1
|
Wu PP, Cao BR, Tian FY, Gao ZB. Development of SV2A Ligands for Epilepsy Treatment: A Review of Levetiracetam, Brivaracetam, and Padsevonil. Neurosci Bull 2024; 40:594-608. [PMID: 37897555 PMCID: PMC11127901 DOI: 10.1007/s12264-023-01138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/16/2023] [Indexed: 10/30/2023] Open
Abstract
Epilepsy is a common neurological disorder that is primarily treated with antiseizure medications (ASMs). Although dozens of ASMs are available in the clinic, approximately 30% of epileptic patients have medically refractory seizures; other limitations in most traditional ASMs include poor tolerability and drug-drug interactions. Therefore, there is an urgent need to develop alternative ASMs. Levetiracetam (LEV) is a first-line ASM that is well tolerated, has promising efficacy, and has little drug-drug interaction. Although it is widely accepted that LEV acts through a unique therapeutic target synaptic vesicle protein (SV) 2A, the molecular basis of its action remains unknown. Even so, the next-generation SV2A ligands against epilepsy based on the structure of LEV have achieved clinical success. This review highlights the research and development (R&D) process of LEV and its analogs, brivaracetam and padsevonil, to provide ideas and experience for the R&D of novel ASMs.
Collapse
Affiliation(s)
- Peng-Peng Wu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bi-Rong Cao
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fu-Yun Tian
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Zhao-Bing Gao
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| |
Collapse
|
2
|
IQSEC2 mutation associated with epilepsy, intellectual disability, and autism results in hyperexcitability of patient-derived neurons and deficient synaptic transmission. Mol Psychiatry 2021; 26:7498-7508. [PMID: 34535765 PMCID: PMC8873005 DOI: 10.1038/s41380-021-01281-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 07/09/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022]
Abstract
Mutations in the IQSEC2 gene are associated with drug-resistant, multifocal infantile and childhood epilepsy; autism; and severe intellectual disability (ID). We used induced pluripotent stem cell (iPSC) technology to obtain hippocampal neurons to investigate the neuropathology of IQSEC2-mediated disease. The neurons were characterized at three-time points during differentiation to assess developmental progression. We showed that immature IQSEC2 mutant dentate gyrus (DG) granule neurons were extremely hyperexcitable, exhibiting increased sodium and potassium currents compared to those of CRISPR-Cas9-corrected isogenic controls, and displayed dysregulation of genes involved in differentiation and development. Immature IQSEC2 mutant cultured neurons exhibited a marked reduction in the number of inhibitory neurons, which contributed further to hyperexcitability. As the mutant neurons aged, they became hypoexcitable, exhibiting reduced sodium and potassium currents and a reduction in the rate of synaptic and network activity, and showed dysregulation of genes involved in synaptic transmission and neuronal differentiation. Mature IQSEC2 mutant neurons were less viable than wild-type mature neurons and had reduced expression of surface AMPA receptors. Our studies provide mechanistic insights into severe infantile epilepsy and neurodevelopmental delay associated with this mutation and present a human model for studying IQSEC2 mutations in vitro.
Collapse
|
3
|
Leclercq K, Matagne A, Provins L, Klitgaard H, Kaminski RM. Pharmacological Profile of the Novel Antiepileptic Drug Candidate Padsevonil: Characterization in Rodent Seizure and Epilepsy Models. J Pharmacol Exp Ther 2020; 372:11-20. [PMID: 31619464 DOI: 10.1124/jpet.119.261222] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/10/2019] [Indexed: 03/08/2025] Open
Abstract
The antiepileptic drug (AED) candidate, (4R)-4-(2-chloro-2,2-difluoroethyl)-1-{[2-(methoxymethyl)-6-(trifluoromethyl)imidazo[2,1-b][1,3,4]thiadiazol-5-yl]methyl}pyrrolidin-2-one (padsevonil), is the first in a novel class of drugs that bind to synaptic vesicle protein 2 (SV2) proteins and the GABAA receptor benzodiazepine site, allowing for pre- and postsynaptic activity, respectively. In acute seizure models, padsevonil provided potent, dose-dependent protection against seizures induced by administration of pilocarpine or 11-deoxycortisol, and those induced acoustically or through 6 Hz stimulation; it was less potent in the pentylenetetrazol, bicuculline, and maximal electroshock models. Padsevonil displayed dose-dependent protective effects in chronic epilepsy models, including the intrahippocampal kainate and Genetic Absence Epilepsy Rats from Strasbourg models, which represent human mesial temporal lobe and absence epilepsy, respectively. In the amygdala kindling model, which is predictive of efficacy against focal to bilateral tonic-clonic seizures, padsevonil provided significant protection in kindled rodents; in mice specifically, it was the most potent AED compared with nine others with different mechanisms of action. Its therapeutic index was also the highest, potentially translating into a favorable efficacy and tolerability profile in humans. Importantly, in contrast to diazepam, tolerance to padsevonil's antiseizure effects was not observed in the pentylenetetrazol-induced clonic seizure threshold test. Further results in the 6 Hz model showed that padsevonil provided significantly greater protection than the combination of diazepam with either 2S-(2-oxo-1-pyrrolidinyl)butanamide (levetiracetam) or 2S-2-[(4R)-2-oxo-4-propylpyrrolidin-1-yl] butanamide (brivaracetam), both selective SV2A ligands. This observation suggests that padsevonil's unique mechanism of action confers antiseizure properties beyond the combination of compounds targeting SV2A and the benzodiazepine site. Overall, padsevonil displayed robust efficacy across validated seizure and epilepsy models, including those considered to represent drug-resistant epilepsy. SIGNIFICANCE STATEMENT: Padsevonil, a first-in-class antiepileptic drug candidate, targets SV2 proteins and the benzodiazepine site of GABAA receptors. It demonstrated robust efficacy across a broad range of rodent seizure and epilepsy models, several representing drug-resistant epilepsy. Furthermore, in one rodent model, its efficacy extended beyond the combination of drugs interacting separately with SV2 or the benzodiazepine site. Padsevonil displayed a high therapeutic index, potentially translating into a favorable safety profile in humans; tolerance to antiseizure effects was not observed.
Collapse
Affiliation(s)
- Karine Leclercq
- UCB Pharma, Neurosciences Therapeutic Area, Braine l'Alleud, Belgium
| | - Alain Matagne
- UCB Pharma, Neurosciences Therapeutic Area, Braine l'Alleud, Belgium
| | - Laurent Provins
- UCB Pharma, Neurosciences Therapeutic Area, Braine l'Alleud, Belgium
| | - Henrik Klitgaard
- UCB Pharma, Neurosciences Therapeutic Area, Braine l'Alleud, Belgium
| | - Rafal M Kaminski
- UCB Pharma, Neurosciences Therapeutic Area, Braine l'Alleud, Belgium
| |
Collapse
|
4
|
Kalafatakis K, Russell GM, Harmer CJ, Munafo MR, Marchant N, Wilson A, Brooks JCW, Thai NJ, Ferguson SG, Stevenson K, Durant C, Schmidt K, Lightman SL. Effects of the pattern of glucocorticoid replacement on neural processing, emotional reactivity and well-being in healthy male individuals: study protocol for a randomised controlled trial. Trials 2016; 17:44. [PMID: 26801980 PMCID: PMC4724084 DOI: 10.1186/s13063-016-1159-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/06/2016] [Indexed: 01/31/2023] Open
Abstract
Background Deviation from the physiological glucocorticoid dynamics (circadian and underlying ultradian rhythmicity) is a common characteristic of various neuropsychiatric and endocrine disorders as well as glucocorticoid-based therapeutics. These states may be accompanied by neuropsychiatric symptomatology, suggesting continuous dynamic glucocorticoid equilibrium is essential for brain homeostasis. Methods/design The study consists of two parts. The preliminary stage of the study aims to validate (technically and pharmacologically) and optimise three different patterns of systemic cortisol administration in man. These patterns are based on the combinatory administration of metyrapone, to suppress endogenous cortisol production, and concurrent hydrocortisone replacement. The second, subsequent, core part of the study is a randomised, double-blinded, placebo-controlled, crossover study, where participants (healthy male individuals aged 18–60 years) will undergo all three hydrocortisone replacement schemes. During these infusion regimes, we plan a number of neurobehavioural tests and imaging of the brain to assess neural processing, emotional reactivity and perception, mood and self-perceived well-being. The psychological tests include: ecological momentary assessment, P1vital Oxford Emotional Test Battery and Emotional Potentiated Startle Test, Leeds Sleep Evaluation Questionnaire and the visual working memory task (n-back). The neuroimaging protocol combines magnetic resonance sequences that capture data related to the functional and perfusion status of the brain. Discussion Results of this clinical trial are designed to evaluate the impact (with possible mechanistic insights) of different patterns of daily glucocorticoid dynamics on neural processing and reactivity related to emotional perception and mood. This evidence should contribute to the optimisation of the clinical application of glucocorticoid-based therapeutics. Trial registration UK Clinical Research Network, IRAS Ref: 106181, UKCRN-ID-15236 (23 October 2013)
Collapse
Affiliation(s)
- Konstantinos Kalafatakis
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK. .,Bristol Royal Infirmary, University Hospitals Bristol NHS Foundation Trust, Bristol, BS28HW, UK. .,Clinical Research and Imaging Centre, University of Bristol, Bristol, BS28DX, UK.
| | - Georgina M Russell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK. .,Bristol Royal Infirmary, University Hospitals Bristol NHS Foundation Trust, Bristol, BS28HW, UK.
| | - Catherine J Harmer
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, OX37JX, UK.
| | - Marcus R Munafo
- MRC Integrative Epidemiology Unit at the University of Bristol, UK Centre for Tobacco and Alcohol Studies, School of Experimental Psychology, University of Bristol, Bristol, BS81TU, UK.
| | - Nicky Marchant
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK. .,Bristol Royal Infirmary, University Hospitals Bristol NHS Foundation Trust, Bristol, BS28HW, UK.
| | - Aileen Wilson
- Clinical Research and Imaging Centre, University of Bristol, Bristol, BS28DX, UK.
| | - Jonathan C W Brooks
- Clinical Research and Imaging Centre, University of Bristol, Bristol, BS28DX, UK.
| | - Ngoc J Thai
- Clinical Research and Imaging Centre, University of Bristol, Bristol, BS28DX, UK.
| | - Stuart G Ferguson
- School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia.
| | - Kirsty Stevenson
- Bristol Royal Infirmary, University Hospitals Bristol NHS Foundation Trust, Bristol, BS28HW, UK.
| | - Claire Durant
- Clinical Research and Imaging Centre, University of Bristol, Bristol, BS28DX, UK.
| | - Kristin Schmidt
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, OX37JX, UK.
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK. .,Bristol Royal Infirmary, University Hospitals Bristol NHS Foundation Trust, Bristol, BS28HW, UK.
| |
Collapse
|
5
|
Kalafatakis K, Russell GM, Zarros A, Lightman SL. Temporal control of glucocorticoid neurodynamics and its relevance for brain homeostasis, neuropathology and glucocorticoid-based therapeutics. Neurosci Biobehav Rev 2015; 61:12-25. [PMID: 26656793 DOI: 10.1016/j.neubiorev.2015.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/09/2015] [Accepted: 11/19/2015] [Indexed: 11/26/2022]
Abstract
Glucocorticoids mediate plethora of actions throughout the human body. Within the brain, they modulate aspects of immune system and neuroinflammatory processes, interfere with cellular metabolism and viability, interact with systems of neurotransmission and regulate neural rhythms. The influence of glucocorticoids on memory and emotional behaviour is well known and there is increasing evidence for their involvement in many neuropsychiatric pathologies. These effects, which at times can be in opposing directions, depend not only on the concentration of glucocorticoids but also the duration of their presence, the temporal relationship between their fluctuations, the co-influence of other stimuli, and the overall state of brain activity. Moreover, they are region- and cell type-specific. The molecular basis of such diversity of effects lies on the orchestration of the spatiotemporal interplay between glucocorticoid- and mineralocorticoid receptors, and is achieved through complex dynamics, mainly mediated via the circadian and ultradian pattern of glucocorticoid secretion. More sophisticated methodologies are therefore required to better approach the study of these hormones and improve the effectiveness of glucocorticoid-based therapeutics.
Collapse
Affiliation(s)
- Konstantinos Kalafatakis
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol BS1 3NY, United Kingdom.
| | - Georgina M Russell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol BS1 3NY, United Kingdom.
| | - Apostolos Zarros
- Research Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom.
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol BS1 3NY, United Kingdom.
| |
Collapse
|
6
|
Liang Q, Xu W, Hong Q, Xiao C, Yang L, Ma Z, Wang Y, Tan H, Tang X, Gao Y. Rapid comparison of metabolites in humans and rats of different sexes using untargeted UPLC-TOFMS and an in-house software platform. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:801-821. [PMID: 26764310 DOI: 10.1255/ejms.1395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Metabolite differences between sexes have rarely been observed in a global manner, but it has recently been made possible by the advancement in metabolomics techniques. In this study, untargeted ultraperformance liquid chromatography coupled to time-of-flight mass spectrometry and an in-house software platform were used for a rapid comparison of sex differences in urinary metabolites in humans and in urinary and serum metabolites in Sprague Dawley (SD) rats. In addition, the species differences of urinary metabolites between humans and SD rats were also observed. Principle component analysis showed that all the observed metabolite sex differences were more distinct in SD rats than in humans, indicating that the sex differences of human urinary metabolites is small compared with that of SD rats. In SD rats, the observed metabolite sex differences were more distinct in urine than in serum, indicating the importance of urine analysis for metabolomics studies. The species differences in the urinary metabolites of humans and SD rats were much more distinct than any of the observed sex differences. Many sex- and species-related markers were discovered and putatively identified. In both humans and SD rats, steroid metabolites appeared to constitute a major sex difference in urinary metabolites. This provides new proof of the special importance of steroid metabolites in sex differences from an untargeted metabolomics investigation, which is rare for sex differences. Contrary patterns involving adrenocortical activity appeared to exist between rodents and humans, which agrees with previous reports. In the serum metabolites of SD rats, sex differences in ascorbic acid or its isomer and pantothenic acid or its isomer, but not in steroid metabolites, were prominent. Human-specific α-N- phenylacetyl-l-glutamine and androsterone glucuronide were among the putative identities of the markers discriminating humans and SD rats. This study demonstrated the feasibility of an in-house software platform and provides metabolite-related information on sex and species differences.
Collapse
Affiliation(s)
- Qiande Liang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, P. R. China.
| | - Wangyanjun Xu
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Qian Hong
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Chengrong Xiao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Liang Yang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Zengchun Ma
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Yuguang Wang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Hongling Tan
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Xianglin Tang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Yue Gao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, P. R. China.
| |
Collapse
|
7
|
Carver CM, Reddy DS. Neurosteroid interactions with synaptic and extrasynaptic GABA(A) receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. Psychopharmacology (Berl) 2013; 230:151-88. [PMID: 24071826 PMCID: PMC3832254 DOI: 10.1007/s00213-013-3276-5] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/29/2013] [Indexed: 12/25/2022]
Abstract
RATIONALE Neurosteroids are steroids synthesized within the brain with rapid effects on neuronal excitability. Allopregnanolone, allotetrahydrodeoxycorticosterone, and androstanediol are three widely explored prototype endogenous neurosteroids. They have very different targets and functions compared to conventional steroid hormones. Neuronal γ-aminobutyric acid (GABA) type A (GABA(A)) receptors are one of the prime molecular targets of neurosteroids. OBJECTIVE This review provides a critical appraisal of recent advances in the pharmacology of endogenous neurosteroids that interact with GABA(A) receptors in the brain. Neurosteroids possess distinct, characteristic effects on the membrane potential and current conductance of the neuron, mainly via potentiation of GABA(A) receptors at low concentrations and direct activation of receptor chloride channel at higher concentrations. The GABA(A) receptor mediates two types of inhibition, now characterized as synaptic (phasic) and extrasynaptic (tonic) inhibition. Synaptic release of GABA results in the activation of low-affinity γ2-containing synaptic receptors, while high-affinity δ-containing extrasynaptic receptors are persistently activated by the ambient GABA present in the extracellular fluid. Neurosteroids are potent positive allosteric modulators of synaptic and extrasynaptic GABA(A) receptors and therefore enhance both phasic and tonic inhibition. Tonic inhibition is specifically more sensitive to neurosteroids. The resulting tonic conductance generates a form of shunting inhibition that controls neuronal network excitability, seizure susceptibility, and behavior. CONCLUSION The growing understanding of the mechanisms of neurosteroid regulation of the structure and function of the synaptic and extrasynaptic GABA(A) receptors provides many opportunities to create improved therapies for sleep, anxiety, stress, epilepsy, and other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Chase Matthew Carver
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, 2008 Medical Research and Education Building, 8447 State Highway 47, Bryan, TX, 77807-3260, USA
| | | |
Collapse
|
8
|
Reddy DS. Role of hormones and neurosteroids in epileptogenesis. Front Cell Neurosci 2013; 7:115. [PMID: 23914154 PMCID: PMC3728472 DOI: 10.3389/fncel.2013.00115] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/01/2013] [Indexed: 12/03/2022] Open
Abstract
This article describes the emerging evidence of hormonal influence on epileptogenesis, which is a process whereby a brain becomes progressively epileptic due to an initial precipitating event of diverse origin such as brain injury, stroke, infection, or prolonged seizures. The molecular mechanisms underlying the development of epilepsy are poorly understood. Neuroinflammation and neurodegeneration appear to trigger epileptogenesis. There is an intense search for drugs that truly prevent the development of epilepsy in people at risk. Hormones play an important role in children and adults with epilepsy. Corticosteroids, progesterone, estrogens, and neurosteroids have been shown to affect seizure activity in animal models and in clinical studies. However, the impact of hormones on epileptogenesis has not been investigated widely. There is emerging new evidence that progesterone, neurosteroids, and endogenous hormones may play a role in regulating the epileptogenesis. Corticosterone has excitatory effects and triggers epileptogenesis in animal models. Progesterone has disease-modifying activity in epileptogenic models. The antiepileptogenic effect of progesterone has been attributed to its conversion to neurosteroids, which binds to GABA-A receptors and enhances phasic and tonic inhibition in the brain. Neurosteroids are robust anticonvulsants. There is pilot evidence that neurosteroids may have antiepileptogenic properties. Future studies may generate new insight on the disease-modifying potential of hormonal agents and neurosteroids in epileptogenesis.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center Bryan, TX, USA
| |
Collapse
|
9
|
Venkatesan K, Alix P, Marquet A, Doupagne M, Niespodziany I, Rogister B, Seutin V. Altered balance between excitatory and inhibitory inputs onto CA1 pyramidal neurons from SV2A-deficient but not SV2B-deficient mice. J Neurosci Res 2012; 90:2317-27. [DOI: 10.1002/jnr.23111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 11/07/2022]
|