1
|
León BE, Peyton L, Essa H, Wieden T, Marion N, Childers WE, Abou-Gharbia M, Choi DS. A novel monobactam lacking antimicrobial activity, MC-100093, reduces sex-specific ethanol preference and depressive-like behaviors in mice. Neuropharmacology 2023; 232:109515. [PMID: 37001726 PMCID: PMC10144181 DOI: 10.1016/j.neuropharm.2023.109515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Several β-lactam derivatives upregulate astrocytic glutamate transporter type 1expression and are known to improve measures in models of mood and alcohol use disorders (AUD) through normalizing glutamatergic states. However, long-term, and high doses of β-lactams may cause adverse side effects for treating mood disorders and AUD. Studies suggest that MC-100093, a novel β-lactam lacking antimicrobial activity, rescues GLT1 expression. Thus, we sought to investigate whether MC-100093 improves affective behaviors and reduces voluntary ethanol drinking. We intraperitoneally administered MC-100093 (50 mg/kg) or vehicle once per day to C57BL/6J male and female mice (8-10 weeks old) over 6 days. We employed the open field test and the elevated plus maze to examine the effect of MC-100093 on anxiety-like behaviors. We assayed MC-100093's effects on depressive-like behaviors using the tail suspension and forced swim tests. Next, utilizing a separate cohort of male and female C57BL6 mice, we assessed the effects MC100093 treatment on voluntary ethanol drinking utilizing the 2-bottle choice continuous access drinking paradigm. After screening and selecting high-drinking mice, we systematically administered MC-100093 (50 mg/kg) or vehicle to the high-drinking mice over 6 days. Overall, we found that MC-100093 treatment resulted in sex-specific pharmacological effects with female mice displaying reduced innate depressive-like behaviors during the tail suspension and force swim testing juxtaposed with male treated mice who displayed no changes in tail suspension and a paradoxical increased depressive-like behavior during the forced swim testing. Additionally, we found that MC100093 treatment reduced female preference for 10% EtOH during the 2-bottle choice continuous access drinking with no effects of MC100093 treatment detected in male mice. Overall, this data suggests sex-specific regulation of innate depressive-like behavior and voluntary EtOH drinking by MC100093 treatment. Western blot analysis of the medial prefrontal cortex and hippocampus revealed no changes in male or female GLT1 protein abundance relative to GAPDH.
Collapse
Affiliation(s)
- Brandon Emanuel León
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA; Regenerative Sciences Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Hesham Essa
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Tia Wieden
- Neuroscience Program, Mayo Clinic College of Medicine and Science, MN, 55905, USA
| | - Nicole Marion
- Neuroscience Program, Mayo Clinic College of Medicine and Science, MN, 55905, USA
| | - Wayne E Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA; Neuroscience Program, Mayo Clinic College of Medicine and Science, MN, 55905, USA; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, 59905, USA.
| |
Collapse
|
2
|
Blood glutamine synthetase signaling in alcohol use disorder and racial disparity. Transl Psychiatry 2022; 12:71. [PMID: 35194024 PMCID: PMC8863875 DOI: 10.1038/s41398-022-01837-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/01/2023] Open
Abstract
As of 2018, 14.4 million adults ages 18 and older in the U.S had alcohol use disorder (AUD). However, only about 8% of adults who had AUD in the past year received treatment. Surveys have also shown racial disparities regarding AUD treatments. Thus, it is imperative to identify racial disparities in AUD patients, as it may indicate a specific underlying pathophysiology in an AUD subpopulation. To identify racial disparity in AUD, we enrolled 64 cohorts, including 26 AUD participants and 38 healthy controls, from Northwest Louisiana using community-based enrollment. Then, we used psychometric scales to assess alcohol drinking patterns and measured blood metabolites change using LC-MS/MS. Alcohol-related scales from the questionnaires did not differ between the Caucasian AUD participants and African-American AUD participants. From blood metabolomics analyses, we identified that 6 amino acids were significantly different by AUD status and or race. Interestingly, Caucasian AUD participants had a higher glutamate metabolism mediated by glutamine synthetase (GS). The correlation between blood glutamate/glutamine ratio and GS activity was only significant in the Caucasian AUD group whereas no changes were observed in African-American AUD group or controls. Taken together, our findings from this sample population demonstrate that blood GS is a potential biomarker associated with Caucasian AUD, which is an important step towards the application of a new pharmacological treatment for AUD.
Collapse
|
3
|
Starski P, Hong S, Peyton L, Oliveros A, Wininger K, Hutchison C, Kang S, Karpyak V, Choi D. Ethanol induces maladaptive impulse control and decreased seeking behaviors in mice. Addict Biol 2020; 25:e12754. [PMID: 31012186 DOI: 10.1111/adb.12754] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022]
Abstract
Waiting impulsivity is a risk factor for many psychiatric disorders including alcohol use disorder (AUD). Highly impulsive individuals are vulnerable to alcohol abuse. However, it is not well understood whether chronic alcohol use increases the propensity for impulsive behavior. Here, we establish a novel experimental paradigm demonstrating that continuous binge-like ethanol exposure progressively leads to maladaptive impulsive behavior. To test waiting impulsivity, we employed the 5-choice serial reaction time task (5-CSRTT) in C57BL/6J male mice. We assessed premature responses in the fixed and variable intertrial interval (ITI) 5-CSRTT sessions. We further characterized our ethanol-induced impulsive mice using Open Field, y-maze, two-bottle choice, and an action-outcome task. Our results indicate that continuous binge-like ethanol exposure significantly increased premature responses when mice were tested in variable ITI sessions even during a prolonged abstinent period. Ethanol-induced impulsive mice exhibited anxiety-like behavior during chronic exposures. This behavior was also observed in a separate cohort that was subjected to 20 days of abstinence. Ethanol-treated mice were less motivated for a sucrose reward compared with air-exposed control mice, while also demonstrating reduced responding during action-outcome testing. Overall, ethanol-treated mice demonstrated increased impulsive behavior, but a reduced motivation for a sucrose reward. Although waiting impulsivity has been hypothesized to be a trait or risk factor for AUD, our findings indicate that maladaptive impulse control can also be potentiated or induced by continuous chronic ethanol exposure in mice.
Collapse
Affiliation(s)
- Phillip Starski
- Neuroscience ProgramMayo Clinic College of Medicine Rochester Rochester Minnesota
| | - Sa‐Ik Hong
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo Clinic College of Medicine Rochester Rochester Minnesota
| | - Lee Peyton
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo Clinic College of Medicine Rochester Rochester Minnesota
| | - Alfredo Oliveros
- Department of Neurological SurgeryMayo Clinic College of Medicine Rochester Rochester Minnesota
| | - Katheryn Wininger
- Neuroscience ProgramMayo Clinic College of Medicine Rochester Rochester Minnesota
| | - Colleen Hutchison
- Neuroscience ProgramMayo Clinic College of Medicine Rochester Rochester Minnesota
| | - Seungwoo Kang
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo Clinic College of Medicine Rochester Rochester Minnesota
| | - Victor Karpyak
- Department of Psychiatry and PsychologyMayo Clinic College of Medicine Rochester Rochester Minnesota
| | - Doo‐Sup Choi
- Neuroscience ProgramMayo Clinic College of Medicine Rochester Rochester Minnesota
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo Clinic College of Medicine Rochester Rochester Minnesota
- Department of Psychiatry and PsychologyMayo Clinic College of Medicine Rochester Rochester Minnesota
| |
Collapse
|
4
|
Ceftriaxone Attenuated Anxiety-Like Behavior and Enhanced Brain Glutamate Transport in Zebrafish Subjected to Alcohol Withdrawal. Neurochem Res 2020; 45:1526-1535. [PMID: 32185643 DOI: 10.1007/s11064-020-03008-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
Chronic and/or excessive consumption of alcohol followed by reduced consumption or abstention can result in Alcohol Withdrawal Syndrome. A number of behavioral changes and neurological damage result from ethanol (EtOH) withdrawal. Ceftriaxone (Cef) modulates the activity of excitatory amino acid transporters by increasing their gene expression. Zebrafish are commonly used to study alcohol exposure. The aim of this study was to evaluate the influence of Cef (100 µM) on behavior patterns, glutamate transport activity, and oxidative stress in zebrafish brains subjected to EtOH (0.3% v/v) withdrawal. The exploratory tests using Novel tank showed that EtOH withdrawal promoted a decrease in the time spent and number of entries of in the bottom displaying an anxiety-like behavior. In contrast, treatment with Cef resulted in recovery of exploratory behavioral patterns. Ceftriaxone treatment resulted in increased glutamate uptake in zebrafish subjected to EtOH withdrawal. Furthermore, EtOH withdrawal increased reactive species, as determined using thiobarbituric acid and dichlorodihydrofluorescein assays. Treatment with Cef reversed these effects. Ceftriaxone promoted a significant reduction in brain sulfhydryl content in zebrafish subjected to EtOH withdrawal. Therefore, Cef treatment in conjunction with EtOH withdrawal induced anxiolytic-like effects due to possible neuromodulation of glutamatergic transporters, potentially through mitigation of oxidative stress.
Collapse
|
5
|
Germany CE, Reker AN, Hinton DJ, Oliveros A, Shen X, Andres-Beck LG, Wininger KM, Trutschl M, Cvek U, Choi DS, Nam HW. Pharmacoproteomics Profile in Response to Acamprosate Treatment of an Alcoholism Animal Model. Proteomics 2019; 18:e1700417. [PMID: 29437267 DOI: 10.1002/pmic.201700417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/19/2018] [Indexed: 12/20/2022]
Abstract
Acamprosate is an FDA-approved medication for the treatment of alcoholism that is unfortunately only effective in certain patients. Although acamprosate is known to stabilize the hyper-glutamatergic state in alcoholism, pharmacological mechanisms of action in brain tissue remains unknown. To investigate the mechanism of acamprosate efficacy, the authors employ a pharmacoproteomics approach using an animal model of alcoholism, type 1 equilibrative nucleoside transporter (ENT1) null mice. The results demonstrate that acamprosate treatment significantly decreased both ethanol drinking and preference in ENT1 null mice compared to that of wild-type mice. Then, to elucidate acamprosate efficacy mechanism in ENT1 null mice, the authors utilize label-free quantification proteomics comparing both genotype and acamprosate treatment effects in the nucleus accumbens (NAc). A total of 1040 protein expression changes are identified in the NAc among 3634 total proteins detected. The proteomics and Western blot result demonstrate that acamprosate treatment decreased EAAT expression implicating stabilization of the hyper-glutamatergic condition in ENT1 null mice. Pathway analysis suggests that acamprosate treatment in ENT1 null mice seems to rescue glutamate toxicity through restoring of RTN4 and NF-κB medicated neuroimmune signaling compared to wild-type mice. Overall, pharmacoproteomics approaches suggest that neuroimmune restoration is a potential efficacy mechanism in the acamprosate treatment of certain sub-populations of alcohol dependent subjects.
Collapse
Affiliation(s)
- Caroline E Germany
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ashlie N Reker
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - David J Hinton
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Alfredo Oliveros
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Xinggui Shen
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Lindsey G Andres-Beck
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Katheryn M Wininger
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Marjan Trutschl
- Department of Computer Science, Louisiana State University-Shreveport, Shreveport, LA, USA
| | - Urska Cvek
- Department of Computer Science, Louisiana State University-Shreveport, Shreveport, LA, USA
| | - Doo-Sup Choi
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Hyung W Nam
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
6
|
Role of glutamatergic system and mesocorticolimbic circuits in alcohol dependence. Prog Neurobiol 2018; 171:32-49. [PMID: 30316901 DOI: 10.1016/j.pneurobio.2018.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Abstract
Emerging evidence demonstrates that alcohol dependence is associated with dysregulation of several neurotransmitters. Alterations in dopamine, glutamate and gamma-aminobutyric acid release are linked to chronic alcohol exposure. The effects of alcohol on the glutamatergic system in the mesocorticolimbic areas have been investigated extensively. Several studies have demonstrated dysregulation in the glutamatergic systems in animal models exposed to alcohol. Alcohol exposure can lead to an increase in extracellular glutamate concentrations in mesocorticolimbic brain regions. In addition, alcohol exposure affects the expression and functions of several glutamate receptors and glutamate transporters in these brain regions. In this review, we discussed the effects of alcohol exposure on glutamate receptors, glutamate transporters and glutamate homeostasis in each area of the mesocorticolimbic system. In addition, we discussed the genetic aspect of alcohol associated with glutamate and reward circuitry. We also discussed the potential therapeutic role of glutamate receptors and glutamate transporters in each brain region for the treatment of alcohol dependence. Finally, we provided some limitations on targeting the glutamatergic system for potential therapeutic options for the treatment alcohol use disorders.
Collapse
|
7
|
Hamed A, Kursa MB. Inter-individual differences in serotonin and glutamate co-transmission reflect differentiation in context-induced conditioned 50-kHz USVs response after morphine withdrawal. Brain Struct Funct 2018; 223:3149-3167. [PMID: 29774428 PMCID: PMC6132671 DOI: 10.1007/s00429-018-1683-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
A growing body of research provides compelling evidence that in rats 50-kHz USVs are a form of expression of positive emotions. Context-induced 50-kHz USVs emission is variable among rats, indicating individual differences in contextual response bound up with pharmacological reward. The aims of this study were to: extract the most important neurotransmitters related to context-induced conditioned 50-kHz USVs response; find biological basis of existing inter-individual differences in context-induced conditioned 50-kHz USVs response; create a model of all-to-all neurotransmitters correlations. The data collected here confirms that re-exposure to the context of morphine administration after the withdrawal period increases the level of 50-kHz USVs and this contextual response is associated with elevated serotonin concentrations in amygdala, hippocampus and mPFC and with increased Glu/Gln ratio in nucleus accumbens. The concentration of serotonin increases simultaneously in amygdala, nucleus accumbens and hippocampus. Moreover, 5-HT concentration in amygdala is bound up with glutamate level in this structure as well as in hippocampus. Furthermore, Glu/Gln ratio in nucleus accumbens has strong associations with Glu/Gln ratio simultaneously in VTA, amygdala, striatum and hippocampus. All-to-all-analysis indicate that concentration of glutamate in hippocampus is proportional to glutamate in VTA and GABA concentration in the hippocampus. We have also demonstrated that Glu/GABA ratio in VTA and amygdala was elevated after post withdrawal re-exposure to the pharmacological reward paired context. Presented analysis indicates a strong correlation between serotonergic and glutamatergic systems in context-induced conditioned response. The strength of this co-transmission correlates with the number of 50-kHz USVs emitted in response to morphine-paired context.
Collapse
Affiliation(s)
- Adam Hamed
- Laboratory of Spatial Memory, Department of Cellular and Molecular Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Miron Bartosz Kursa
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5A, 02-106, Warsaw, Poland
| |
Collapse
|
8
|
Mason BJ. Emerging pharmacotherapies for alcohol use disorder. Neuropharmacology 2017; 122:244-253. [PMID: 28454983 PMCID: PMC5643030 DOI: 10.1016/j.neuropharm.2017.04.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/21/2017] [Accepted: 04/23/2017] [Indexed: 01/29/2023]
Abstract
The identification of different stages within the alcohol use disorder (AUD) cycle that are linked to neurocircuitry changes in pathophysiology associated with the negative emotional states of abstinence has provided a view of medication development for AUD that emphasizes changes in the brain reward and stress systems. Alcohol use disorder can be defined as a chronic relapsing disorder that involves compulsive alcohol seeking and taking, loss of control over alcohol intake, and emergence of a negative emotional state during abstinence. The focus of early medications development was to block the motivation to seek alcohol in the binge/intoxication stage. More recent work has focused on reversing the motivational dysregulations associated with the withdrawal/negative affect and preoccupation/anticipation stages during protracted abstinence. Advances in our understanding of the neurocircuitry and neuropharmacological mechanisms that are involved in the development and maintenance of the withdrawal/negative affect stage using validated animal models have provided viable targets for future medications. Another major advance has been proof-of-concept testing of potential therapeutics and clinical validation of relevant pharmacological targets using human laboratory models of protracted abstinence. This review focuses on future targets for medication development associated with reversal of the loss of reward function and gain in brain stress function that drive negative reinforcement in the withdrawal/negative affect stage of addiction. Basic research has identified novel neurobiological targets associated with the withdrawal/negative affect stage and preoccupation/anticipation stage, with a focus on neuroadaptive changes within the extended amygdala that account for the transition to dependence and vulnerability to relapse. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Barbara J Mason
- The Pearson Center on Alcoholism and Addiction Research, Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, TPC-5 La Jolla, CA 92037 USA.
| |
Collapse
|
9
|
Schaefer TL, Davenport MH, Grainger LM, Robinson CK, Earnheart AT, Stegman MS, Lang AL, Ashworth AA, Molinaro G, Huber KM, Erickson CA. Acamprosate in a mouse model of fragile X syndrome: modulation of spontaneous cortical activity, ERK1/2 activation, locomotor behavior, and anxiety. J Neurodev Disord 2017; 9:6. [PMID: 28616095 PMCID: PMC5467053 DOI: 10.1186/s11689-017-9184-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/13/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Fragile X Syndrome (FXS) occurs as a result of a silenced fragile X mental retardation 1 gene (FMR1) and subsequent loss of fragile X mental retardation protein (FMRP) expression. Loss of FMRP alters excitatory/inhibitory signaling balance, leading to increased neuronal hyperexcitability and altered behavior. Acamprosate (the calcium salt of N-acetylhomotaurinate), a drug FDA-approved for relapse prevention in the treatment of alcohol dependence in adults, is a novel agent with multiple mechanisms that may be beneficial for people with FXS. There are questions regarding the neuroactive effects of acamprosate and the significance of the molecule's calcium moiety. Therefore, the electrophysiological, cellular, molecular, and behavioral effects of acamprosate were assessed in the Fmr1-/y (knock out; KO) mouse model of FXS controlling for the calcium salt in several experiments. METHODS Fmr1 KO mice and their wild-type (WT) littermates were utilized to assess acamprosate treatment on cortical UP state parameters, dendritic spine density, and seizure susceptibility. Brain extracellular-signal regulated kinase 1/2 (ERK1/2) activation was used to investigate this signaling molecule as a potential biomarker for treatment response. Additional adult mice were used to assess chronic acamprosate treatment and any potential effects of the calcium moiety using CaCl2 treatment on behavior and nuclear ERK1/2 activation. RESULTS Acamprosate attenuated prolonged cortical UP state duration, decreased elevated ERK1/2 activation in brain tissue, and reduced nuclear ERK1/2 activation in the dentate gyrus in KO mice. Acamprosate treatment modified behavior in anxiety and locomotor tests in Fmr1 KO mice in which control-treated KO mice were shown to deviate from control-treated WT mice. Mice treated with CaCl2 were not different from saline-treated mice in the adult behavior battery or nuclear ERK1/2 activation. CONCLUSIONS These data indicate that acamprosate, and not calcium, improves function reminiscent of reduced anxiety-like behavior and hyperactivity in Fmr1 KO mice and that acamprosate attenuates select electrophysiological and molecular dysregulation that may play a role in the pathophysiology of FXS. Differences between control-treated KO and WT mice were not evident in a recognition memory test or in examination of acoustic startle response/prepulse inhibition which impeded conclusions from being made about the treatment effects of acamprosate in these instances.
Collapse
Affiliation(s)
- Tori L Schaefer
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Matthew H Davenport
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Lindsay M Grainger
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Chandler K Robinson
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Anthony T Earnheart
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Melinda S Stegman
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA.,Present address: Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Anna L Lang
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA.,Present address: Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202 USA
| | - Amy A Ashworth
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA.,Present address: BlackbookHR, Cincinnati, OH 45202 USA
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Craig A Erickson
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| |
Collapse
|
10
|
Metabolomics biomarkers to predict acamprosate treatment response in alcohol-dependent subjects. Sci Rep 2017; 7:2496. [PMID: 28566752 PMCID: PMC5451388 DOI: 10.1038/s41598-017-02442-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 04/12/2017] [Indexed: 01/25/2023] Open
Abstract
Precision medicine for alcohol use disorder (AUD) allows optimal treatment of the right patient with the right drug at the right time. Here, we generated multivariable models incorporating clinical information and serum metabolite levels to predict acamprosate treatment response. The sample of 120 patients was randomly split into a training set (n = 80) and test set (n = 40) five independent times. Treatment response was defined as complete abstinence (no alcohol consumption during 3 months of acamprosate treatment) while nonresponse was defined as any alcohol consumption during this period. In each of the five training sets, we built a predictive model using a least absolute shrinkage and section operator (LASSO) penalized selection method and then evaluated the predictive performance of each model in the corresponding test set. The models predicted acamprosate treatment response with a mean sensitivity and specificity in the test sets of 0.83 and 0.31, respectively, suggesting our model performed well at predicting responders, but not non-responders (i.e. many non-responders were predicted to respond). Studies with larger sample sizes and additional biomarkers will expand the clinical utility of predictive algorithms for pharmaceutical response in AUD.
Collapse
|
11
|
Frye MA, Hinton DJ, Karpyak VM, Biernacka JM, Gunderson LJ, Feeder SE, Choi DS, Port JD. Anterior Cingulate Glutamate Is Reduced by Acamprosate Treatment in Patients With Alcohol Dependence. J Clin Psychopharmacol 2016; 36:669-674. [PMID: 27755217 PMCID: PMC6352725 DOI: 10.1097/jcp.0000000000000590] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although the precise drug mechanism of action of acamprosate remains unclear, its antidipsotropic effect is mediated in part through glutamatergic neurotransmission. We evaluated the effect of 4 weeks of acamprosate treatment in a cohort of 13 subjects with alcohol dependence (confirmed by a structured interview, Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision) on proton magnetic resonance spectroscopy glutamate levels in the midline anterior cingulate cortex (MACC). We compared levels of metabolites with a group of 16 healthy controls. The Pennsylvania Alcohol Craving Scale was used to assess craving intensity. At baseline, before treatment, the mean cerebrospinal fluid-corrected MACC glutamate (Glu) level was significantly elevated in subjects with alcohol dependence compared with controls (P = 0.004). Four weeks of acamprosate treatment reduced glutamate levels (P = 0.025), an effect that was not observed in subjects who did not take acamprosate. At baseline, there was a significant positive correlation between cravings, measured by the Pennsylvania Alcohol Craving Scale, and MACC (Glu) levels (P = 0.019). Overall, these data would suggest a normalizing effect of acamprosate on a hyperglutamatergic state observed in recently withdrawn patients with alcohol dependence and a positive association between MACC glutamate levels and craving intensity in early abstinence. Further research is needed to evaluate the use of these findings for clinical practice, including monitoring of craving intensity and individualized selection of treatment with antidipsotropic medications in subjects with alcohol dependence.
Collapse
Affiliation(s)
- Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - David J. Hinton
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Victor M. Karpyak
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Joanna M. Biernacka
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Lee J. Gunderson
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Scott E. Feeder
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Doo-Sup Choi
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - John D. Port
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| |
Collapse
|
12
|
Frye MA, Hinton DJ, Karpyak VM, Biernacka JM, Gunderson LJ, Geske J, Feeder SE, Choi DS, Port JD. Elevated Glutamate Levels in the Left Dorsolateral Prefrontal Cortex Are Associated with Higher Cravings for Alcohol. Alcohol Clin Exp Res 2016; 40:1609-16. [PMID: 27439218 DOI: 10.1111/acer.13131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/18/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Quantifying craving longitudinally during the course of withdrawal, early abstinence, and relapse is essential for optimal management of alcohol use disorder (AUD). In an effort to identify biological correlates of craving, we used proton magnetic resonance spectroscopy (1H-MRS) to investigate the correlation between craving and glutamate levels in the left dorsolateral prefrontal cortex (LDLPFC) of patients with AUD. METHODS Participants underwent 1H-MRS of the LDLPFC with 2-dimensional J-resolved (2DJ) averaged PRESS. MRS data were processed with LCModel and cerebrospinal fluid (CSF)-corrected to generate metabolite concentrations. The Penn Alcohol Craving Scale (PACS) and the 30-day time line follow-back (TLFB 30) were used to quantify craving for alcohol and drinking patterns, respectively. RESULTS There was a statistically significant positive correlation between CSF-corrected glutamate ([Glu]) levels and PACS scores (n = 14; p = 0.005). When PACS scores were dichotomized (< or ≥median = 16), [Glu] levels were significantly higher in the high- versus low-craving group (p = 0.007). In addition, there was a significant negative correlation between CSF-corrected N-acetyl aspartic acid ([NAA]) levels and mean number of drinks per drinking day in the past month (n = 13; TLFB 30; p = 0.012). When mean TLFB 30 was dichotomized (< or ≥median = 7.86), [NAA] levels were significantly lower in subjects that consumed more alcoholic beverages. There was no significant correlation between [Glu] and [NAA] levels with other measures of drinking behavior and or depression symptom severity. CONCLUSIONS While limited by small sample size, these data suggest that glutamate levels in LDLPFC are associated with alcohol craving intensity in patients with AUD. Further study with larger sample size is needed to replicate this finding and evaluate the merits of glutamate spectroscopy as a biological correlate of alcohol craving intensity and a guide to treatment interventions.
Collapse
Affiliation(s)
- Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - David J Hinton
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota.,Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Victor M Karpyak
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Joanna M Biernacka
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lee J Gunderson
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Jennifer Geske
- Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Scott E Feeder
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Doo-Sup Choi
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota.,Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - John D Port
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
13
|
Ho AMC, Qiu Y, Jia YF, Aguiar FS, Hinton DJ, Karpyak VM, Weinshilboum RM, Choi DS. Combined Effects of Acamprosate and Escitalopram on Ethanol Consumption in Mice. Alcohol Clin Exp Res 2016; 40:1531-9. [PMID: 27184383 DOI: 10.1111/acer.13099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Major depression is one of the most prevalent psychiatry comorbidities of alcohol use disorders (AUD). As negative emotions can trigger craving and increase the risk of relapse, treatments that target both conditions simultaneously may augment treatment success. Previous studies showed a potential synergistic effect of Food and Drug Administration approved medication for AUD acamprosate and the antidepressant escitalopram. In this study, we investigated the effects of combining acamprosate and escitalopram on ethanol (EtOH) consumption in stress-induced depressed mice. METHODS Forty singly housed C57BL/6J male mice were subjected to chronic unpredictable stress. In parallel, 40 group-housed male mice were subjected to normal husbandry. After 3 weeks, depressive- and anxiety-like behaviors and EtOH consumption were assessed. For the next 7 days, mice were injected with saline, acamprosate (200 mg/kg; twice/d), escitalopram (5 mg/kg; twice/d), or their combination (n = 9 to 11/drug group/stress group). Two-bottle choice limited-access drinking of 15% EtOH and tap water was performed 3 hours into dark phase immediately after the daily dark phase injection. EtOH drinking was monitored for another 7 days without drug administration. RESULTS Mice subjected to the chronic unpredictable stress paradigm for 3 weeks showed apparent depression- and anxiety-like behaviors compared to their nonstressed counterparts including longer immobility time in the forced swim test and lower sucrose preference. Stressed mice also displayed higher EtOH consumption and preference in a 2-bottle choice drinking test. During the drug administration period, the escitalopram-only and combined drug groups showed significant reduction in EtOH consumption in nonstressed mice, while only the combined drug group showed significantly reduced consumption in stressed mice. However, such reduction did not persist into the postdrug administration period. CONCLUSIONS The combination of acamprosate and escitalopram suppressed EtOH intake in both nonstressed and stressed mice; hence, this combination is potentially helpful for AUD individuals with or without comorbid depression to reduce alcohol use.
Collapse
Affiliation(s)
- Ada Man-Choi Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota.,Department of Psychiatry and Psychology, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Yanyan Qiu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Yun-Fang Jia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Felipe S Aguiar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - David J Hinton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota.,Neurobiology of Disease Program, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Victor M Karpyak
- Department of Psychiatry and Psychology, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Richard M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota.,Department of Psychiatry and Psychology, Mayo Clinic, College of Medicine, Rochester, Minnesota.,Neurobiology of Disease Program, Mayo Clinic, College of Medicine, Rochester, Minnesota
| |
Collapse
|
14
|
Moeller SJ, London ED, Northoff G. Neuroimaging markers of glutamatergic and GABAergic systems in drug addiction: Relationships to resting-state functional connectivity. Neurosci Biobehav Rev 2016; 61:35-52. [PMID: 26657968 PMCID: PMC4731270 DOI: 10.1016/j.neubiorev.2015.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/05/2015] [Accepted: 11/21/2015] [Indexed: 12/29/2022]
Abstract
Drug addiction is characterized by widespread abnormalities in brain function and neurochemistry, including drug-associated effects on concentrations of the excitatory and inhibitory neurotransmitters glutamate and gamma-aminobutyric acid (GABA), respectively. In healthy individuals, these neurotransmitters drive the resting state, a default condition of brain function also disrupted in addiction. Here, our primary goal was to review in vivo magnetic resonance spectroscopy and positron emission tomography studies that examined markers of glutamate and GABA abnormalities in human drug addiction. Addicted individuals tended to show decreases in these markers compared with healthy controls, but findings also varied by individual characteristics (e.g., abstinence length). Interestingly, select corticolimbic brain regions showing glutamatergic and/or GABAergic abnormalities have been similarly implicated in resting-state functional connectivity deficits in drug addiction. Thus, our secondary goals were to provide a brief review of this resting-state literature, and an initial rationale for the hypothesis that abnormalities in glutamatergic and/or GABAergic neurotransmission may underlie resting-state functional deficits in drug addiction. In doing so, we suggest future research directions and possible treatment implications.
Collapse
Affiliation(s)
- Scott J Moeller
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Edythe D London
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Departments of Psychiatry and Biobehavioral Sciences, and Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Georg Northoff
- Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Ottawa, Canada.
| |
Collapse
|
15
|
Das SC, Althobaiti YS, Alshehri FS, Sari Y. Binge ethanol withdrawal: Effects on post-withdrawal ethanol intake, glutamate-glutamine cycle and monoamine tissue content in P rat model. Behav Brain Res 2016; 303:120-5. [PMID: 26821293 DOI: 10.1016/j.bbr.2016.01.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 12/28/2022]
Abstract
Alcohol withdrawal syndrome (AWS) is a medical emergency situation which appears after abrupt cessation of ethanol intake. Decreased GABA-A function and increased glutamate function are known to exist in the AWS. However, the involvement of glutamate transporters in the context of AWS requires further investigation. In this study, we used a model of ethanol withdrawal involving abrupt cessation of binge ethanol administration (4 g/kg/gavage three times a day for three days) using male alcohol-preferring (P) rats. After 48 h of withdrawal, P rats were re-exposed to voluntary ethanol intake. The amount of ethanol consumed was measured during post-withdrawal phase. In addition, the expression of GLT-1, GLAST and xCT were determined in both medial prefrontal cortex (mPFC) and nucleus accumbens (NAc). We also measured glutamine synthetase (GS) activity, and the tissue content of glutamate, glutamine, dopamine and serotonin in both mPFC and NAc. We found that binge ethanol withdrawal escalated post-withdrawal ethanol intake, which was associated with downregulation of GLT-1 expression in both mPFC and NAc. The expression of GLAST and xCT were unchanged in the ethanol-withdrawal (EW) group compared to control group. Tissue content of glutamate was significantly lower in both mPFC and NAc, whereas tissue content of glutamine was higher in mPFC but unchanged in NAc in the EW group compared to control group. The GS activity was unchanged in both mPFC and NAc. The tissue content of DA was significantly lower in both mPFC and NAc, whereas tissue content of serotonin was unchanged in both mPFC and NAc. These findings provide important information of the critical role of GLT-1 in context of AWS.
Collapse
Affiliation(s)
- Sujan C Das
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Yusuf S Althobaiti
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Fahad S Alshehri
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States.
| |
Collapse
|
16
|
Koob GF, Mason BJ. Existing and Future Drugs for the Treatment of the Dark Side of Addiction. Annu Rev Pharmacol Toxicol 2015; 56:299-322. [PMID: 26514207 DOI: 10.1146/annurev-pharmtox-010715-103143] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The identification of a heuristic framework for the stages of the addiction cycle that are linked to neurocircuitry changes in pathophysiology includes the binge/intoxication stage, the withdrawal/negative affect stage, and the preoccupation/anticipation (craving) stage, which represent neuroadaptations in three neurocircuits (basal ganglia, extended amygdala, and frontal cortex, respectively). The identification of excellent and validated animal models, the development of human laboratory models, and an enormous surge in our understanding of neurocircuitry and neuropharmacological mechanisms have provided a revisionist view of addiction that emphasizes the loss of brain reward function and gain of stress function that drive negative reinforcement (the dark side of addiction) as a key to compulsive drug seeking. Reversing the dark side of addiction not only explains much of the existing successful pharmacotherapies for addiction but also points to vast new opportunities for future medications to alleviate this major source of human suffering.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037; ,
| | - Barbara J Mason
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037; ,
| |
Collapse
|
17
|
Elevated baseline serum glutamate as a pharmacometabolomic biomarker for acamprosate treatment outcome in alcohol-dependent subjects. Transl Psychiatry 2015; 5:e621. [PMID: 26285131 PMCID: PMC4564571 DOI: 10.1038/tp.2015.120] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/04/2015] [Accepted: 07/12/2015] [Indexed: 12/20/2022] Open
Abstract
Acamprosate has been widely used since the Food and Drug Administration approved the medication for treatment of alcohol use disorders (AUDs) in 2004. Although the detailed molecular mechanism of acamprosate remains unclear, it has been largely known that acamprosate inhibits glutamate action in the brain. However, AUD is a complex and heterogeneous disorder. Thus, biomarkers are required to prescribe this medication to patients who will have the highest likelihood of responding positively. To identify pharmacometabolomic biomarkers of acamprosate response, we utilized serum samples from 120 alcohol-dependent subjects, including 71 responders (maintained continuous abstinence) and 49 non-responders (any alcohol use) during 12 weeks of acamprosate treatment. Notably, baseline serum glutamate levels were significantly higher in responders compared with non-responders. Importantly, serum glutamate levels of responders are normalized after acamprosate treatment, whereas there was no significant glutamate change in non-responders. Subsequent functional studies in animal models revealed that, in the absence of alcohol, acamprosate activates glutamine synthetase, which synthesizes glutamine from glutamate and ammonia. These results suggest that acamprosate reduces serum glutamate levels for those who have elevated baseline serum glutamate levels among responders. Taken together, our findings demonstrate that elevated baseline serum glutamate levels are a potential biomarker associated with positive acamprosate response, which is an important step towards development of a personalized approach to treatment for AUD.
Collapse
|
18
|
Vadnie CA, Park JH, Abdel Gawad N, Ho AMC, Hinton DJ, Choi DS. Gut-brain peptides in corticostriatal-limbic circuitry and alcohol use disorders. Front Neurosci 2014; 8:288. [PMID: 25278825 PMCID: PMC4166902 DOI: 10.3389/fnins.2014.00288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/26/2014] [Indexed: 12/22/2022] Open
Abstract
Peptides synthesized in endocrine cells in the gastrointestinal tract and neurons are traditionally considered regulators of metabolism, energy intake, and appetite. However, recent work has demonstrated that many of these peptides act on corticostriatal-limbic circuitry and, in turn, regulate addictive behaviors. Given that alcohol is a source of energy and an addictive substance, it is not surprising that increasing evidence supports a role for gut-brain peptides specifically in alcohol use disorders (AUD). In this review, we discuss the effects of several gut-brain peptides on alcohol-related behaviors and the potential mechanisms by which these gut-brain peptides may interfere with alcohol-induced changes in corticostriatal-limbic circuitry. This review provides a summary of current knowledge on gut-brain peptides focusing on five peptides: neurotensin, glucagon-like peptide 1, ghrelin, substance P, and neuropeptide Y. Our review will be helpful to develop novel therapeutic targets for AUD.
Collapse
Affiliation(s)
- Chelsea A Vadnie
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Jun Hyun Park
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry, Sanggye Paik Hospital, College of Medicine, InJe University Seoul, South Korea
| | - Noha Abdel Gawad
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Ada Man Choi Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - David J Hinton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| |
Collapse
|
19
|
Abulseoud OA, Camsari UM, Ruby CL, Kasasbeh A, Choi S, Choi DS. Attenuation of ethanol withdrawal by ceftriaxone-induced upregulation of glutamate transporter EAAT2. Neuropsychopharmacology 2014; 39:1674-84. [PMID: 24452391 PMCID: PMC4023140 DOI: 10.1038/npp.2014.14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 12/13/2022]
Abstract
Alcohol withdrawal syndrome (AWS) is a potentially fatal outcome of severe alcohol dependence that presents a significant challenge to treatment. Although AWS is thought to be driven by a hyperglutamatergic brain state, benzodiazepines, which target the GABAergic system, comprise the first line of treatment for AWS. Using a rat model of ethanol withdrawal, we tested whether ceftriaxone, a β-lactam antibiotic known to increase the expression and activity of glutamate uptake transporter EAAT2, reduces the occurrence or severity of ethanol withdrawal manifestations. After a 2-week period of habituation to ethanol in two-bottle choice, alcohol-preferring (P) and Wistar rats received ethanol (4.0 g/kg) every 6 h for 3-5 consecutive days via gavage. Rats were then deprived of ethanol for 48 h during which time they received ceftriaxone (50 or 100 mg/kg, IP) or saline twice a day starting 12 h after the last ethanol administration. Withdrawal manifestations were captured by continuous video recording and coded. The evolution of ethanol withdrawal was markedly different for P rats vs Wistar rats, with withdrawal manifestations occurring >12 h later in P rats than in Wistar rats. Ceftriaxone 100 mg/kg per injection twice per day (200 mg/kg/day) reduced or abolished all manifestations of ethanol withdrawal in both rat variants and prevented withdrawal-induced escalation of alcohol intake. Finally, ceftriaxone treatment was associated with lasting upregulation of ethanol withdrawal-induced downregulation of EAAT2 in the striatum. Our data support the role of ceftriaxone in alleviating alcohol withdrawal and open a novel pharmacologic avenue that requires clinical evaluation in patients with AWS.
Collapse
Affiliation(s)
- Osama A Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA,Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA, Tel: +1 507 255 7164 (OAA) or +1 507 284 5602 (D-SC), Fax: +1 507 255 0707 (OAA) or +1 507 266 0824 (D-SC), E-mail: or
| | - Ulas M Camsari
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Christina L Ruby
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Aimen Kasasbeh
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sun Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA,Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA, Tel: +1 507 255 7164 (OAA) or +1 507 284 5602 (D-SC), Fax: +1 507 255 0707 (OAA) or +1 507 266 0824 (D-SC), E-mail: or
| |
Collapse
|
20
|
Hinton DJ, Lee MR, Jang JS, Choi DS. Type 1 equilibrative nucleoside transporter regulates astrocyte-specific glial fibrillary acidic protein expression in the striatum. Brain Behav 2014; 4:903-14. [PMID: 25365803 PMCID: PMC4178301 DOI: 10.1002/brb3.283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/30/2014] [Accepted: 08/26/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Adenosine signaling has been implicated in several neurological and psychiatric disorders. Previously, we found that astrocytic excitatory amino acid transporter 2 (EAAT2) and aquaporin 4 (AQP4) are downregulated in the striatum of mice lacking type 1 equilibrative nucleoside transporter (ENT1). METHODS To further investigate the gene expression profile in the striatum, we preformed Illumina Mouse Whole Genome BeadChip microarray analysis of the caudate-putamen (CPu) and nucleus accumbens (NAc) in ENT1 null mice. Gene expression was validated by RT-PCR, Western blot, and immunofluorescence. Using transgenic mice expressing enhanced green fluorescence protein (EGFP) under the control of the glial fibrillary acidic protein (GFAP) promoter, we examined EGFP expression in an ENT1 null background. RESULTS Glial fibrillary acidic protein was identified as a top candidate gene that was reduced in ENT1 null mice compared to wild-type littermates. Furthermore, EGFP expression was significantly reduced in GFAP-EGFP transgenic mice in an ENT1 null background in both the CPu and NAc. Finally, pharmacological inhibition or siRNA knockdown of ENT1 in cultured astrocytes also reduced GFAP mRNA levels. CONCLUSIONS Overall, our findings demonstrate that ENT1 regulates GFAP expression and possibly astrocyte function.
Collapse
Affiliation(s)
- David J Hinton
- Department of Psychiatry and Psychology, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905 ; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905 ; Neurobiology of Disease Program, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905
| | - Moonnoh R Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905
| | - Jin Sung Jang
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905
| | - Doo-Sup Choi
- Department of Psychiatry and Psychology, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905 ; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905 ; Neurobiology of Disease Program, Mayo Clinic, College of Medicine Rochester, Minnesota, 55905
| |
Collapse
|
21
|
Lee AM, Zou ME, Lim JP, Stecher J, McMahon T, Messing RO. Deletion of Prkcz increases intermittent ethanol consumption in mice. Alcohol Clin Exp Res 2013; 38:170-8. [PMID: 23905844 DOI: 10.1111/acer.12211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 05/27/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Prkcz has been identified as a gene whose expression is positively correlated with ethanol (EtOH) consumption in mice and is also induced by EtOH. Two proteins are produced from Prkcz: protein kinase M zeta (PKMζ), which is expressed in the nervous system and protein kinase C zeta (PKCζ), which is expressed in other tissues. We examined Prkcz(-/-) mice that lack PKCζ and PKMζ to investigate the role of this gene in behavioral responses to EtOH. METHODS Male Prkcz(-/-) and wild-type littermates were tested for EtOH consumption using 4 procedures: 24-hour intermittent access, 4-hour limited intermittent access, 4-day drinking-in-the-dark, and 24-hour continuous access. We also assessed the acute hypnotic effect of EtOH, EtOH reward, and taste preference for sweet-, bitter-, salty-, and umami-flavored solutions. Finally, we determined whether EtOH could increase PKMζ and PKCζ transcripts and protein expression in wild-type mice using quantitative PCR and Western blot analysis. RESULTS Prkcz(-/-) mice consumed more EtOH than their wild-type littermates in both intermittent access procedures, but not in the drinking-in-the-dark or 24-hour continuous access procedures. EtOH exposure increased Prkcz transcripts in cultured PC12 cells, and intermittent EtOH consumption increased PKMζ protein in the ventral striatum of wild-type mice. CONCLUSIONS Absence of PKMζ in the brain is associated with increased EtOH intake during procedures that incorporate intermittent consumption sessions every other day. Our data suggest that EtOH induces PKMζ, which acts in a negative feedback loop to limit binge-like EtOH consumption.
Collapse
Affiliation(s)
- Anna M Lee
- Department of Neurology, Ernest Gallo Clinic & Research Center, University of California at San Francisco, Emeryville, California
| | | | | | | | | | | |
Collapse
|
22
|
Craving in alcohol-dependent patients after detoxification is related to glutamatergic dysfunction in the nucleus accumbens and the anterior cingulate cortex. Neuropsychopharmacology 2013; 38:1401-8. [PMID: 23403696 PMCID: PMC3682141 DOI: 10.1038/npp.2013.45] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The upregulation of glutamatergic excitatory neurotransmission is thought to be partly responsible for the acute withdrawal symptoms and craving experienced by alcohol-dependent patients. Most physiological evidence supporting this hypothesis is based on data from animal studies. In addition, clinical data show that GABAergic and anti-glutamatergic drugs ameliorate withdrawal symptoms, offering indirect evidence indicative of glutamatergic hyperexcitability in alcohol-dependent subjects. We used proton magnetic resonance spectroscopy to quantify the glutamate (Glu) levels in healthy control subjects and in alcohol-dependent patients immediately after detoxification. The volumes of interest were located in the nucleus accumbens (NAcc) and the anterior cingulate cortex (ACC), which are two brain areas that have important functions in reward circuitry. In addition to Glu, we quantified the levels of combined Glu and glutamine (Gln), N-acetylaspartate, choline-containing compounds, and creatine. The Glu levels in the NAcc were significantly higher in patients than in controls. Craving, which was measured using the Obsessive Compulsive Drinking Scale, correlated positively with levels of combined Glu and Gln in the NAcc and in the ACC. The levels of all other metabolites were not significantly different between patients and controls. The increased Glu levels in the NAcc in alcohol-dependent patients shortly after detoxification confirm the animal data and suggest that striatal glutamatergic dysfunction is related to ethanol withdrawal. The positive correlation between craving and glutamatergic metabolism in both key reward circuitry areas support the hypothesis that the glutamatergic system has an important role in the later course of alcohol dependence with respect to abstinence and relapse.
Collapse
|
23
|
Kurokawa K, Mizuno K, Shibasaki M, Higashioka M, Oka M, Hirouchi M, Ohkuma S. Acamprosate Suppresses Ethanol-Induced Place Preference in Mice With Ethanol Physical Dependence. J Pharmacol Sci 2013; 122:289-98. [DOI: 10.1254/jphs.13056fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
24
|
Preclinical (1)H-MRS neurochemical profiling in neurological and psychiatric disorders. Bioanalysis 2012; 4:1787-804. [PMID: 22877223 DOI: 10.4155/bio.12.129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ongoing development of animal models of neurological and psychiatric disorders in combination with the development of advanced nuclear magnetic resonance (NMR) techniques and instrumentation has led to increased use of in vivo proton NMR spectroscopy ((1)H-MRS) for neurochemical analyses. (1)H-MRS is one of only a few analytical methods that can assay in vivo and longitudinal neurochemical changes associated with neurological and psychiatric diseases, with the added advantage of being a technique that can be utilized in both preclinical and clinical studies. In this review, recent progress in the use of (1)H-MRS to investigate animal models of neurological and psychiatric disorders is summarized with examples from the literature and our own work.
Collapse
|