1
|
Walker NB, Yan Y, Tapia MA, Tucker BR, Thomas LN, George BE, West AM, Marotta CB, Lester HA, Dougherty DA, Holleran KM, Jones SR, Drenan RM. β2 nAChR Activation on VTA DA Neurons Is Sufficient for Nicotine Reinforcement in Rats. eNeuro 2023; 10:ENEURO.0449-22.2023. [PMID: 37193602 PMCID: PMC10216253 DOI: 10.1523/eneuro.0449-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Abstract
Mesolimbic nicotinic acetylcholine receptor (nAChRs) activation is necessary for nicotine reinforcement behavior, but it is unknown whether selective activation of nAChRs in the dopamine (DA) reward pathway is sufficient to support nicotine reinforcement. In this study, we tested the hypothesis that activation of β2-containing (β2*) nAChRs on VTA neurons is sufficient for intravenous nicotine self-administration (SA). We expressed β2 nAChR subunits with enhanced sensitivity to nicotine (referred to as β2Leu9'Ser) in the VTA of male Sprague Dawley (SD) rats, enabling very low concentrations of nicotine to selectively activate β2* nAChRs on transduced neurons. Rats expressing β2Leu9'Ser subunits acquired nicotine SA at 1.5 μg/kg/infusion, a dose too low to support acquisition in control rats. Saline substitution extinguished responding for 1.5 μg/kg/inf, verifying that this dose was reinforcing. β2Leu9'Ser nAChRs also supported acquisition at the typical training dose in rats (30 μg/kg/inf) and reducing the dose to 1.5 μg/kg/inf caused a significant increase in the rate of nicotine SA. Viral expression of β2Leu9'Ser subunits only in VTA DA neurons (via TH-Cre rats) also enabled acquisition of nicotine SA at 1.5 μg/kg/inf, and saline substitution significantly attenuated responding. Next, we examined electrically-evoked DA release in slices from β2Leu9'Ser rats with a history of nicotine SA. Single-pulse evoked DA release and DA uptake rate were reduced in β2Leu9'Ser NAc slices, but relative increases in DA following a train of stimuli were preserved. These results are the first to report that β2* nAChR activation on VTA neurons is sufficient for nicotine reinforcement in rats.
Collapse
Affiliation(s)
- Noah B Walker
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Yijin Yan
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Melissa A Tapia
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Brenton R Tucker
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Leanne N Thomas
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Brianna E George
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Alyssa M West
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Christopher B Marotta
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91106
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91106
| | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91106
| | - Katherine M Holleran
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Ryan M Drenan
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
2
|
Wills L, Ables JL, Braunscheidel KM, Caligiuri SPB, Elayouby KS, Fillinger C, Ishikawa M, Moen JK, Kenny PJ. Neurobiological Mechanisms of Nicotine Reward and Aversion. Pharmacol Rev 2022; 74:271-310. [PMID: 35017179 PMCID: PMC11060337 DOI: 10.1124/pharmrev.121.000299] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the rewarding actions of nicotine contained in tobacco that establish and maintain the smoking habit. nAChRs also regulate the aversive properties of nicotine, sensitivity to which decreases tobacco use and protects against tobacco use disorder. These opposing behavioral actions of nicotine reflect nAChR expression in brain reward and aversion circuits. nAChRs containing α4 and β2 subunits are responsible for the high-affinity nicotine binding sites in the brain and are densely expressed by reward-relevant neurons, most notably dopaminergic, GABAergic, and glutamatergic neurons in the ventral tegmental area. High-affinity nAChRs can incorporate additional subunits, including β3, α6, or α5 subunits, with the resulting nAChR subtypes playing discrete and dissociable roles in the stimulatory actions of nicotine on brain dopamine transmission. nAChRs in brain dopamine circuits also participate in aversive reactions to nicotine and the negative affective state experienced during nicotine withdrawal. nAChRs containing α3 and β4 subunits are responsible for the low-affinity nicotine binding sites in the brain and are enriched in brain sites involved in aversion, including the medial habenula, interpeduncular nucleus, and nucleus of the solitary tract, brain sites in which α5 nAChR subunits are also expressed. These aversion-related brain sites regulate nicotine avoidance behaviors, and genetic variation that modifies the function of nAChRs in these sites increases vulnerability to tobacco dependence and smoking-related diseases. Here, we review the molecular, cellular, and circuit-level mechanisms through which nicotine elicits reward and aversion and the adaptations in these processes that drive the development of nicotine dependence. SIGNIFICANCE STATEMENT: Tobacco use disorder in the form of habitual cigarette smoking or regular use of other tobacco-related products is a major cause of death and disease worldwide. This article reviews the actions of nicotine in the brain that contribute to tobacco use disorder.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Kevin M Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Masago Ishikawa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| |
Collapse
|
3
|
Takechi K, Suemaru K, Kiyoi T, Tanaka A, Araki H. The α4β2 nicotinic acetylcholine receptor modulates autism-like behavioral and motor abnormalities in pentylenetetrazol-kindled mice. Eur J Pharmacol 2016; 775:57-66. [PMID: 26868186 DOI: 10.1016/j.ejphar.2016.02.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/20/2016] [Accepted: 02/04/2016] [Indexed: 01/22/2023]
Abstract
Epilepsy is associated with several psychiatric disorders, including cognitive impairment, autism and attention deficit/hyperactivity disorder (ADHD). However, the psychopathology of epilepsy is frequently unrecognized and untreated in patients. In the present study, we investigated the effects of ABT-418, a neuronal nicotinic acetylcholine receptor agonist, on pentylenetetrazol (PTZ)-kindled mice with behavioral and motor abnormalities. PTZ-kindled mice displayed impaired motor coordination (in the rotarod test), anxiety (in the elevated plus maze test) and social approach impairment (in the three-chamber social test) compared with control mice. ABT-418 treatment (0.05 mg/kg, intraperitoneally) alleviated these behavioral abnormalities in PTZ-kindled mice. Immunolabeling of tissue sections demonstrated that expression of the α4 nicotinic acetylcholine receptor subunit in the medial habenula was similar in control and PTZ-kindled mice. However, expression was significantly decreased in the piriform cortex in PTZ-kindled mice. In addition, we examined the expression of the synaptic adhesion molecule neuroligin 3 (NLG3). NLG3 expression in the piriform cortex was significantly higher in PTZ-kindled mice compared with control mice. Collectively, our findings suggest that ADHD-like or autistic-like behavioral abnormalities associated with epilepsy are closely related to the downregulation of the α4 nicotinic receptor and the upregulation of NLG3 in the piriform cortex. In summary, this study indicates that ABT-418 might have therapeutic potential for attentional impairment in epileptic patients with psychiatric disorders such as autism and ADHD.
Collapse
Affiliation(s)
- Kenshi Takechi
- Division of Pharmacy, Ehime University Hospital, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Katsuya Suemaru
- School of Pharmacy, Shujitsu University, 1-6-1 Nishikawara, Naka-ku, Okayama 703-8516, Japan
| | - Takeshi Kiyoi
- Integrated Center for Science, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Akihiro Tanaka
- Division of Pharmacy, Ehime University Hospital, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Hiroaki Araki
- Division of Pharmacy, Ehime University Hospital, Shitsukawa, Toon, Ehime 791-0295, Japan
| |
Collapse
|
4
|
Shih PY, McIntosh JM, Drenan RM. Nicotine Dependence Reveals Distinct Responses from Neurons and Their Resident Nicotinic Receptors in Medial Habenula. Mol Pharmacol 2015; 88:1035-44. [PMID: 26429939 PMCID: PMC4658593 DOI: 10.1124/mol.115.101444] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/30/2015] [Indexed: 01/22/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are the molecular target of nicotine. nAChRs in the medial habenula (MHb) have recently been shown to play a role in nicotine dependence, but it is not clear which nAChR subtypes or MHb neuron types are most important. To identify MHb nAChRs and/or cell types that play a role in nicotine dependence, we studied these receptors and cells with brain slice electrophysiology using both acute and chronic nicotine application. Cells in the ventroinferior (MHbVI) and ventrolateral MHb (MHbVL) subregions expressed functional nAChRs with different pharmacology. Further, application of nicotine to cells in these subregions led to different action potential firing patterns. The latter result was correlated with a differing ability of nicotine to induce nAChR desensitization. Chronic nicotine caused functional upregulation of nAChRs selectively in MHbVI cells, but did not change nAChR function in MHbVL. Importantly, firing responses were also differentially altered in these subregions following chronic nicotine. MHbVI neurons treated chronically with nicotine exhibited enhanced basal pacemaker firing but a blunted nicotine-induced firing response. MHbVL neurons did not change their firing properties in response to chronic nicotine. Together, these results suggest that acute and chronic nicotine differentially affect nAChR function and output of cells in MHb subregions. Because the MHb extensively innervates the interpeduncular nucleus, an area critical for both affective and somatic signs of withdrawal, these results could reflect some of the neurophysiological changes thought to occur in the MHb to the interpeduncular nucleus circuit in human smokers.
Collapse
Affiliation(s)
- Pei-Yu Shih
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (P.-Y.S., R.M.D.) and George E. Wahlen Veterans Affairs Medical Center and Departments of Psychiatry and Biology, University of Utah, Salt Lake City, Utah (J.M.M.)
| | - J Michael McIntosh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (P.-Y.S., R.M.D.) and George E. Wahlen Veterans Affairs Medical Center and Departments of Psychiatry and Biology, University of Utah, Salt Lake City, Utah (J.M.M.)
| | - Ryan M Drenan
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (P.-Y.S., R.M.D.) and George E. Wahlen Veterans Affairs Medical Center and Departments of Psychiatry and Biology, University of Utah, Salt Lake City, Utah (J.M.M.)
| |
Collapse
|
5
|
Zoli M, Pistillo F, Gotti C. Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacology 2015; 96:302-11. [DOI: 10.1016/j.neuropharm.2014.11.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/11/2014] [Accepted: 11/08/2014] [Indexed: 01/01/2023]
|
6
|
Differential expression and function of nicotinic acetylcholine receptors in subdivisions of medial habenula. J Neurosci 2014; 34:9789-802. [PMID: 25031416 DOI: 10.1523/jneurosci.0476-14.2014] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal nAChRs in the medial habenula (MHb) to the interpeduncular nucleus (IPN) pathway are key mediators of nicotine's aversive properties. In this paper, we report new details regarding nAChR anatomical localization and function in MHb and IPN. A new group of knock-in mice were created that each expresses a single nAChR subunit fused to GFP, allowing high-resolution mapping. We find that α3 and β4 nAChR subunit levels are strong throughout the ventral MHb (MHbV). In contrast, α6, β2, β3, and α4 subunits are selectively found in some, but not all, areas of MHbV. All subunits were found in both ChAT-positive and ChAT-negative cells in MHbV. Next, we examined functional properties of neurons in the lateral and central part of MHbV (MHbVL and MHbVC) using brain slice patch-clamp recordings. MHbVL neurons were more excitable than MHbVC neurons, and they also responded more strongly to puffs of nicotine. In addition, we studied firing responses of MHbVL and MHbVC neurons in response to bath-applied nicotine. Cells in MHbVL, but not those in MHbVC, increased their firing substantially in response to 1 μm nicotine. Additionally, MHbVL neurons from mice that underwent withdrawal from chronic nicotine were less responsive to nicotine application compared with mice withdrawn from chronic saline. Last, we characterized rostral and dorsomedial IPN neurons that receive input from MHbVL axons. Together, our data provide new details regarding neurophysiology and nAChR localization and function in cells within the MHbV.
Collapse
|
7
|
Functional Distribution and Regulation of Neuronal Nicotinic ACh Receptors in the Mammalian Brain. NICOTINIC RECEPTORS 2014. [DOI: 10.1007/978-1-4939-1167-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Gass N, Schwarz AJ, Sartorius A, Cleppien D, Zheng L, Schenker E, Risterucci C, Meyer-Lindenberg A, Weber-Fahr W. Haloperidol modulates midbrain-prefrontal functional connectivity in the rat brain. Eur Neuropsychopharmacol 2013; 23:1310-9. [PMID: 23165219 DOI: 10.1016/j.euroneuro.2012.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/21/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
Abstract
Dopamine D₂ receptor antagonists effectively reduce positive symptoms in schizophrenia, implicating abnormal dopaminergic neurotransmission as an underlying mechanism of psychosis. Despite the well-established, albeit incomplete, clinical efficacies of D₂ antagonists, no studies have examined their effects on functional interaction between brain regions. We hypothesized that haloperidol, a widely used antipsychotic and D₂ antagonist, would modulate functional connectivity in dopaminergic circuits. Ten male Sprague-Dawley rats received either haloperidol (1 mg/kg, s.c.) or the same volume of saline a week apart. Resting-state functional magnetic resonance imaging data were acquired 20 min after injection. Connectivity analyses were performed using two complementary approaches: correlation analysis between 44 atlas-derived regions of interest, and seed-based connectivity mapping. In the presence of haloperidol, reduced correlation was observed between the substantia nigra and several brain regions, notably the cingulate and prefrontal cortices, posterodorsal hippocampus, ventral pallidum, and motor cortex. Haloperidol induced focal changes in functional connectivity were found to be the most strongly associated with ascending dopamine projections. These included reduced connectivity between the midbrain and the medial prefrontal cortex and hippocampus, possibly relating to its therapeutic action, and decreased coupling between substantia nigra and motor areas, which may reflect dyskinetic effects. These data may help in further characterizing the functional circuits modulated by antipsychotics that could be targeted by innovative drug treatments.
Collapse
Affiliation(s)
- Natalia Gass
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Aizawa H, Kobayashi M, Tanaka S, Fukai T, Okamoto H. Molecular characterization of the subnuclei in rat habenula. J Comp Neurol 2013; 520:4051-66. [PMID: 22700183 DOI: 10.1002/cne.23167] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mammalian habenula is involved in regulating the activities of serotonergic and dopaminergic neurons. It consists of the medial and lateral habenulae, with each subregion having distinct neural connectivity. Despite the functional significance, manipulating neural activity in a subset of habenular pathways remains difficult because of the poor availability of molecular markers that delineate the subnuclear structures. Thus, we examined the molecular nature of neurons in the habenular subnuclei by analyzing the gene expressions of neurotransmitter markers. The results showed that different subregions of the medial habenula (MHb) use different combinations of neurotransmitter systems and could be categorized as either exclusively glutamatergic (superior part of MHb), both substance P-ergic and glutamatergic (dorsal region of central part of MHb), or both cholinergic and glutamatergic (inferior part, ventral region of central part, and lateral part of MHb). The superior part of the MHb strongly expressed interleukin-18 and was innervated by noradrenergic fibers. In contrast, the inferior part, ventral region of the central part, and lateral part of the MHb were peculiar in that acetylcholine and glutamate were cotransmitted from the axonal terminals. In contrast, neurons in the lateral habenula (LHb) were almost uniformly glutamatergic. Finally, the expressions of Htr2c and Drd2 seemed complementary in the medial LHb division, whereas they coincided in the lateral division, suggesting that the medial and lateral divisions of LHb show strong heterogeneity with respect to monoamine receptor expression. These analyses clarify molecular differences between subnuclei in the mammalian habenula that support their respective functional implications.
Collapse
Affiliation(s)
- Hidenori Aizawa
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | | | | | | | | |
Collapse
|
10
|
Drenan RM, Lester HA. Insights into the neurobiology of the nicotinic cholinergic system and nicotine addiction from mice expressing nicotinic receptors harboring gain-of-function mutations. Pharmacol Rev 2012; 64:869-79. [PMID: 22885704 PMCID: PMC3462994 DOI: 10.1124/pr.111.004671] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated, cation-selective ion channels expressed throughout the brain. Although these channels have been investigated for several decades, it is still challenging 1) to identify the important nAChR subunits in cholinergic transmission and nicotine dependence and 2) to develop nAChR subtype-specific ligands. To overcome these challenges, we and others have studied mice expressing mutant, gain-of-function nAChR subunits. In this review, we discuss this research approach and the results it has yielded to date. Gain-of-function mutations, including those in nAChR subunits, provide an approach that is complementary to loss-of-function studies such as gene knockouts; the former allows one to answer questions of sufficiency and the latter addresses questions of necessity. Mutant mice expressing gain-of-function nAChR subunits are commonly produced using traditional gene targeting in embryonic stem cells, but novel approaches such as bacterial artificial chromosome transgenesis have yielded important insights as well. α7 nAChRs were the first nAChRs to be targeted with a gain-of-function mutation, followed by a pair of α4 nAChR gain-of-function mutant mice. These α4 nAChR gain-of-function mice (α4 L9'S mice, followed by α4 L9'A mice) provided an important system to probe α4 nAChR function in vivo, particularly in the dopamine reward system. α6 nAChR gain-of-function mice provided the first robust system allowing specific manipulation of this receptor subtype. Other targeted mutations in various nAChR subunits have also been produced and have yielded important insights into nicotinic cholinergic biology. As nAChR research advances and more details associated with nAChR expression and function emerge, we expect that existing and new mouse lines expressing gain-of-function nAChR subunits will continue to provide new insights.
Collapse
Affiliation(s)
- Ryan M Drenan
- Purdue University, Department of Medicinal Chemistry and Molecular Pharmacology, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
11
|
Srinivasan R, Richards CI, Xiao C, Rhee D, Pantoja R, Dougherty DA, Miwa JM, Lester HA. Pharmacological chaperoning of nicotinic acetylcholine receptors reduces the endoplasmic reticulum stress response. Mol Pharmacol 2012; 81:759-69. [PMID: 22379121 PMCID: PMC3362896 DOI: 10.1124/mol.112.077792] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/28/2012] [Indexed: 12/13/2022] Open
Abstract
We report the first observation that endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) can decrease when a central nervous system drug acts as an intracellular pharmacological chaperone for its classic receptor. Transient expression of α4β2 nicotinic receptors (nAChRs) in Neuro-2a cells induced the nuclear translocation of activating transcription factor 6 (ATF6), which is part of the UPR. Cells were exposed for 48 h to the full agonist nicotine, the partial agonist cytisine, or the competitive antagonist dihydro-β-erythroidine; we also tested mutant nAChRs that readily exit the ER. Each of these four manipulations increased Sec24D-enhanced green fluorescent protein fluorescence of condensed ER exit sites and attenuated translocation of ATF6-enhanced green fluorescent protein to the nucleus. However, we found no correlation among the manipulations regarding other tested parameters [i.e., changes in nAChR stoichiometry (α4(2)β2(3) versus α4(3)β2(2)), changes in ER and trans-Golgi structures, or the degree of nAChR up-regulation at the plasma membrane]. The four manipulations activated 0 to 0.4% of nAChRs, which shows that activation of the nAChR channel did not underlie the reduced ER stress. Nicotine also attenuated endogenously expressed ATF6 translocation and phosphorylation of eukaryotic initiation factor 2α in mouse cortical neurons transfected with α4β2 nAChRs. We conclude that, when nicotine accelerates ER export of α4β2 nAChRs, this suppresses ER stress and the UPR. Suppression of a sustained UPR may explain the apparent neuroprotective effect that causes the inverse correlation between a person's history of tobacco use and susceptibility to developing Parkinson's disease. This suggests a novel mechanism for neuroprotection by nicotine.
Collapse
Affiliation(s)
- Rahul Srinivasan
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
To thrive in any given environment, mobile creatures must be able to learn from the outcomes of both successful and disappointing events. To learn from success, the brain relies on signals originating in the ventral tegmental area and substantia nigra that result in increased release of dopamine in the striatum. Recently, it was shown that to learn from disappointment the brain relies on signals originating in the lateral habenula, which indirectly inhibit dopaminergic activity. The habenula is a small brain region that has been shown in mice to be critical for the appearance of nicotine withdrawal symptoms. The nicotinic acetylcholine receptor subunits expressed in the medial habenula are necessary to observe withdrawal symptoms in mice, and blocking nicotinic activity in the medial habenula only is sufficient to precipitate withdrawal in dependent mice. In addition, recent genome wide association studies have shown that in humans, genetic variants in the same nicotinic receptor subunits are at least partially responsible for the genetic predisposition to become a smoker. The habenula is linked not only to nicotine, but also to the effects of several other drugs. We postulate that the continuous use of drugs of abuse results in habenular hyperactivity as a compensatory mechanism for artificially elevated dopamine release. Drug withdrawal would then result in non-compensated habenular hyperactivity, and could be thought of as a state of continuous disappointment (or a negative emotional state), driving repeated drug use. We believe that drugs that alter habenular activity may be effective therapies against tobacco smoke and drug addiction in general.
Collapse
Affiliation(s)
- Philip R Baldwin
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA
| | | | | |
Collapse
|
13
|
Tammimäki A, Horton WJ, Stitzel JA. Recent advances in gene manipulation and nicotinic acetylcholine receptor biology. Biochem Pharmacol 2011; 82:808-19. [PMID: 21704022 DOI: 10.1016/j.bcp.2011.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 11/26/2022]
Abstract
Pharmacological and immunological methods have been valuable for both identifying some native nicotinic acetylcholine receptor (nAChR) subtypes that exist in vivo and determining the neurobiological and behavioral role of certain nAChR subtypes. However, these approaches suffer from shortage of subtype specific ligands and reliable immunological reagents. Consequently, genetic approaches have been developed to complement earlier approaches to identify native nAChR subtypes and to assess the contribution of nAChRs to brain function and behavior. In this review we describe how assembly partners, knock-in mice and targeted lentiviral re-expression of genes have been utilized to improve our understanding of nAChR neurobiology. In addition, we summarize emerging genetic tools in nAChR research.
Collapse
Affiliation(s)
- Anne Tammimäki
- Institute for Behavioral Genetics, University of Colorado at Boulder, UCB 447, Boulder, CO 80309, United States.
| | | | | |
Collapse
|
14
|
Srinivasan R, Pantoja R, Moss FJ, Mackey EDW, Son CD, Miwa J, Lester HA. Nicotine up-regulates alpha4beta2 nicotinic receptors and ER exit sites via stoichiometry-dependent chaperoning. ACTA ACUST UNITED AC 2011; 137:59-79. [PMID: 21187334 PMCID: PMC3010053 DOI: 10.1085/jgp.201010532] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The up-regulation of α4β2* nicotinic acetylcholine receptors (nAChRs) by chronic nicotine is a cell-delimited process and may be necessary and sufficient for the initial events of nicotine dependence. Clinical literature documents an inverse relationship between a person’s history of tobacco use and his or her susceptibility to Parkinson’s disease; this may also result from up-regulation. This study visualizes and quantifies the subcellular mechanisms involved in nicotine-induced nAChR up-regulation by using transfected fluorescent protein (FP)-tagged α4 nAChR subunits and an FP-tagged Sec24D endoplasmic reticulum (ER) exit site marker. Total internal reflection fluorescence microscopy shows that nicotine (0.1 µM for 48 h) up-regulates α4β2 nAChRs at the plasma membrane (PM), despite increasing the fraction of α4β2 nAChRs that remain in near-PM ER. Pixel-resolved normalized Förster resonance energy transfer microscopy between α4-FP subunits shows that nicotine stabilizes the (α4)2(β2)3 stoichiometry before the nAChRs reach the trans-Golgi apparatus. Nicotine also induces the formation of additional ER exit sites (ERES). To aid in the mechanistic analysis of these phenomena, we generated a β2enhanced-ER-export mutant subunit that mimics two regions of the β4 subunit sequence: the presence of an ER export motif and the absence of an ER retention/retrieval motif. The α4β2enhanced-ER-export nAChR resembles nicotine-exposed nAChRs with regard to stoichiometry, intracellular mobility, ERES enhancement, and PM localization. Nicotine produces only small additional PM up-regulation of α4β2enhanced-ER-export receptors. The experimental data are simulated with a model incorporating two mechanisms: (1) nicotine acts as a stabilizing pharmacological chaperone for nascent α4β2 nAChRs in the ER, eventually increasing PM receptors despite a bottleneck(s) in ER export; and (2) removal of the bottleneck (e.g., by expression of the β2enhanced-ER-export subunit) is sufficient to increase PM nAChR numbers, even without nicotine. The data also suggest that pharmacological chaperoning of nAChRs by nicotine can alter the physiology of ER processes.
Collapse
Affiliation(s)
- Rahul Srinivasan
- Division of Biology MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Partial agonists of the α3β4* neuronal nicotinic acetylcholine receptor reduce ethanol consumption and seeking in rats. Neuropsychopharmacology 2011; 36:603-15. [PMID: 21048701 PMCID: PMC3055681 DOI: 10.1038/npp.2010.191] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alcohol use disorders (AUDs) impact millions of individuals and there remain few effective treatment strategies. Despite evidence that neuronal nicotinic acetylcholine receptors (nAChRs) have a role in AUDs, it has not been established which subtypes of the nAChR are involved. Recent human genetic association studies have implicated the gene cluster CHRNA3-CHRNA5-CHRNB4 encoding the α3, α5, and β4 subunits of the nAChR in susceptibility to develop nicotine and alcohol dependence; however, their role in ethanol-mediated behaviors is unknown due to the lack of suitable and selective research tools. To determine the role of the α3, and β4 subunits of the nAChR in ethanol self-administration, we developed and characterized high-affinity partial agonists at α3β4 nAChRs, CP-601932, and PF-4575180. Both CP-601932 and PF-4575180 selectively decrease ethanol but not sucrose consumption and operant self-administration following long-term exposure. We show that the functional potencies of CP-601932 and PF-4575180 at α3β4 nAChRs correlate with their unbound rat brain concentrations, suggesting that the effects on ethanol self-administration are mediated via interaction with α3β4 nAChRs. Also varenicline, an approved smoking cessation aid previously shown to decrease ethanol consumption and seeking in rats and mice, reduces ethanol intake at unbound brain concentrations that allow functional interactions with α3β4 nAChRs. Furthermore, the selective α4β2(*) nAChR antagonist, DHβE, did not reduce ethanol intake. Together, these data provide further support for the human genetic association studies, implicating CHRNA3 and CHRNB4 genes in ethanol-mediated behaviors. CP-601932 has been shown to be safe in humans and may represent a potential novel treatment for AUDs.
Collapse
|
16
|
Chatterjee S, Bartlett SE. Neuronal nicotinic acetylcholine receptors as pharmacotherapeutic targets for the treatment of alcohol use disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2010; 9:60-76. [PMID: 20201817 DOI: 10.2174/187152710790966597] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 12/13/2009] [Indexed: 12/20/2022]
Abstract
Alcohol use disorders (AUDs) are complex, and developing effective treatments will require the combination of novel medications and cognitive behavioral therapy approaches. Epidemiological studies have shown there is a high correlation between alcohol consumption and tobacco use, and the prevalence of smoking in alcoholics is as high as 80% compared to about 30% for the general population. Both preclinical and clinical data provide evidence that nicotine administration increases alcohol intake and non-specific nicotinic receptor antagonists reduce alcohol-mediated behaviors. As nicotine interacts specifically with the neuronal nicotinic acetylcholine receptor (nAChR) system, this suggests that nAChRs play an important role in the behavioral effects of alcohol. In this review, we discuss the importance of nAChRs for the treatment of AUDs and argue that the use of FDA approved nAChR ligands, such as varenicline and mecamylamine, approved as smoking cessation aids may prove to be valuable treatments for AUDs. We also address the importance of combining effective medications with behavioral therapy for the treatment of alcohol dependent individuals.
Collapse
Affiliation(s)
- S Chatterjee
- Ernest Gallo Clinic and Research Center at the University of California San Francisco, 5858 Horton Street, Suite 200 Emeryville, CA 94608, USA
| | | |
Collapse
|
17
|
Changeux JP. Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nat Rev Neurosci 2010; 11:389-401. [PMID: 20485364 DOI: 10.1038/nrn2849] [Citation(s) in RCA: 339] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The past decades have seen a revolution in our understanding of brain diseases and in particular of drug addiction. This has been largely due to the identification of neurotransmitter receptors and the development of animal models, which together have enabled the investigation of brain functions from the molecular to the cognitive level. Tobacco smoking, the principal - yet avoidable - cause of lung cancer is associated with nicotine addiction. Recent studies in mice involving deletion and replacement of nicotinic acetylcholine receptor subunits have begun to identify the molecular mechanisms underlying nicotine addiction and might offer new therapeutic strategies to treat this addiction.
Collapse
Affiliation(s)
- Jean-Pierre Changeux
- Collge de France and the Institut Pasteur CNRS URA 2182, 25 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
18
|
Rodent habenulo-interpeduncular pathway expresses a large variety of uncommon nAChR subtypes, but only the alpha3beta4* and alpha3beta3beta4* subtypes mediate acetylcholine release. J Neurosci 2009; 29:2272-82. [PMID: 19228980 DOI: 10.1523/jneurosci.5121-08.2009] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent studies suggest that the neuronal nicotinic receptors (nAChRs) present in the habenulo-interpeduncular (Hb-IPn) system can modulate the reinforcing effect of addictive drugs and the anxiolytic effect of nicotine. Hb and IPn neurons express mRNAs for most nAChR subunits, thus making it difficult to establish the subunit composition of functional receptors. We used immunoprecipitation and immunopurification studies performed in rat and wild-type (+/+) and beta2 knock-out (-/-) mice to establish that the Hb and IPn contain significant beta2* and beta4* populations of nAChR receptors (each of which is heterogeneous). The beta4* nAChR are more highly expressed in the IPn. We also identified novel native subtypes (alpha2beta2*, alpha4beta3beta2*, alpha3beta3beta4*, alpha6beta3beta4*). Our studies on IPn synaptosomes obtained from +/+ and alpha2, alpha4, alpha5, alpha6, alpha7, beta2, beta3, and beta4(-/-) mice show that only the alpha3beta4 and alpha3beta3beta4 subtypes facilitate acetylcholine (ACh) release. Ligand binding, immunoprecipitation, and Western blotting studies in beta3(-/-) mice showed that, in the IPn of these mice, there is a concomitant reduction of ACh release and alpha3beta4* receptors, whereas the receptor number remains the same in the Hb. We suggest that, in habenular cholinergic neurons, the beta3 subunit may be important for transporting the alpha3beta4* subtype from the medial habenula to the IPn. Overall, these studies highlight the presence of a wealth of uncommon nAChR subtypes in the Hb-IPn system and identify alpha3beta4 and alpha3beta3beta4, transported from the Hb and highly enriched in the IPn, as the subtypes modulating ACh release in the IPn.
Collapse
|
19
|
Lester HA, Xiao C, Srinivasan R, Son CD, Miwa J, Pantoja R, Banghart MR, Dougherty DA, Goate AM, Wang JC. Nicotine is a selective pharmacological chaperone of acetylcholine receptor number and stoichiometry. Implications for drug discovery. AAPS JOURNAL 2009; 11:167-77. [PMID: 19280351 DOI: 10.1208/s12248-009-9090-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 02/07/2009] [Indexed: 01/11/2023]
Abstract
The acronym SePhaChARNS, for "selective pharmacological chaperoning of acetylcholine receptor number and stoichiometry," is introduced. We hypothesize that SePhaChARNS underlies classical observations that chronic exposure to nicotine causes "upregulation" of nicotinic receptors (nAChRs). If the hypothesis is proven, (1) SePhaChARNS is the molecular mechanism of the first step in neuroadaptation to chronic nicotine; and (2) nicotine addiction is partially a disease of excessive chaperoning. The chaperone is a pharmacological one, nicotine; and the chaperoned molecules are alpha4beta2* nAChRs. SePhaChARNS may also underlie two inadvertent therapeutic effects of tobacco use: (1) the inverse correlation between tobacco use and Parkinson's disease; and (2) the suppression of seizures by nicotine in autosomal dominant nocturnal frontal lobe epilepsy. SePhaChARNS arises from the thermodynamics of pharmacological chaperoning: ligand binding, especially at subunit interfaces, stabilizes AChRs during assembly and maturation, and this stabilization is most pronounced for the highest-affinity subunit compositions, stoichiometries, and functional states of receptors. Several chemical and pharmacokinetic characteristics render exogenous nicotine a more potent pharmacological chaperone than endogenous acetylcholine. SePhaChARNS is modified by desensitized states of nAChRs, by acid trapping of nicotine in organelles, and by other aspects of proteostasis. SePhaChARNS is selective at the cellular, and possibly subcellular, levels because of variations in the detailed nAChR subunit composition, as well as in expression of auxiliary proteins such as lynx. One important implication of the SePhaChARNS hypothesis is that therapeutically relevant nicotinic receptor drugs could be discovered by studying events in intracellular compartments rather than exclusively at the surface membrane.
Collapse
Affiliation(s)
- Henry A Lester
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|