1
|
Domin H, Burnat G. mGlu4R, mGlu7R, and mGlu8R allosteric modulation for treating acute and chronic neurodegenerative disorders. Pharmacol Rep 2024; 76:1219-1241. [PMID: 39348087 PMCID: PMC11582148 DOI: 10.1007/s43440-024-00657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Neuroprotection, defined as safeguarding neurons from damage and death by inhibiting diverse pathological mechanisms, continues to be a promising approach for managing a range of central nervous system (CNS) disorders, including acute conditions such as ischemic stroke and traumatic brain injury (TBI) and chronic neurodegenerative diseases like Parkinson's disease (PD), Alzheimer's disease (AD), and multiple sclerosis (MS). These pathophysiological conditions involve excessive glutamatergic (Glu) transmission activity, which can lead to excitotoxicity. Inhibiting this excessive Glu transmission has been proposed as a potential therapeutic strategy for treating the CNS disorders mentioned. In particular, ligands of G protein-coupled receptors (GPCRs), including metabotropic glutamatergic receptors (mGluRs), have been recognized as promising options for inhibiting excessive Glu transmission. This review discusses the complex interactions of mGlu receptors with their subtypes, including the formation of homo- and heterodimers, which may vary in function and pharmacology depending on their protomer composition. Understanding these intricate details of mGlu receptor structure and function enhances researchers' ability to develop targeted pharmacological interventions, potentially offering new therapeutic avenues for neurological and psychiatric disorders. This review also summarizes the current knowledge of the neuroprotective potential of ligands targeting group III mGluRs in preclinical cellular (in vitro) and animal (in vivo) models of ischemic stroke, TBI, PD, AD, and MS. In recent years, experiments have shown that compounds, especially those activating mGlu4 or mGlu7 receptors, exhibit protective effects in experimental ischemia models. The discovery of allosteric ligands for specific mGluR subtypes has led to reports suggesting that group III mGluRs may be promising targets for neuroprotective therapy in PD (mGlu4R), TBI (mGlu7R), and MS (mGlu8R).
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| | - Grzegorz Burnat
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| |
Collapse
|
2
|
Rabeh N, Hajjar B, Maraka JO, Sammanasunathan AF, Khan M, Alkhaaldi SMI, Mansour S, Almheiri RT, Hamdan H, Abd-Elrahman KS. Targeting mGluR group III for the treatment of neurodegenerative diseases. Biomed Pharmacother 2023; 168:115733. [PMID: 37862967 DOI: 10.1016/j.biopha.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
Glutamate, an excitatory neurotransmitter, is essential for neuronal function, and it acts on ionotropic or metabotropic glutamate receptors (mGluRs). A disturbance in glutamatergic signaling is a hallmark of many neurodegenerative diseases. Developing disease-modifying treatments for neurodegenerative diseases targeting glutamate receptors is a promising avenue. The understudied group III mGluR 4, 6-8 are commonly found in the presynaptic membrane, and their activation inhibits glutamate release. Thus, targeted mGluRs therapies could aid in treating neurodegenerative diseases. This review describes group III mGluRs and their pharmacological ligands in the context of amyotrophic lateral sclerosis, Parkinson's, Alzheimer's, and Huntington's diseases. Attempts to evaluate the efficacy of these drugs in clinical trials are also discussed. Despite a growing list of group III mGluR-specific pharmacological ligands, research on the use of these drugs in neurodegenerative diseases is limited, except for Parkinson's disease. Future efforts should focus on delineating the contribution of group III mGluR to neurodegeneration and developing novel ligands with superior efficacy and a favorable side effect profile for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nadia Rabeh
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Baraa Hajjar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Jude O Maraka
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Ashwin F Sammanasunathan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Mohammed Khan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Saif M I Alkhaaldi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Samy Mansour
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Rashed T Almheiri
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Khaled S Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pharmacology and Therapeutics, College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| |
Collapse
|
3
|
Mao LM, Mathur N, Shah K, Wang JQ. Roles of metabotropic glutamate receptor 8 in neuropsychiatric and neurological disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:349-366. [PMID: 36868634 PMCID: PMC10162486 DOI: 10.1016/bs.irn.2022.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are G protein-coupled receptors. Among eight mGlu subtypes (mGlu1-8), mGlu8 has drawn increasing attention. This subtype is localized to the presynaptic active zone of neurotransmitter release and is among the mGlu subtypes with high affinity for glutamate. As a Gi/o-coupled autoreceptor, mGlu8 inhibits glutamate release to maintain homeostasis of glutamatergic transmission. mGlu8 receptors are expressed in limbic brain regions and play a pivotal role in modulating motivation, emotion, cognition, and motor functions. Emerging evidence emphasizes the increasing clinical relevance of abnormal mGlu8 activity. Studies using mGlu8 selective agents and knockout mice have revealed the linkage of mGlu8 receptors to multiple neuropsychiatric and neurological disorders, including anxiety, epilepsy, Parkinson's disease, drug addiction, and chronic pain. Expression and function of mGlu8 receptors in some limbic structures undergo long-lasting adaptive changes in animal models of these disorders, which may contribute to the remodeling of glutamatergic transmission critical for the pathogenesis and symptomatology of brain illnesses. This review summarizes the current understanding of mGlu8 biology and the possible involvement of the receptor in several common psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States
| | - Nirav Mathur
- Department of Anesthesiology, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States
| | - Karina Shah
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States
| | - John Q Wang
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States; Department of Anesthesiology, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States.
| |
Collapse
|
4
|
Domin H. Group III metabotropic glutamate receptors as promising targets for neuroprotective therapy: Particular emphasis on the role of mGlu4 and mGlu7 receptors. Pharmacol Biochem Behav 2022; 219:173452. [PMID: 36030890 DOI: 10.1016/j.pbb.2022.173452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022]
Abstract
There is still no effective treatment for central nervous system (CNS) pathologies, including cerebral ischemia, neurotrauma, and neurodegenerative diseases in which the Glu/GABA balance is disturbed with associated excitotoxicity. It is thus important to search for new efficacious therapeutic strategies. Preclinical studies on the role of metabotropic glutamate receptors (mGluRs) in neuroprotection conducted over the years show that these receptors may have therapeutic potential in these CNS disorders. However, clinical trials, especially for treating Parkinson's disease, have been unsatisfactory. This review focuses on the specific role of group III mGluRs in neuroprotection in experimental in vitro and in vivo models of excitotoxicity/neurotoxicity using neurotoxins as well as ischemia, traumatic brain injury, and neurodegenerative diseases such as Parkinson's disease, Alzheimer's diseases, and multiple sclerosis. The review highlights recent preclinical studies in which group III mGluR ligands (especially those acting at mGluR4 or mGluR7) were administered after damage, thus emphasizing the importance of the therapeutic time window in the treatment of ischemic stroke and traumatic brain injury. From a clinical standpoint, the review also highlights studies using group III mGluR agonists with favorable neuroprotective efficacy (histological and functional) in experimental ischemic stroke, including healthy normotensive and-hypertensive rats. This review also summarizes possible mechanisms underlying the neuroprotective activity of the group III mGluR ligands, which may be helpful in developing more effective and safe therapeutic strategies. Therefore, to fully assess the role of these receptors in neuroprotection, it is necessary to uncover new selective ligands, primarily those stimulating mGlu4 and mGlu7 receptors.
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343 Kraków, Poland.
| |
Collapse
|
5
|
Waku I, Magalhães MS, Alves CO, de Oliveira AR. Haloperidol-induced catalepsy as an animal model for parkinsonism: A systematic review of experimental studies. Eur J Neurosci 2021; 53:3743-3767. [PMID: 33818841 DOI: 10.1111/ejn.15222] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
Several useful animal models for parkinsonism have been developed so far. Haloperidol-induced catalepsy is often used as a rodent model for the study of motor impairments observed in Parkinson's disease and related disorders and for the screening of potential antiparkinsonian compounds. The objective of this systematic review is to identify publications that used the haloperidol-induced catalepsy model for parkinsonism and to explore the methodological characteristics and the main questions addressed in these studies. A careful systematic search of the literature was carried out by accessing articles in three different databases: Web of Science, PubMed and SCOPUS. The selection and inclusion of studies were performed based on the abstract and, subsequently, on full-text analysis. Data extraction included the objective of the study, study design and outcome of interest. Two hundred and fifty-five articles were included in the review. Publication years ranged from 1981 to 2020. Most studies used the model to explore the effects of potential treatments for parkinsonism. Although the methodological characteristics used are quite varied, most studies used Wistar rats as experimental subjects. The most frequent dose of haloperidol used was 1.0 mg/kg, and the horizontal bar test was the most used to assess catalepsy. The data presented here provide a framework for an evidence-based approach to the design of preclinical research on parkinsonism using the haloperidol-induced catalepsy model. This model has been used routinely and successfully and is likely to continue to play a critical role in the ongoing search for the next generation of therapeutic interventions for parkinsonism.
Collapse
Affiliation(s)
- Isabelle Waku
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Mylena S Magalhães
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Camila O Alves
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil.,Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, SP, Brazil
| | - Amanda R de Oliveira
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil.,Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, SP, Brazil
| |
Collapse
|
6
|
Hosseini M, Parviz M, Shabanzadeh AP, Zamani E. The effect of periaqueductal gray's metabotropic glutamate receptor subtype 8 activation on locomotor function following spinal cord injury. Scand J Pain 2020; 20:785-793. [PMID: 32692709 DOI: 10.1515/sjpain-2020-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/12/2020] [Indexed: 11/15/2022]
Abstract
Background and aims The pathophysiology of spinal cord injury is very complex. One of the debilitating aspects of spinal cord injury in addition to pain is a defect in motor function below the lesion surface. In this study, we tried to assess the modulatory effect of (S)-3,4-Dicarboxyphenylglycine (DCPG), a metabotropic glutamate receptor subtype 8 (mGluR8) agonist, on animal's locomotor functions in a model of compression spinal cord injury. Methods We used a contusion method (T6-T8) for induction of spinal cord injury. Male Wistar rats were randomly assigned to five equal groups (n = 10 per group). Clips compression injury model was used to induce spinal cord injury. Three weeks post injury DCPG, siRNA (small interfering Ribonucleic Acid) and normal saline (vehicle) were administered intra-ventrolaterally to the periaqueductal gray (PAG) region. Motor function, were assessed through BBB (Basso, Beattie, and Bresnahan Locomotor Rating Scale) and ladder walking test. In addition, the effects of DCPG on axonal regeneration in corticospinal tract were evaluated. Results We found that DCPG could improve motor function and axonal regeneration in corticospinal tract when compared to siRNA group. Conclusions The results revealed that activation of mGluR8 in PAG is capable to improve motor function and of axonal regeneration due to the inhibitory effect on glutamate transmission on the spinal cord surface and also the elimination of the deleterious effect of glutamate on the regeneration of the injured area as an excitatory neurotransmitter. Implications Our findings in this study showed that, more attention should be paid to glutamate and its receptors in spinal cord injury studies, whether at the spinal or cerebral level, especially in the field of motor function after spinal cord injury.
Collapse
Affiliation(s)
- Marjan Hosseini
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Parviz
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza P Shabanzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Zamani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Boccella S, Marabese I, Guida F, Luongo L, Maione S, Palazzo E. The Modulation of Pain by Metabotropic Glutamate Receptors 7 and 8 in the Dorsal Striatum. Curr Neuropharmacol 2020; 18:34-50. [PMID: 31210112 PMCID: PMC7327935 DOI: 10.2174/1570159x17666190618121859] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/01/2019] [Accepted: 05/31/2019] [Indexed: 12/28/2022] Open
Abstract
The dorsal striatum, apart from controlling voluntary movement, displays a recently demonstrated pain inhibition. It is connected to the descending pain modulatory system and in particular to the rostral ventromedial medulla through the medullary dorsal reticular nucleus. Diseases of the basal ganglia, such as Parkinson's disease, in addition to being characterized by motor disorders, are associated with pain and hyperactivation of the excitatory transmission. A way to counteract glutamatergic hyperactivation is through the activation of group III metabotropic glutamate receptors (mGluRs), which are located on presynaptic terminals inhibiting neurotransmitter release. So far the mGluRs of group III have been the least investigated, owing to a lack of selective tools. More recently, selective ligands for each mGluR of group III, in particular positive and negative allosteric modulators, have been developed and the role of each subtype is starting to emerge. The neuroprotective potential of group III mGluRs in pathological conditions, such as those characterized by elevate glutamate, has been recently shown. In the dorsal striatum, mGluR7 and mGluR8 are located at glutamatergic corticostriatal terminals and their stimulation inhibits pain in pathological conditions such as neuropathic pain. The two receptors in the dorsal striatum have instead a different role in pain control in normal conditions. This review will discuss recent results focusing on the contribution of mGluR7 and mGluR8 in the dorsal striatal control of pain. The role of mGluR4, whose antiparkinsonian activity is widely reported, will also be addressed.
Collapse
Affiliation(s)
- Serena Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
8
|
Haghparast E, Sheibani V, Abbasnejad M, Esmaeili-Mahani S. Apelin-13 attenuates motor impairments and prevents the changes in synaptic plasticity-related molecules in the striatum of Parkinsonism rats. Peptides 2019; 117:170091. [PMID: 31121196 DOI: 10.1016/j.peptides.2019.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/24/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022]
Abstract
The striatum plays a critical role in motor control and also learning and memory of motor skills. It has been reported that striatal synaptic components are significantly decreased in dopaminergic-denervated striatum. In this study the effects of apelin-13 were investigated on motor disorders and striatal synaptosomal expression of PSD-95, neurexin1, neuroligin, metabotropic glutamate receptor (mGlu R1) and dopaminergic receptors (DR1 and DR2) in rat parkinsonism experimental model. 6-hydroxydopamine (6-OHDA) was injected into the substantia nigra. Apelin-13 (1, 2 and 3 μg/rat) was administered into the substantia nigra one week after the 6-OHDA injection. Accelerating rotarod, beam-balance, beam-walking and bar tests were performed one month after the apelin injection. Immunohistochemistry staining of dopaminergic neurons was performed. The levels of synaptic proteins were determined by immunoblotting. 6-OHDA-treated animals showed a significant impairment in motor-skill tasks and a dramatically change in the expression levels of mentioned proteins. Apelin-13 (3 μg/rat) significantly attenuates the motor impairments and prevents the changes in striatal synaptic elements in 6-OHDA-treated animals. In addition, it could rescue the dopaminergic neurons of the substantia nigra. The data will potentially extend the possible benefic aspect of apelin in neurodegenerative disorders.
Collapse
Affiliation(s)
- Elham Haghparast
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences. Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman. Kerman, Iran
| | - Vahid Sheibani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences. Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman. Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences. Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman. Kerman, Iran.
| |
Collapse
|
9
|
Receptor Ligands as Helping Hands to L-DOPA in the Treatment of Parkinson's Disease. Biomolecules 2019; 9:biom9040142. [PMID: 30970612 PMCID: PMC6523988 DOI: 10.3390/biom9040142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022] Open
Abstract
Levodopa (LD) is the most effective drug in the treatment of Parkinson’s disease (PD). However, although it represents the “gold standard” of PD therapy, LD can cause side effects, including gastrointestinal and cardiovascular symptoms as well as transient elevated liver enzyme levels. Moreover, LD therapy leads to LD-induced dyskinesia (LID), a disabling motor complication that represents a major challenge for the clinical neurologist. Due to the many limitations associated with LD therapeutic use, other dopaminergic and non-dopaminergic drugs are being developed to optimize the treatment response. This review focuses on recent investigations about non-dopaminergic central nervous system (CNS) receptor ligands that have been identified to have therapeutic potential for the treatment of motor and non-motor symptoms of PD. In a different way, such agents may contribute to extending LD response and/or ameliorate LD-induced side effects.
Collapse
|
10
|
Crupi R, Impellizzeri D, Cuzzocrea S. Role of Metabotropic Glutamate Receptors in Neurological Disorders. Front Mol Neurosci 2019; 12:20. [PMID: 30800054 PMCID: PMC6375857 DOI: 10.3389/fnmol.2019.00020] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
Glutamate is a fundamental excitatory neurotransmitter in the mammalian central nervous system (CNS), playing key roles in memory, neuronal development, and synaptic plasticity. Moreover, excessive glutamate release has been implicated in neuronal cell death. There are both ionotropic and metabotropic glutamate receptors (mGluRs), the latter of which can be divided into eight subtypes and three subgroups based on homology sequence and their effects on cell signaling. Indeed, mGluRs exert fine control over glutamate activity by stimulating several cell-signaling pathways via the activation of G protein-coupled (GPC) or G protein-independent cell signaling. The involvement of specific mGluRs in different forms of synaptic plasticity suggests that modulation of mGluRs may aid in the treatment of cognitive impairments related to several neurodevelopmental/psychiatric disorders and neurodegenerative diseases, which are associated with a high economic and social burden. Preclinical and clinical data have shown that, in the CNS, mGluRs are able to modulate presynaptic neurotransmission by fine-tuning neuronal firing and neurotransmitter release in a dynamic, activity-dependent manner. Current studies on drugs that target mGluRs have identified promising, innovative pharmacological tools for the treatment of neurodegenerative and neuropsychiatric conditions, including chronic pain.
Collapse
Affiliation(s)
- Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
11
|
Masilamoni GJ, Smith Y. Metabotropic glutamate receptors: targets for neuroprotective therapies in Parkinson disease. Curr Opin Pharmacol 2018; 38:72-80. [PMID: 29605730 DOI: 10.1016/j.coph.2018.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/12/2018] [Indexed: 01/22/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) are heavily expressed throughout the basal ganglia (BG), where they modulate neuronal excitability, transmitter release and long term synaptic plasticity. Therefore, targeting specific mGluR subtypes by means of selective drugs could be a possible strategy for restoring normal synaptic function and neuronal activity of the BG in Parkinson disease (PD). Preclinical studies have revealed that specific mGluR subtypes mediate significant neuroprotective effects that reduce toxin-induced midbrain dopaminergic neuronal death in animal models of PD. Although the underlying mechanisms of these effects must be further studied, there is evidence that intracellular calcium regulation, anti-inflammatory effects, and glutamatergic network modulation contribute to some of these neuroprotective properties. It is noteworthy that these protective effects extend beyond midbrain dopaminergic neurons to include other monoaminergic cell groups for some mGluRs. In this review, we discuss evidence for mGluR-mediated neuroprotection in PD and highlight the challenges to translate these findings into human trials.
Collapse
Affiliation(s)
- Gunasingh J Masilamoni
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA; Udall Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA; Department of Neurology, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA; Udall Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA.
| |
Collapse
|
12
|
Sebastianutto I, Cenci MA. mGlu receptors in the treatment of Parkinson's disease and L-DOPA-induced dyskinesia. Curr Opin Pharmacol 2018; 38:81-89. [DOI: 10.1016/j.coph.2018.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 02/07/2023]
|
13
|
Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol Res 2017; 115:179-191. [DOI: 10.1016/j.phrs.2016.11.013] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
|
14
|
Selective agonism of mGlu8 receptors by (S)-3,4-dicarboxyphenylglycine does not affect sleep stages in the rat. Pharmacol Rep 2016; 69:97-104. [PMID: 27914294 DOI: 10.1016/j.pharep.2016.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Metabotropic glutamate receptors (mGlu) play a role in a number of physiological processes and behaviors, as well as in certain pathological conditions and diseases. New drugs targetting mGlu receptors are being developed with treatment purposes. Recent data indicates that glutamate is involved in sleep, and pharmacological manipulation of distinct subtypes of mGlu receptors affect sleep. Here the consequences of selective pharmacological agonism of mGlu8 receptor upon sleep and wakefulness are explored for the first time. METHODS 32 male Wistar rats were stereotaxically prepared for polysomnography. (S)-3,4-dicarboxyphenylglycine (S)-3,4-DCPG (5, 10, and 20mg/kg, ip), a selective and potent mGlu8 receptor agonist, or physiological saline was administered one hour after the light period began. RESULTS Compared to control vehicle, (S)-3,4-DCPG, did not affect, at any of the doses given, the sleep and wakefulness parameters examined in the general analysis of the three hours of recording. Drug effects across time were studied analyzing three one-hour time blocks, control and experimental groups did not show any significant difference in the sleep and wakefulness parameters analyzed. Latency to sleep stages did not significantly vary between vehicle and treatment groups. CONCLUSIONS Results indicate that pharmacological activation of mGlu8 receptor by (S)-3,4-DCPG (5, 10, 20mg/kg, ip) does not affect sleep and wakefulness in the rat, suggesting that pharmacological agonism of these receptors may not influence sleep. Further research is needed to verify whether new drugs acting on these receptors lack of effect upon sleep and wakefulness.
Collapse
|
15
|
Litim N, Morissette M, Di Paolo T. Metabotropic glutamate receptors as therapeutic targets in Parkinson's disease: An update from the last 5 years of research. Neuropharmacology 2016; 115:166-179. [PMID: 27055772 DOI: 10.1016/j.neuropharm.2016.03.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
Disturbance of glutamate neurotransmission in Parkinson's disease (PD) and l-DOPA induced dyskinesia (LID) is well documented. This review focuses on advances during the past five years on pharmacological modulation of metabotropic glutamate (mGlu) receptors in relation to anti-parkinsonian activity, LID attenuation, and neuroprotection. Drug design and characterization have led to the development of orthosteric agonists binding the same site as glutamate and Positive and Negative Allosteric modulators (PAMs and NAMs) binding sites different from the orthosteric site and offering subtype selectivity. Inhibition of group I (mGlu1 and mGlu5) receptors with NAMs and activation of group II (mGlu2 and 3 receptors) and group III (mGlu 4, 7 and 8 receptors) with PAMs and orthosteric agonists have shown their potential to inhibit glutamate release and attenuate excitotoxicity. Earlier and recent studies have led to the development of mGlu5 receptors NAMs to reduce LID and for neuroprotection, mGlu3 receptor agonists for neuroprotection while mGlu4 receptor PAMs and agonists for antiparkinsonian effects and neuroprotection. Furthermore, homo- and heterodimers of mGlu receptors are documented and highlight the complexity of the functioning of these receptors. Research on partial allosteric modulators and biased mGlu receptor allosteric modulators offer new glutamatergic drugs with better therapeutic effects and less off target adverse activity. Thus these various mGlu receptor targets will enable the development of novel drugs with improved clinical effects for normalization of glutamate transmission, treat PD and LID relief. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Nadhir Litim
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada
| | - Marc Morissette
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada.
| |
Collapse
|
16
|
Jalan-Sakrikar N, Field JR, Klar R, Mattmann M, Gregory KJ, Zamorano R, Engers DW, Bollinger SR, Weaver CD, Days EL, Lewis LM, Utley TJ, Hurtado M, Rigault D, Acher F, Walker AG, Melancon BJ, Wood MR, Lindsley C, Conn PJ, Xiang Z, Hopkins CR, Niswender CM. Identification of positive allosteric modulators VU0155094 (ML397) and VU0422288 (ML396) reveals new insights into the biology of metabotropic glutamate receptor 7. ACS Chem Neurosci 2014; 5:1221-37. [PMID: 25225882 PMCID: PMC4306484 DOI: 10.1021/cn500153z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/15/2014] [Indexed: 11/29/2022] Open
Abstract
Metabotropic glutamate receptor 7 (mGlu7) is a member of the group III mGlu receptors (mGlus), encompassed by mGlu4, mGlu6, mGlu7, and mGlu8. mGlu7 is highly expressed in the presynaptic active zones of both excitatory and inhibitory synapses, and activation of the receptor regulates the release of both glutamate and GABA. mGlu7 is thought to be a relevant therapeutic target for a number of neurological and psychiatric disorders, and polymorphisms in the GRM7 gene have been linked to autism, depression, ADHD, and schizophrenia. Here we report two new pan-group III mGlu positive allosteric modulators, VU0155094 and VU0422288, which show differential activity at the various group III mGlus. Additionally, both compounds show probe dependence when assessed in the presence of distinct orthosteric agonists. By pairing studies of these nonselective compounds with a synapse in the hippocampus that expresses only mGlu7, we have validated activity of these compounds in a native tissue setting. These studies provide proof-of-concept evidence that mGlu7 activity can be modulated by positive allosteric modulation, paving the way for future therapeutics development.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Julie R. Field
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Rebecca Klar
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Margrith
E. Mattmann
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Karen J. Gregory
- Drug
Discovery Biology, Monash Institute of Pharmaceutical
Sciences, Parkville, VIC 3052, Australia
| | - Rocio Zamorano
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Darren W. Engers
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Sean R. Bollinger
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - C. David Weaver
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Emily L. Days
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - L. Michelle Lewis
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Thomas J. Utley
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Miguel Hurtado
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | | | | | - Adam G. Walker
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Bruce J. Melancon
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Michael R. Wood
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Craig
W. Lindsley
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - P. Jeffrey Conn
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Zixiu Xiang
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Corey R. Hopkins
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Colleen M. Niswender
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| |
Collapse
|
17
|
Yin S, Niswender CM. Progress toward advanced understanding of metabotropic glutamate receptors: structure, signaling and therapeutic indications. Cell Signal 2014; 26:2284-97. [PMID: 24793301 DOI: 10.1016/j.cellsig.2014.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/27/2014] [Indexed: 12/24/2022]
Abstract
The metabotropic glutamate (mGlu) receptors are a group of Class C seven-transmembrane spanning/G protein-coupled receptors (7TMRs/GPCRs). These receptors are activated by glutamate, one of the standard amino acids and the major excitatory neurotransmitter. By activating G protein-dependent and non-G protein-dependent signaling pathways, mGlus modulate glutamatergic transmission both in the periphery and throughout the central nervous system. Since the discovery of the first mGlu receptor, and especially during the last decade, a great deal of progress has been made in understanding the signaling, structure, pharmacological manipulation and therapeutic indications of the 8 mGlu members.
Collapse
Affiliation(s)
- Shen Yin
- Department of Pharmacology, Vanderbilt University Medical School, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University Medical School, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical School, Nashville, TN 37232, USA.
| |
Collapse
|
18
|
Jantas D, Greda A, Golda S, Korostynski M, Grygier B, Roman A, Pilc A, Lason W. Neuroprotective effects of metabotropic glutamate receptor group II and III activators against MPP(+)-induced cell death in human neuroblastoma SH-SY5Y cells: the impact of cell differentiation state. Neuropharmacology 2014; 83:36-53. [PMID: 24713472 DOI: 10.1016/j.neuropharm.2014.03.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/25/2014] [Accepted: 03/31/2014] [Indexed: 12/31/2022]
Abstract
Recent studies have documented that metabotropic glutamate receptors from group II and III (mGluR II/III) are a potential target in the symptomatic treatment of Parkinson's disease (PD), however, the neuroprotective effects of particular mGluR II/III subtypes in relation to PD pathology are recognized only partially. In the present study, we investigated the effect of various mGluR II/III activators in the in vitro model of PD using human neuroblastoma SH-SY5Y cell line and mitochondrial neurotoxin MPP(+). We demonstrated that all tested mGluR ligands: mGluR II agonist - LY354740, mGluR III agonist - ACPT-I, mGluR4 PAM - VU0361737, mGluR8 agonist - (S)-3,4-DCPG, mGluR8 PAM - AZ12216052 and mGluR7 allosteric agonist - AMN082 were protective against MPP(+)-evoked cell damage in undifferentiated (UN-) SH-SY5Y cells with the highest neuroprotection mediated by mGluR8-specific agents. However, in retinoic acid- differentiated (RA-) SH-SY5Y cells we found protection mediated only by mGluR8 activators. We also demonstrated the cell proliferation stimulating effect for mGluR4 and mGluR8 PAMs. Next, we showed that the protection mediated by mGluR II/III activators in UN-SH-SY5Y was not accompanied by the modulation of caspase-3 activity, however, a decrease in the number of apoptotic nuclei was found. Finally, we showed that the inhibitor of necroptosis, necrostatin-1 blocked the mGluR III-mediated protection. Altogether our comparative in vitro data add a further proof to neuroprotective effects of mGluR agonists or PAMs and point to mGluR8 as a promising target for neuroprotective interventions in PD. The results also suggest the participation of necroptosis-related molecular pathways in neuroprotective effects of mGluR III activation.
Collapse
Affiliation(s)
- D Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, PL 31-343 Krakow, Poland.
| | - A Greda
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, PL 31-343 Krakow, Poland
| | - S Golda
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, PL 31-343 Krakow, Poland
| | - M Korostynski
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, PL 31-343 Krakow, Poland
| | - B Grygier
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, PL 31-343 Krakow, Poland
| | - A Roman
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, PL 31-343 Krakow, Poland
| | - A Pilc
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, PL 31-343 Krakow, Poland
| | - W Lason
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, PL 31-343 Krakow, Poland
| |
Collapse
|
19
|
Finlay C, Duty S. Therapeutic potential of targeting glutamate receptors in Parkinson's disease. J Neural Transm (Vienna) 2014; 121:861-80. [PMID: 24557498 DOI: 10.1007/s00702-014-1176-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/05/2014] [Indexed: 12/28/2022]
Abstract
Glutamate plays a complex role in many aspects of Parkinson's disease including the loss of dopaminergic neurons, the classical motor symptoms as well as associated non-motor symptoms and the treatment-related side effect, L-DOPA-induced dyskinesia. This widespread involvement opens up possibilities for glutamate-based therapies to provide a more rounded approach to treatment than is afforded by current dopamine replacement therapies. Beneficial effects of blocking postsynaptic glutamate transmission have already been noted in a range of preclinical studies using antagonists of NMDA receptors or negative allosteric modulators of metabotropic glutamate receptor 5 (mGlu5), while positive allosteric modulators of mGlu4 in particular, although at an earlier stage of investigation, also look promising. This review addresses each of the key features of Parkinson's disease in turn, summarising the contribution glutamate makes to that feature and presenting an up-to-date account of the potential for drugs acting at ionotropic or metabotropic glutamate receptors to provide relief. Whilst only a handful of these have progressed to clinical trials to date, notably NMDA and NR2B antagonists against motor symptoms and L-DOPA-induced dyskinesia, with mGlu5 negative allosteric modulators also against L-DOPA-induced dyskinesia, the mainly positive outcomes of these trials, coupled with supportive preclinical data for other strategies in animal models of Parkinson's disease and L-DOPA-induced dyskinesia, raise cautious optimism that a glutamate-based therapeutic approach will have significant impact on the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Clare Finlay
- Wolfson Centre for Age-Related Diseases, King's College London, WW1.28. Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| | | |
Collapse
|
20
|
Ambrosi G, Cerri S, Blandini F. A further update on the role of excitotoxicity in the pathogenesis of Parkinson’s disease. J Neural Transm (Vienna) 2014; 121:849-59. [DOI: 10.1007/s00702-013-1149-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/19/2013] [Indexed: 11/30/2022]
|
21
|
Nickols HH, Conn PJ. Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol Dis 2014; 61:55-71. [PMID: 24076101 PMCID: PMC3875303 DOI: 10.1016/j.nbd.2013.09.013] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 12/14/2022] Open
Abstract
The discovery of allosteric modulators of G protein-coupled receptors (GPCRs) provides a promising new strategy with potential for developing novel treatments for a variety of central nervous system (CNS) disorders. Traditional drug discovery efforts targeting GPCRs have focused on developing ligands for orthosteric sites which bind endogenous ligands. Allosteric modulators target a site separate from the orthosteric site to modulate receptor function. These allosteric agents can either potentiate (positive allosteric modulator, PAM) or inhibit (negative allosteric modulator, NAM) the receptor response and often provide much greater subtype selectivity than orthosteric ligands for the same receptors. Experimental evidence has revealed more nuanced pharmacological modes of action of allosteric modulators, with some PAMs showing allosteric agonism in combination with positive allosteric modulation in response to endogenous ligand (ago-potentiators) as well as "bitopic" ligands that interact with both the allosteric and orthosteric sites. Drugs targeting the allosteric site allow for increased drug selectivity and potentially decreased adverse side effects. Promising evidence has demonstrated potential utility of a number of allosteric modulators of GPCRs in multiple CNS disorders, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, as well as psychiatric or neurobehavioral diseases such as anxiety, schizophrenia, and addiction.
Collapse
Key Words
- (+)-6-(2,4-dimethylphenyl)-2-ethyl-6,7-dihydrobenzo[d]oxazol-4(5H)-one
- (1-(4-cyano-4-(pyridine-2-yl)piperidine-1-yl)methyl-4-oxo-4H-quinolizine-3-carboxylic acid)
- (1S,2S)-N(1)-(3,4-dichlorophenyl)cyclohexane-1,2-dicarboxamide
- (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid
- (3,4-dihydro-2H-pyrano[2,3]b quinolin-7-yl)(cis-4-methoxycyclohexyl) methanone
- (3aS,5S,7aR)-methyl 5-hydroxy-5-(m-tolylethynyl)octahydro-1H-indole-1-carboxylate
- 1-(1′-(2-methylbenzyl)-1,4′-bipiperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one
- 1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone
- 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- 2-(2-(3-methoxyphenyl)ethynyl)-5-methylpyridine
- 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1Himidazol-4-yl)ethynyl)pyridine
- 2-methyl-6-(2-phenylethenyl)pyridine
- 2-methyl-6-(phenylethynyl)-pyridine
- 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide
- 3-cyclohexyl-5-fluoro-6-methyl-7-(2-morpholin-4-ylethoxy)-4H-chromen-4-one
- 3[(2-methyl-1,3-thiazol-4-yl)ethylnyl]pyridine
- 4-((E)-styryl)-pyrimidin-2-ylamine
- 4-[1-(2-fluoropyridin-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1(2H)-carboxamide
- 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine
- 5-methyl-6-(phenylethynyl)-pyridine
- 5MPEP
- 6-(4-methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[4,5-c]pyridin-4(5H)-one
- 6-OHDA
- 6-hydroxydopamine
- 6-methyl-2-(phenylazo)-3-pyridinol
- 77-LH-28-1
- 7TMR
- AC-42
- ACPT-1
- AChE
- AD
- ADX71743
- AFQ056
- APP
- Allosteric modulator
- Alzheimer's disease
- BINA
- BQCA
- CDPPB
- CFMMC
- CNS
- CPPHA
- CTEP
- DA
- DFB
- DHPG
- Drug discovery
- ERK1/2
- FMRP
- FTIDC
- FXS
- Fragile X syndrome
- GABA
- GPCR
- JNJ16259685
- L-AP4
- L-DOPA
- Lu AF21934
- Lu AF32615
- M-5MPEP
- MMPIP
- MPEP
- MPTP
- MTEP
- Metabotropic glutamate receptor
- Muscarinic acetylcholine receptor
- N-[4-chloro-2[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl]-2-hydrobenzamide
- N-methyl-d-aspartate
- N-phenyl-7-(hydroxylimino)cyclopropa[b]chromen-1a-carboxamide
- NAM
- NMDA
- PAM
- PCP
- PD
- PD-LID
- PET
- PHCCC
- PQCA
- Parkinson's disease
- Parkinson's disease levodopa-induced dyskinesia
- SAM
- SIB-1757
- SIB-1893
- TBPB
- [(3-fluorophenyl)methylene]hydrazone-3-fluorobenzaldehyde
- acetylcholinesterase
- amyloid precursor protein
- benzylquinolone carboxylic acid
- central nervous system
- dihydroxyphenylglycine
- dopamine
- extracellular signal-regulated kinase 1/2
- fragile X mental retardation protein
- l-(+)-2-amino-4-phosphonobutyric acid
- l-3,4-dihydroxyphenylalanine
- mGlu
- metabotropic glutamate receptor
- negative allosteric modulator
- phencyclidine
- positive allosteric modulator
- positron emission tomography
- potassium 30-([(2-cyclopentyl-6-7-dimethyl-1-oxo-2,3-dihydro-1H-inden-5yl)oxy]methyl)biphenyl l-4-carboxylate
- seven transmembrane receptor
- silent allosteric modulator
- γ-aminobutyric acid
Collapse
Affiliation(s)
- Hilary Highfield Nickols
- Division of Neuropathology, Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
22
|
Williams CJ, Dexter DT. Neuroprotective and symptomatic effects of targeting group III mGlu receptors in neurodegenerative disease. J Neurochem 2013; 129:4-20. [PMID: 24224472 DOI: 10.1111/jnc.12608] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 10/28/2013] [Accepted: 11/06/2013] [Indexed: 12/21/2022]
Abstract
Neurodegenerative disorders possess common pathological mechanisms, such as protein aggregation, inflammation, oxidative stress (OS) and excitotoxicity, raising the possibility of shared therapeutic targets. As a result of the selective cellular and regional expression of group III metabotropic glutamate (mGlu) receptors, drugs targeting such receptors have demonstrated both neuroprotective properties and symptomatic improvements in several models of neurodegeneration. In recent years, the discovery and development of subtype-selective ligands for the group III mGlu receptors has gained pace, allowing further research into the functions of these receptors and revealing their roles in health and disease. Activation of this class of receptors results in neuroprotection, with a variety of underlying mechanisms implicated. Group III mGlu receptor stimulation prevents excitotoxicity by inhibiting glutamate release from neurons and microglia and increasing glutamate uptake by astrocytes. It also attenuates the neuroinflammatory response by reducing glial reactivity and encourages neurotrophic phenotypes. This article will review the current literature with regard to the neuroprotective and symptomatic effects of group III mGlu receptor activation and discuss their promise as therapeutic targets in neurodegenerative disease. We review the neuroprotective and symptomatic effects of targeting group III mGlu receptors in neurodegenerative disease: Excess extracellular glutamate causes overactivation of NMDA receptors resulting in excitotoxicity. Externalization of phosphatidylserine stimulates phagocytosis of neurons by activated microglia, which contribute to damage through glutamate and pro-inflammatory factor release. Reactive astrocytes produce cytotoxic factors enhancing neuronal cell death. Activation of group III mGlu receptors by glutamate and/or mGlu receptor ligands results in inhibition of glutamate release from presynaptic terminals and microglia, reducing excitotoxicity. Astrocytic glutamate uptake is increased and microglia produce neurotrophic factors.
Collapse
Affiliation(s)
- Claire J Williams
- Parkinson's Disease Research Group, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | |
Collapse
|
23
|
Gasparini F, Di Paolo T, Gomez-Mancilla B. Metabotropic glutamate receptors for Parkinson's disease therapy. PARKINSON'S DISEASE 2013; 2013:196028. [PMID: 23853735 PMCID: PMC3703788 DOI: 10.1155/2013/196028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022]
Abstract
Excessive glutamatergic signalling within the basal ganglia is implicated in the progression of Parkinson's disease (PD) and inthe emergence of dyskinesia associated with long-term treatment with L-DOPA. There is considerable research focus on the discovery and development of compounds that modulate glutamatergic signalling via glutamate receptors, as treatments for PD and L-DOPA-induced dyskinesia (LID). Although initial preclinical studies with ionotropic glutamate receptor antagonists showed antiparkinsonian and antidyskinetic activity, their clinical use was limited due to psychiatric adverse effects, with the exception of amantadine, a weak N-methyl-d-aspartate (NMDA) antagonist, currently used to reduce dyskinesia in PD patients. Metabotropic receptor (mGlu receptor) modulators were considered to have a more favourable side-effect profile, and several agents have been studied in preclinical models of PD. The most promising results have been seen clinically with selective antagonists of mGlu5 receptor and preclinically with selective positive allosteric modulators of mGlu4 receptor. The growing understanding of glutamate receptor crosstalk also raises the possibility of more precise modulation of glutamatergic transmission, which may lead to the development of more effective agents for PD.
Collapse
Affiliation(s)
- Fabrizio Gasparini
- Novartis Pharma AG, Novartis Institutes for BioMedical Research Basel, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, QC, Canada G1V 4G2
- Faculty of Pharmacy, Laval University, Quebec City, QC, Canada G1K 7P4
| | - Baltazar Gomez-Mancilla
- Novartis Pharma AG, Novartis Institutes for BioMedical Research Basel, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| |
Collapse
|
24
|
Pharmacology of metabotropic glutamate receptor allosteric modulators: structural basis and therapeutic potential for CNS disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:61-121. [PMID: 23415092 DOI: 10.1016/b978-0-12-394587-7.00002-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The metabotropic glutamate receptors (mGlus) mediate a neuromodulatory role throughout the brain for the major excitatory neurotransmitter, glutamate. Seven of the eight mGlu subtypes are expressed within the CNS and are attractive targets for a variety of psychiatric and neurological disorders including anxiety, depression, schizophrenia, Parkinson's disease, and Fragile X syndrome. Allosteric modulation of these class C 7-transmembrane spanning receptors represents a novel approach to facilitate development of mGlu subtype-selective probes and therapeutics. Allosteric modulators that interact with sites topographically distinct from the endogenous ligand-binding site offer a number of advantages over their competitive counterparts. In particular for CNS therapeutics, allosteric modulators have the potential to maintain the spatial and temporal aspects of endogenous neurotransmission. The past 15 years have seen the discovery of numerous subtype-selective allosteric modulators for the majority of the mGlu family members, including positive, negative, and neutral allosteric modulators, with a number of mGlu allosteric modulators now in clinical trials.
Collapse
|