 20051253 DOI: 10.1016/j.toxlet.2009.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 12/19/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
Abstract
Prenatal and postnatal methylmercury (MeHg) exposure has been shown to increase neuronal excitability and seizure susceptibility. To determine if early postnatal MeHg exposure causes a similar effect, we examined changes in field potentials in layer II/III neurons in cortical slices of rat following in vivo MeHg treatment. Rats received 0 (0.9% NaCl), 0.75 mg/kg/day or 1.5mg/kg/day MeHg subcutaneously for 15 or 30 days beginning on postnatal day 5, after which cortical slices were prepared for field potential recordings. In slices from rats treated with vehicle, single pulse stimulation of layer IV of cortical slices induced a typical field excitatory postsynaptic potential (fEPSP) with a single spike. This type of fEPSPs was also seen in slices from rats with 15 day treatment with 0.75 mg/kg/day or 1.5mg/kg/day MeHg. However, 30-day treatment with either MeHg dose resulted in fEPSPs with multiple spikes (epileptiform activity) in 40% of animals examined. This epileptiform activity remained observable in 50-60% animals in which MeHg exposure had been terminated for 30 days. However, slices from control animals still showed fEPSPs with single spike. Thus, these data suggest that postnatal MeHg exposure in vivo altered neuronal excitability and induced a long-lasting hyperexcitability in cortical neurons.
Collapse
Affiliation(s)
- Sameera Dasari
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| | | |
Collapse
|
16
|
Effect of caffeine on the anticonvulsant effects of oxcarbazepine, lamotrigine and tiagabine in a mouse model of generalized tonic-clonic seizures. Pharmacol Rep 2009; 61:819-26. [DOI: 10.1016/s1734-1140(09)70137-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 09/30/2009] [Indexed: 11/22/2022]
|
17
|
Thöne J, Leniger T, Splettstösser F, Wiemann M. Antiepileptic activity of zonisamide on hippocampal CA3 neurons does not depend on carbonic anhydrase inhibition. Epilepsy Res 2008; 79:105-11. [DOI: 10.1016/j.eplepsyres.2007.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 11/11/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
|
18
|
Sitges M, Guarneros A, Nekrassov V. Effects of carbamazepine, phenytoin, valproic acid, oxcarbazepine, lamotrigine, topiramate and vinpocetine on the presynaptic Ca2+ channel-mediated release of [3H]glutamate: Comparison with the Na+ channel-mediated release. Neuropharmacology 2007; 53:854-62. [PMID: 17904592 DOI: 10.1016/j.neuropharm.2007.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 07/03/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Abstract
The effect of carbamazepine, phenytoin, valproate, oxcarbazepine, lamotrigine and topiramate, that are among the most widely used antiepileptic drugs (AEDs), and of the new putative AED vinpocetine on the Ca(2+) channel-mediated release of [(3)H]Glu evoked by high K(+) in hippocampal isolated nerve endings was investigated. Results show that carbamazepine, oxcarbazepine and phenytoin reduced [(3)H]Glu release to high K(+) to about 30% and 55% at concentrations of 500 microM and 1500 microM, respectively; lamotrigine and topiramate to about 27% at 1500 microM; while valproate failed to modify it. Vinpocetine was the most potent and effective; 50 microM vinpocetine practically abolished the high K(+) evoked release of [(3)H]Glu. Comparison of the inhibition exerted by the AEDs on [(3)H]Glu release evoked by high K(+) with the inhibition exerted by the AEDs on [(3)H]Glu release evoked by the Na(+) channel opener, veratridine, shows that all the AEDs are in general more effective blockers of the presynaptic Na(+) than of the presynaptic Ca(2+) channel-mediated response. The high doses of AEDs required to control seizures are frequently accompanied by adverse secondary effects. Therefore, the higher potency and efficacy of vinpocetine to reduce the permeability of presynaptic ionic channels controlling the release of the most important excitatory neurotransmitter in the brain must be advantageous in the treatment of epilepsy.
Collapse
Affiliation(s)
- María Sitges
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, UNAM, Apartado Postal 70228, Ciudad Universitaria 04510, México D.F., Mexico.
| | | | | |
Collapse
|
19
|
Thöne J, Wiemann M. Serotonin but not zonisamide inhibits theophylline-induced epileptiform activity in guinea pig hippocampal CA3 neurons. Epilepsy Res 2007; 76:73-6. [PMID: 17628426 DOI: 10.1016/j.eplepsyres.2007.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Revised: 05/09/2007] [Accepted: 05/29/2007] [Indexed: 11/29/2022]
Abstract
To test the putative serotonin (5-HT)-like effect of zonisamide (ZNS) we employed xanthine-induced epileptiform activity in the hippocampus slice preparation from guinea pigs. In this model Na(+)- and T-type Ca(2+) channel blockers are hardly effective while 5-HT should be inhibitory. Bath application of 5-HT hyperpolarized neurons and abolished theophylline-induced epileptiform activity. In contrast, ZNS failed to alter epileptiform bursting. We conclude that 5-HT augmenting effects of ZNS are missing or are not sufficient to inhibit epileptiform activity in hippocampal slice preparations.
Collapse
Affiliation(s)
- Jan Thöne
- Institute of Physiology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | |
Collapse
|