1
|
Sung Y, Lee SM, Park M, Choi HJ, Kang S, Choi BI, Lew H. Treatment of traumatic optic neuropathy using human placenta-derived mesenchymal stem cells in Asian patients. Regen Med 2020; 15:2163-2179. [PMID: 33315474 DOI: 10.2217/rme-2020-0044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: To assess the safety and feasibility of subtenon transplantation of human placenta-derived mesenchymal stem cells (hPMSCs) in Asian patients with traumatic optic neuropathy. Materials & methods: The survival of retinal ganglion cells in the rat retina was evaluated by monitoring the expression of Tuj1 and Gfap after optic nerve compression. Based on the preclinical data, we conducted a Phase I, open label, single center, nonrandomized clinical trial in four Asian traumatic optic neuropathy patients. The safety and ophthalmologic changes were evaluated. Results: The levels of Tuj1 and Gfap expression were significantly increased in the hPMSC treatment group compared with the sham group, suggesting a protective effect of hPMSCs on the optic nerve and retinal ganglion cells. There was no evidence of adverse proliferation, tumorigenicity, severe inflammation or other serious issues during the 12-month follow-up period. Visual acuity improved in all four patients. Conclusion: The results suggested that hPMSCs are safe and have potential utility in regenerative medicine. Clinical trial registration number: 20150196587 (Korean FDA), 2015-07-123-054 (IRB).
Collapse
Affiliation(s)
- Youngje Sung
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 463 712, Republic of Korea
| | - Sang Min Lee
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 463 712, Republic of Korea
| | - Mira Park
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 463 712, Republic of Korea
| | - Hye Jeong Choi
- Department of Radiation, CHA Bundang Medical Center, CHA University, CHA University, Seongnam-si, Gyeonggi-do 463 712, Republic of Korea
| | - Sukho Kang
- Department of Obstetrics & Gynecology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 463 712, Republic of Korea
| | - Byung In Choi
- Division, CHA Stem Cell Institute, CHA Biotech Co., Ltd, Seoul 135 907, Republic of Korea
| | - Helen Lew
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 463 712, Republic of Korea
| |
Collapse
|
2
|
Hao Q, Zhang Y, Li X, Liang L, Shi H, Cui Z, Yang W. Upregulated neuregulin-1 protects against optic nerve injury by regulating the RhoA/cofilin/F-actin axis. Life Sci 2020; 264:118283. [PMID: 32798561 DOI: 10.1016/j.lfs.2020.118283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/30/2020] [Accepted: 08/11/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVE In recent years, the roles of Neuregulin-1 (NRG-1) in optic nerve injury and retinal cells have been investigated. However, the molecular mechanism by which NRG-1 affects optic nerve injury remains elusive and merits deeper exploration. Hence, this study examined the specific function of NRG-1 in the RhoA/cofilin/F-actin axis in optic nerve injury. METHODS Retinal cells were isolated and identified for subsequent experimental uses. Reverse transcription quantitative polymerase chain reaction and Western blot assays were performed to measure NRG-1 expression in retinal cells which were cultured under elevated pressure. TUNEL staining was used to detect the cell apoptosis rate, and Western blot assay was performed to detect the expression of related genes. The axon growth was examined by immunofluorescence. The effects of NRG-1 on RhoA activity, cofilin phosphorylation, and F-actin were detected by Western blot assay. In other studies we established a rat model of acute optic nerve injury, and tested for beneficial effects of NRG-1 in vivo. RESULTS High expression of NRG-1 was evident in the retinal tissues of rats with optic nerve injury. Overexpressing NRG-1 successfully inhibited RhoA activity and the phosphorylation of cofilin and promoted F-actin expression. In cell experiments, overexpressed NRG-1 suppressed the apoptosis of retinal cells and promoted axon growth through the RhoA/cofilin/F-actin axis. In animal experiments, overexpressed NRG-1 relieved retinal injury. CONCLUSION Our results strongly suggest that overexpressed NRG-1 is highly effective in the protection of normal optic nerve function by suppressing RhoA activity and the phosphorylation of cofilin and rescuing F-actin function.
Collapse
Affiliation(s)
- Qian Hao
- Department of Opthalmology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Yan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Xiaohong Li
- Department of Opthalmology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Lingling Liang
- Department of Opthalmology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Hui Shi
- Department of Opthalmology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Zhihua Cui
- Department of Opthalmology, The First Hospital of Jilin University, Changchun 130021, PR China.
| | - Wei Yang
- Department of Opthalmology, The First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
3
|
Protective Effects of Intravitreal Injection of the Rho-Kinase Inhibitor Y-27632 in a Rodent Model of Nonarteritic Anterior Ischemic Optic Neuropathy (rAION). J Ophthalmol 2020; 2020:1485425. [PMID: 32724667 PMCID: PMC7366220 DOI: 10.1155/2020/1485425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/15/2020] [Indexed: 11/30/2022] Open
Abstract
Purpose We sought to explore the effects of intravitreal injection of the Rho-kinase inhibitor Y-27632 in a rodent model of nonarteritic anterior ischemic optic neuropathy (rAION). Methods The rAION model was established by using laser-induced photoactivation of intravenously administered Rose Bengal in rats. The rats received intravitreal injections of Y-27632 or PBS 1, 3, and 6 days after rAION induction. Optical coherence tomography (OCT) was performed at 2 days and 4 weeks after induction. Visual evoked potential (VEP) was used to evaluate the visual function at 4 weeks. Brn3a immunofluorescence staining of surviving RGCs and apoptosis assays of RGCs were performed at 4 weeks. Results Optic nerve head (ONH) width was significantly reduced in the Y-27632 group compared with that in the PBS group at 2 days after induction (p < 0.05). At 4 weeks, the P1 amplitude of flash-VEP (FVEP) in the Y-27632 group was significantly higher than that of the PBS group (p < 0.05). The RGC densities in the central and midperipheral retinas in the Y-27632 group were significantly higher than those in the PBS group (p < 0.05). Furthermore, there was a significant decrease in apoptotic RGCs in the Y-27632 group than in the PBS group (p < 0.05). Conclusions Intravitreal injection of Y-27632 had neuroprotective effects on ONH edema, RGC survival, and visual function preservation in rAION.
Collapse
|
4
|
Anfibatide Preserves Blood–Brain Barrier Integrity by Inhibiting TLR4/RhoA/ROCK Pathway After Cerebral Ischemia/Reperfusion Injury in Rat. J Mol Neurosci 2019; 70:71-83. [DOI: 10.1007/s12031-019-01402-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
|
5
|
Pietrucha-Dutczak M, Amadio M, Govoni S, Lewin-Kowalik J, Smedowski A. The Role of Endogenous Neuroprotective Mechanisms in the Prevention of Retinal Ganglion Cells Degeneration. Front Neurosci 2018; 12:834. [PMID: 30524222 PMCID: PMC6262299 DOI: 10.3389/fnins.2018.00834] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Retinal neurons are not able to undergo spontaneous regeneration in response to damage. A variety of stressors, i.e., UV radiation, high temperature, ischemia, allergens, and others, induce reactive oxygen species production, resulting in consecutive alteration of stress-response gene expression and finally can lead to cell apoptosis. Neurons have developed their own endogenous cellular protective systems. Some of them are preventing cell death and others are allowing functional recovery after injury. The high efficiency of these mechanisms is crucial for cell survival. In this review we focus on the contribution of the most recently studied endogenous neuroprotective factors involved in retinal ganglion cell (RGC) survival, among which, neurotrophic factors and their signaling pathways, processes regulating the redox status, and different pathways regulating cell death are the most important. Additionally, we summarize currently ongoing clinical trials for therapies for RGC degeneration and optic neuropathies, including glaucoma. Knowledge of the endogenous cellular protective mechanisms may help in the development of effective therapies and potential novel therapeutic targets in order to achieve progress in the treatment of retinal and optic nerve diseases.
Collapse
Affiliation(s)
- Marita Pietrucha-Dutczak
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Joanna Lewin-Kowalik
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adrian Smedowski
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
6
|
Wen J, Tan D, Li L, Wang X, Pan M, Guo J. RhoA regulates Schwann cell differentiation through JNK pathway. Exp Neurol 2018; 308:26-34. [PMID: 29940159 DOI: 10.1016/j.expneurol.2018.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 11/25/2022]
Abstract
RhoA is a small GTPase that regulates many functions of mammalian cells via actin reorganization. Lots of studies uncovered that its activation acts as a major negative regulator of neurite extension, and inhibition of RhoA activity or reduction of its expression can promote neuron survival and axonal regeneration. However, little is known about whether RhoA also exerts important functions on Schwann cells (SCs) which are the glial cells of the peripheral nervous system (PNS). Recently, we reported that RhoA plays important roles in the proliferation, migration and myelination of SCs. In the present study, using RNA interference to knockdown RhoA expression and CT04 (a cell-permeable C3 Transferase) to inhibit RhoA activation we found that blocking RhoA can slack SC differentiation. Unexpectedly, inhibiting ROCK, the mostly well-known downstream effector of RhoA, has no influence on SC differentiation. Instead, the inhibition of RhoA in differentiating SCs results in the activation of JNK and p38 MAPK. And the inhibitor of JNK but not p38 MAPK can promote SC differentiation in the presence of RhoA inhibition. Overall results indicate that RhoA plays a vital role in SC differentiation via JNK pathway rather than ROCK pathway.
Collapse
Affiliation(s)
- Jinkun Wen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China
| | - Dandan Tan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China
| | - Lixia Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China
| | - Xianghai Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China
| | - Mengjie Pan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China
| | - Jiasong Guo
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China; Institute of Bone Biology, Academy of Orthopedics, Guangdong Province, Guangzhou 510665, China.
| |
Collapse
|
7
|
The Therapeutic Effects after Transplantation of Whole-Layer Olfactory Mucosa in Rats with Optic Nerve Injury. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6069756. [PMID: 29713644 PMCID: PMC5866852 DOI: 10.1155/2018/6069756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/18/2017] [Accepted: 01/03/2018] [Indexed: 01/14/2023]
Abstract
Background Existing evidence suggests the potential therapy of transplanting olfactory ensheathing cells (OEC) either alone or in combination with neurotrophic factors or other cell types in optic nerve injury (ONI). However, clinical use of autologous OEC in the acute stages of ONI is not possible. On the other hand, acute application of heterologous transplantation may bring the issue of immune rejection. The olfactory mucosa (OM) with OEC in the lamina propria layer is located in the upper region of the nasal cavity and is easy to dissect under nasal endoscopy, which makes it a candidate as autograft material in acute stages of ONI. To investigate the potential of the OM on the protection of injured neurons and on the promotion of axonal regeneration, we developed a transplantation of syngenic OM in rats with ONI model. Methods After the right optic nerve was crushed in Lewis rats, pieces of syngenic whole-layer OM were transplanted into the lesion. Rats undergoing phosphate buffered saline (PBS) injection were used as negative controls (NC). The authors evaluated the regeneration of retinal ganglion cells (RGCs) and axons for 3, 7, 14, and 28 days after transplantation. Obtained retinas and optic nerves were analyzed histologically. Results Transplantations of OM significantly promoted the survival of retinal ganglion cells (RGCs) and axonal growth of RGCs compared with PBS alone. Moreover, OM group was associated with higher expression of GAP-43 in comparison with the PBS group. In addition to the potential effects on RGCs, transplantations of OM significantly decreased the expression of GFAP in the retinas, suggesting inhibiting astrocyte activation. Conclusions Transplantation of whole-layer OM in rats contributes to the neuronal survival and axon regeneration after ONI.
Collapse
|
8
|
Zhang W, Zhou G, Gao Y, Zhou Y, Liu J, Zhang L, Long A, Zhang L, Tang P. A sequential delivery system employing the synergism of EPO and NGF promotes sciatic nerve repair. Colloids Surf B Biointerfaces 2017; 159:327-336. [DOI: 10.1016/j.colsurfb.2017.07.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/20/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022]
|
9
|
López-Cebral R, Silva-Correia J, Reis RL, Silva TH, Oliveira JM. Peripheral Nerve Injury: Current Challenges, Conventional Treatment Approaches, and New Trends in Biomaterials-Based Regenerative Strategies. ACS Biomater Sci Eng 2017; 3:3098-3122. [DOI: 10.1021/acsbiomaterials.7b00655] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- R. López-Cebral
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - J. Silva-Correia
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - R. L. Reis
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - T. H. Silva
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - J. M. Oliveira
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Nourinia R, Nakao S, Zandi S, Safi S, Hafezi-Moghadam A, Ahmadieh H. ROCK inhibitors for the treatment of ocular diseases. Br J Ophthalmol 2017; 102:bjophthalmol-2017-310378. [PMID: 28794073 DOI: 10.1136/bjophthalmol-2017-310378] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/10/2017] [Accepted: 07/22/2017] [Indexed: 11/03/2022]
Abstract
The Rho-kinase/ROCK (Rho-associated coiled-coil-containing protein kinase) pathway is involved in the pathogenesis of multiple ocular and systemic disorders. Recently, ROCK inhibitors have been suggested as novel treatments for various ocular diseases. Several in vitro, in vivo and clinical studies have demonstrated the safety and efficacy of ROCK inhibitors in the management of ocular disorders such as corneal epithelial and endothelial damage, glaucoma, retinal and choroidal neovascularisation, diabetic macular oedema and optic nerve disorders. In this review, these studies are explored with focus on the relevant clinical investigations.
Collapse
Affiliation(s)
- Ramin Nourinia
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Excellence in Functional and Molecular Imaging, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts, USA
| | - Souska Zandi
- Center for Excellence in Functional and Molecular Imaging, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts, USA
- Swiss Eye Institute and Clinic for Vitreoretinal Diseases, Berner Augenklinik am Lindenhofspital, Bern, Switzerland
| | - Sare Safi
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hafezi-Moghadam
- Center for Excellence in Functional and Molecular Imaging, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts, USA
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Barber A, Farmer K, Martin KR, Smith PD. Retinal regeneration mechanisms linked to multiple cancer molecules: A therapeutic conundrum. Prog Retin Eye Res 2016; 56:19-31. [PMID: 27586058 DOI: 10.1016/j.preteyeres.2016.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 11/26/2022]
Abstract
Over the last decade, a large number of research articles have been published demonstrating regeneration and/or neuroprotection of retinal ganglion cells following manipulation of specific genetic and molecular targets. Interestingly, of the targets that have been identified to promote repair following visual system damage, many are genes known to be mutated in different types of cancer. This review explores recent literature on the potential for modulating cancer genes as a therapeutic strategy for visual system repair and looks at the potential clinical challenges associated with implementing this type of therapy. We also discuss signalling mechanisms that have been implicated in cancer and consider how similar mechanisms may improve axonal regeneration in the optic nerve.
Collapse
Affiliation(s)
- Amanda Barber
- John van Geest Centre for Brain Repair, University of Cambridge, UK
| | - Kyle Farmer
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Keith R Martin
- John van Geest Centre for Brain Repair, University of Cambridge, UK; Medical Research Council - Wellcome Trust Cambridge Stem Cell Institute, Cambridge, UK; Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Patrice D Smith
- John van Geest Centre for Brain Repair, University of Cambridge, UK; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
12
|
Sanchez-Mendoza EH, Hermann DM. Correlates of Post-Stroke Brain Plasticity, Relationship to Pathophysiological Settings and Implications for Human Proof-of-Concept Studies. Front Cell Neurosci 2016; 10:196. [PMID: 27547178 PMCID: PMC4974253 DOI: 10.3389/fncel.2016.00196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/26/2016] [Indexed: 01/01/2023] Open
Abstract
The promotion of neurological recovery by enhancing neuroplasticity has recently obtained strong attention in the stroke field. Experimental studies support the hypothesis that stroke recovery can be improved by therapeutic interventions that augment neuronal sprouting. However plasticity responses of neurons are highly complex, involving the growth and differentiation of axons, dendrites, dendritic spines and synapses, which depend on the pathophysiological setting and are tightly controlled by extracellular and intracellular signals. Thorough mechanistic insights are needed into how neuronal plasticity is influenced by plasticity-promoting therapies in order not to risk the success of future clinical proof-of-concept studies.
Collapse
|
13
|
Shaw PX, Sang A, Wang Y, Ho D, Douglas C, Dia L, Goldberg JL. Topical administration of a Rock/Net inhibitor promotes retinal ganglion cell survival and axon regeneration after optic nerve injury. Exp Eye Res 2016; 158:33-42. [PMID: 27443501 DOI: 10.1016/j.exer.2016.07.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 12/21/2022]
Abstract
Intraocular pressure (IOP)-lowering ophthalmic solutions that inhibit Rho-associated protein kinases (Rock) and norepinephrine transporters (Net) are currently under clinical evaluation. Here we evaluate topical application of one such drug for its effects on retinal ganglion cell (RGC) survival and axon regeneration after optic nerve crush injury. We performed unilateral optic nerve crush on young rats (P18) and topically applied Rock/Net inhibitor AR-13324 or placebo 3 times a day for 14 days. IOP was measured starting 3 days before and up to 9 days after injury. On day 12, cholera toxin B (CTB) was injected intravitreally to trace optic nerve regeneration. On day 14, retinas and optic nerves were collected. The retinas were flat-mounted and stained with RBPMS to quantify RGC survival and the optic nerves were sectioned for optic nerve axon quantification using fluorescent and confocal microscopy. Rock phosphorylation targets implicated in axon growth including cofilin and LIMK were examined by fluorescence microscopy and quantitative western blotting. AR-13324 lowered IOP as expected. RGC survival and optic nerve axon regeneration were significantly higher with Rock/Net inhibitor treatment compared with placebo. Furthermore, topical therapy decreased Rock target protein phosphorylation in the retinas and proximal optic nerves. These data suggest that topical administration of a Rock/Net inhibitor promotes RGC survival and regeneration after optic nerve injury, with associated molecular changes indicative of posterior drug activity. Coordinated IOP lowering and neuroprotective or regenerative effects may be advantageous in the treatment of patients with glaucoma.
Collapse
Affiliation(s)
- Peter X Shaw
- Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, United States
| | - Alan Sang
- Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, United States
| | - Yan Wang
- Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, United States
| | - Daisy Ho
- Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, United States
| | - Christopher Douglas
- Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, United States
| | - Lara Dia
- Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, United States
| | - Jeffrey L Goldberg
- Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, United States; Byers Eye Institute, Stanford University, Palo Alto, CA 94303, United States.
| |
Collapse
|
14
|
Caspase-3 dependent nitrergic neuronal apoptosis following cavernous nerve injury is mediated via RhoA and ROCK activation in major pelvic ganglion. Sci Rep 2016; 6:29416. [PMID: 27388816 PMCID: PMC4937405 DOI: 10.1038/srep29416] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/06/2016] [Indexed: 01/28/2023] Open
Abstract
Axonal injury due to prostatectomy leads to Wallerian degeneration of the cavernous nerve (CN) and erectile dysfunction (ED). Return of potency is dependent on axonal regeneration and reinnervation of the penis. Following CN injury (CNI), RhoA and Rho-associated protein kinase (ROCK) increase in penile endothelial and smooth muscle cells. Previous studies indicate that nerve regeneration is hampered by activation of RhoA/ROCK pathway. We evaluated the role of RhoA/ROCK pathway in CN regulation following CNI using a validated rat model. CNI upregulated gene and protein expression of RhoA/ROCK and caspase-3 mediated apoptosis in the major pelvic ganglion (MPG). ROCK inhibitor (ROCK-I) prevented upregulation of RhoA/ROCK pathway as well as activation of caspase-3 in the MPG. Following CNI, there was decrease in the dimer to monomer ratio of neuronal nitric oxide synthase (nNOS) protein and lowered NOS activity in the MPG, which were prevented by ROCK-I. CNI lowered intracavernous pressure and impaired non-adrenergic non-cholinergic-mediated relaxation in the penis, consistent with ED. ROCK-I maintained the intracavernous pressure and non-adrenergic non-cholinergic-mediated relaxation in the penis following CNI. These results suggest that activation of RhoA/ROCK pathway mediates caspase-3 dependent apoptosis of nitrergic neurons in the MPG following CNI and that ROCK-I can prevent post-prostatectomy ED.
Collapse
|
15
|
Yu J, Luan X, Lan S, Yan B, Maier A. Fasudil, a Rho-Associated Protein Kinase Inhibitor, Attenuates Traumatic Retinal Nerve Injury in Rabbits. J Mol Neurosci 2015; 58:74-82. [DOI: 10.1007/s12031-015-0691-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022]
|
16
|
Morrone LA, Rombolà L, Corasaniti MT, Bagetta G, Nucci C, Russo R. Natural compounds and retinal ganglion cell neuroprotection. PROGRESS IN BRAIN RESEARCH 2015; 220:257-81. [PMID: 26497795 DOI: 10.1016/bs.pbr.2015.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Glaucoma, the second leading cause of blindness in the world, is a chronic optic neuropathy often associated with increased intraocular pressure and characterized by progressive retinal ganglion cell (RGC) axons degeneration and death leading to typical optic nerve head damage and distinctive visual field defects. Although the pathogenesis of glaucoma is still largely unknown, it is hypothesized that RCGs become damaged through various insults/mechanisms, including ischemia, oxidative stress, excitotoxicity, defective axonal transport, trophic factor withdrawal, and neuroinflammation. In this review, we summarize the potential benefits of several natural compounds for RGCs neuroprotection.
Collapse
Affiliation(s)
- Luigi Antonio Morrone
- Department of Pharmacy and Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Arcavacata di Rende, Italy; University Consortium for Adaptive Disorders and Head Pain (UCHAD), Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Arcavacata di Rende, Italy.
| | - Laura Rombolà
- Department of Pharmacy and Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Arcavacata di Rende, Italy
| | | | - Giacinto Bagetta
- Department of Pharmacy and Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Arcavacata di Rende, Italy; University Consortium for Adaptive Disorders and Head Pain (UCHAD), Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Arcavacata di Rende, Italy
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Rossella Russo
- Department of Pharmacy and Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
17
|
Tan H, Kang X, Lu S, Liu L. The therapeutic effects of bone marrow mesenchymal stem cells after optic nerve damage in the adult rat. Clin Interv Aging 2015; 10:487-90. [PMID: 25733825 PMCID: PMC4337419 DOI: 10.2147/cia.s75319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Optic nerve trauma is a common occurrence that results in irreversible blindness. Currently, no effective strategies are known to prevent optic nerve degeneration. We assessed the therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) after optic nerve crush in the adult rat. Our results showed that BMSCs significantly promoted the regeneration of injured axons compared with phosphate buffered saline alone. Therefore, BMSC transplantation may be effective for the treatment of central nervous system disorders.
Collapse
Affiliation(s)
- HaiBo Tan
- Department of Ophthalmology, RenJi Hospital, The School of Medicine, Shanghai JiaoTong University, Shanghai, People's Republic of China
| | - Xin Kang
- Department of Clinical Pharmacology, Changhai Hospital Affiliated Second Military Medical University, Shanghai, People's Republic of China
| | - ShiHeng Lu
- Department of Ophthalmology, RenJi Hospital, The School of Medicine, Shanghai JiaoTong University, Shanghai, People's Republic of China
| | - Lin Liu
- Department of Ophthalmology, RenJi Hospital, The School of Medicine, Shanghai JiaoTong University, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Cui Q, Zhang Y, Chen H, Li J. Rho kinase: A new target for treatment of cerebral ischemia/reperfusion injury. Neural Regen Res 2014; 8:1180-9. [PMID: 25206412 PMCID: PMC4107606 DOI: 10.3969/j.issn.1673-5374.2013.13.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 02/20/2013] [Indexed: 01/08/2023] Open
Abstract
Rho kinase inhibitor fasudil hydrochloride has been shown to reduce cerebral vasospasm, to inhibit inflammation and apoptosis and to promote the recovery of neurological function. However, the effect of fasudil hydrochloride on claudin-5 protein expression has not been reported after cerebral ischemia/reperfusion. Therefore, this study sought to explore the effects of fasudil hydrochloride on blood-brain barrier permeability, growth-associated protein-43 and claudin-5 protein expression, and to further understand the neuroprotective effect of fasudil hydrochloride. A focal cerebral ischemia/reperfusion model was established using the intraluminal suture technique. Fasudil hydrochloride (15 mg/kg) was intraperitoneally injected once a day. Neurological deficit was evaluated using Longa's method. Changes in permeability of blood-brain barrier were measured using Evans blue. Changes in RhoA, growth-associated protein-43 and claudin-5 protein expression were detected using immunohistochemistry and western blotting. Results revealed that fasudil hydrochloride noticeably contributed to the recovery of neurological function, improved the function of blood-brain barrier, inhibited RhoA protein expression, and upregulated growth-associated protein-43 and claudin-5 protein expression following cerebral ischemia/reperfusion. Results indicated that Rho kinase exhibits a certain effect on neurovascular damage following cerebral ischemia/reperfusion. Intervention targeted Rho kinase might be a new therapeutic target in the treatment of cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Qinghong Cui
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Hui Chen
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jimei Li
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
19
|
Entezari M, Esmaeili M, Yaseri M. A pilot study of the effect of intravenous erythropoetin on improvement of visual function in patients with recent indirect traumatic optic neuropathy. Graefes Arch Clin Exp Ophthalmol 2014; 252:1309-13. [DOI: 10.1007/s00417-014-2691-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 12/19/2022] Open
|
20
|
Wang J, Liu X, Zhong Y. Rho/Rho-associated kinase pathway in glaucoma (Review). Int J Oncol 2013; 43:1357-67. [PMID: 24042317 DOI: 10.3892/ijo.2013.2100] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/21/2013] [Indexed: 11/06/2022] Open
Abstract
The Rho/ROCK pathway plays important roles in the modulation of the cytoskeletal integrity of cells, the synthesis of extracellular matrix components in the aqueous humor outflow tissue and the permeability of Schlemm's canal endothelial cells. The activation of the Rho/ROCK pathway results in trabecular meshwork (TM) contraction, and the inhibition of this pathway would provoke relaxation of TM with subsequent increase in outflow facility and, thereby, decrease intraocular pressure (IOP). ROCK inhibitors also serve as potent anti‑scarring agents via inhibition of transdifferentiation of tenon fibroblasts into myofibroblasts. Furthermore, the RhoA/ROCK pathway is involved in optic nerve neuroprotection. Inactivation of Rho/ROCK signaling increase ocular blood flow, improve retinal ganglion cell (RGC) survival and promote RGC axon regeneration. Considering the IOP modulation, potent bleb anti-scarring effect and neuroprotective properties of ROCK inhibitors, the Rho/ROCK pathway is an attractive target for anti-glaucoma therapy, and it may be used for human therapy in the near future.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | | | | |
Collapse
|
21
|
Fard MA, Ebrahimi KB, Miller NR. RhoA activity and post-ischemic inflammation in an experimental model of adult rodent anterior ischemic optic neuropathy. Brain Res 2013; 1534:76-86. [PMID: 23973747 DOI: 10.1016/j.brainres.2013.07.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 06/14/2013] [Accepted: 07/30/2013] [Indexed: 11/19/2022]
Abstract
Activation of inflammatory cells and the RhoA signaling pathway may contribute to optic nerve damage following non-arteritic anterior ischemic optic neuropathy (NAION). We induced an optic nerve infarct with a photothrombotic mechanism in a rat model of AION (rAION). Immunohistochemistry and Western blot were performed to detect activation of RhoA signaling and inflammation. The extent of Rho activity, inflammation, retinal ganglion cell (RGC) loss and extent of axon regeneration were determined at 8 and 14 days after infarct. Eight days after stroke, we observed significant inflammation and RhoA activity at the site of infarction as well as loss of cells in the RGC layer. RhoA activity had decreased and inflammation had decreased at day 14 compared with day 8; however, loss of RGCs was greater at 14 days than at 8 days. Stroked eyes showed minor axon regeneration around the optic nerve lesion site at both 8 and 14 days. These results demonstrate that inflammation and RhoA activation occur in rAION at the site of infarction.
Collapse
Affiliation(s)
- Masoud Aghsaei Fard
- Wilmer Eye Institute, The Johns Hopkins Hospitals, Baltimore, MD 21287, USA; Farabi Eye Hospital, Tehran University of Medical Science, Tehran, Iran.
| | | | | |
Collapse
|
22
|
Sun J, Zhang D, Zheng Y, Zhao Q, Zheng M, Kovacevic Z, Richardson DR. Targeting the metastasis suppressor, NDRG1, using novel iron chelators: regulation of stress fiber-mediated tumor cell migration via modulation of the ROCK1/pMLC2 signaling pathway. Mol Pharmacol 2013; 83:454-69. [PMID: 23188716 DOI: 10.1124/mol.112.083097] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The iron-regulated metastasis suppressor, N-myc downstream-regulated gene 1 (NDRG1), is up-regulated by cellular iron depletion mediated by iron chelators and can inhibit cancer cell migration. However, the mechanism of how NDRG1 achieves this effect remains unclear. In this study, we implemented established and newly constructed NDRG1 overexpression and knockdown models using the DU145, HT29, and HCT116 cancer cell lines to investigate the molecular basis by which NDRG1 exerts its inhibitory effect on cell migration. Using these models, we demonstrated that NDRG1 overexpression inhibits cell migration by preventing actin-filament polymerization, stress fiber assembly and formation. In contrast, NDRG1 knockdown had the opposite effect. Moreover, we identified that NDRG1 inhibited an important regulatory pathway mediated by the Rho-associated, coiled-coil containing protein kinase 1 (ROCK1)/phosphorylated myosin light chain 2 (pMLC2) pathway that modulates stress fiber assembly. The phosphorylation of MLC2 is a key process in inducing stress fiber contraction, and this was shown to be markedly decreased or increased by NDRG1 overexpression or knockdown, respectively. The mechanism involved in the inhibition of MLC2 phosphorylation by NDRG1 was mediated by a significant (P < 0.001) decrease in ROCK1 expression that is a key kinase involved in MLC2 phosphorylation. Considering that NDRG1 is up-regulated after cellular iron depletion, novel thiosemicarbazone iron chelators (e.g., di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone) were demonstrated to inhibit ROCK1/pMLC2-modulated actin-filament polymerization, stress fiber assembly, and formation via a mechanism involving NDRG1. These results highlight the role of the ROCK1/pMLC2 pathway in the NDRG1-mediated antimetastatic signaling network and the therapeutic potential of iron chelators at inhibiting metastasis.
Collapse
Affiliation(s)
- Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|