1
|
Xie W, Li Y, Wang X, Blokhina E, Krupitsky E, Vetrova M, Hu J, Yuan T, Chen J, Wang H, Chen X. GABA B Receptor: Structure, Biological Functions, and Therapy for Diseases. MedComm (Beijing) 2025; 6:e70163. [PMID: 40242161 PMCID: PMC12000685 DOI: 10.1002/mco2.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/29/2024] [Accepted: 02/19/2025] [Indexed: 04/18/2025] Open
Abstract
Gamma-aminobutyric acid (GABA) B receptors (GABABRs) that acts slowly and maintains the inhibitory tone are versatile regulators in the complex nervous behaviors and their involvement in various neuropsychiatric disorders, such as anxiety, epilepsy, pain, drug addiction, and Alzheimer's disease. Additional study advances have implied the crucial roles of GABABRs in regulating feeding-related behaviors, yet their therapeutic potential in addressing the neuropsychiatric disorders, binge eating, and feeding-related disorders remains underutilized. This general review summarized the physiological structure and functions of GABABR, explored the regulation in various psychiatric disorders, feeding behaviors, binge eating, and metabolism disorders, and fully discussed the potential of targeting GABABRs and its regulator-binding sites for the treatment of different psychiatric disorders, binge eating and even obesity. While agonists that directly bind to GABABR1 have some negative side effects, positive allosteric modulators (PAMs) that bind to GABABR2 demonstrate excellent therapeutic efficacy and tolerability and have better safety and therapeutic indexes. Moreover, phosphorylation sites of downstream GABABRs regulators may be novel therapeutic targets for psychiatric disorders, binge eating, and obesity. Further studies, clinical trials in particular, will be essential for confirming the therapeutic value of PAMs and other agents targeting the GABABR pathways in a clinical setting.
Collapse
Affiliation(s)
- Weijie Xie
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health CenterTongji University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yuan Li
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - Xinyue Wang
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - Elena Blokhina
- Valdman Institute of PharmacologyPavlov UniversitySt. PetersburgRussia
| | - Evgeny Krupitsky
- Valdman Institute of PharmacologyPavlov UniversitySt. PetersburgRussia
- Bekhterev National Medical Research Center for Psychiatry and NeurologySt. PetersburgRussia
| | - Marina Vetrova
- Valdman Institute of PharmacologyPavlov UniversitySt. PetersburgRussia
| | - Ji Hu
- ShanghaiTech UniversityShanghaiChina
| | - Ti‐Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| | - Jue Chen
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - Hua Wang
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xiangfang Chen
- Department of EndocrinologySecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| |
Collapse
|
2
|
Liu L, Wang H, Ma ZW, Tang FR. Radiosensitivity-related Variation in MicroRNA-34a-5p Levels and Subsequent Neuronal Loss in the Hilus of the Dentate Gyrus after Irradiation at Postnatal Days 10 and 21 in Mice. Radiat Res 2024; 202:677-684. [PMID: 39164012 DOI: 10.1667/rade-23-00248.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/08/2024] [Indexed: 08/22/2024]
Abstract
The radiosensitivity of mice differs between postnatal days 10 (P10) and 21(P21); these days mark different stages of brain development. In the present study, Ki67 and doublecotin (DCX) immunostaining and hematoxylin staining was performed, which showed that acute radiation exposure at postnatal day 10 induced higher cell apoptosis and loss in the hilus of the dentate gyrus at day 1 postirradiation than postnatal day 21. MicroRNA (miRNA) sequencing and real-time quantitative reverse transcription PCR (qRT-PCR) analysis indicated the upregulation of miRNA-34a-5p at days 1 and 7 after irradiation at postnatal day 10, but not at postnatal day 21. Down-regulation of T-cell intracytoplasmic antigen-1 pathway (Tia1) was indicated by qRT-PCR at day 1 day but not day 7 after irradiation at postnatal day 10. Neurobehavioral testing in mature mice irradiated at postnatal day 10 demonstrated the impairment of short-term memory in novel object recognition and spatial memory, compared to those irradiated at postnatal day 21. Combined with our previous luciferase assay showing the direct interaction of miRNA34a-5p and Tia1, these findings suggest that radiation-induced abnormal miR-34a-5p/Tial interaction at day 1 after irradiation at postnatal day 10 may be involved in apoptosis of the dentate gyrus hilar, impairment of neurogenesis and subsequent short-term memory loss as observed in the novel object recognition and Barnes maze tests.
Collapse
Affiliation(s)
- Lian Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Hong Wang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 138602, Singapore
| | - Zhao Wu Ma
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Feng Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 138602, Singapore
| |
Collapse
|
3
|
Yuan D, Zhou Z, Song M, Zhang Y, Zhang Y, Ren P, Chen Z, Fu Y. Role of GABA B receptors in cognition and EEG activity in aged APP and PS1 transgenic mice. Neurochem Int 2024; 175:105718. [PMID: 38490487 DOI: 10.1016/j.neuint.2024.105718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly. Recent evidence suggests that gamma-aminobutyric acid B (GABAB) receptor-mediated inhibition is a major contributor to AD pathobiology, and GABAB receptors have been hypothesized to be a potential target for AD treatment. The aim of this study is to determine how GABAB regulation alters cognitive function and brain activity in an AD mouse model. Early, middle and late stage (8-23 months) amyloid precursor protein (APP) and presenilin 1 (PS1) transgenic mice were used for the study. The GABAB agonist baclofen (1 and 2.5 mg/kg, i. p.) and the antagonist phaclofen (0.5 mg/kg, i. p.) were used. Primarily, we found that GABAB activation was able to improve spatial and/or working memory performance in early and late stage AD animals. In addition, GABAB activation and inhibition could regulate global and local EEG oscillations in AD animals, with activation mainly regulating low-frequency activity (delta-theta bands) and inhibition mainly regulating mid- and high-frequency activity (alpha-gamma bands), although the regulated magnitude at some frequencies was reduced in AD. The cognitive improvements in AD animals may be explained by the reduced EEG activity in the theta frequency band (2-4 Hz). This study provides evidence for a potential therapeutic effect of baclofen in the elderly AD brain and for GABAB receptor-mediated inhibition as a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Dong Yuan
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China
| | - Zheng Zhou
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China
| | - Meihui Song
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China
| | - Yunfan Zhang
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China
| | - Yunbin Zhang
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China
| | - Ping Ren
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, Guangdong, 518020, China
| | - Zhuangfei Chen
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China
| | - Yu Fu
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
4
|
Kathote G, Ma Q, Angulo G, Chen H, Jakkamsetti V, Dobariya A, Good LB, Posner B, Park JY, Pascual JM. Identification of Glucose Transport Modulators In Vitro and Method for Their Deep Learning Neural Network Behavioral Evaluation in Glucose Transporter 1-Deficient Mice. J Pharmacol Exp Ther 2023; 384:393-405. [PMID: 36635085 DOI: 10.1124/jpet.122.001428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/07/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023] Open
Abstract
Metabolic flux augmentation via glucose transport activation may be desirable in glucose transporter 1 (Glut1) deficiency syndrome (G1D) and dementia, whereas suppression might prove useful in cancer. Using lung adenocarcinoma cells that predominantly express Glut1 relative to other glucose transporters, we screened 9,646 compounds for effects on the accumulation of an extracellularly applied fluorescent glucose analog. Five drugs currently prescribed for unrelated indications or preclinically characterized robustly enhanced intracellular fluorescence. Additionally identified were 37 novel activating and nine inhibitory compounds lacking previous biologic characterization. Because few glucose-related mechanistic or pharmacological studies were available for these compounds, we developed a method to quantify G1D mouse behavior to infer potential therapeutic value. To this end, we designed a five-track apparatus to record and evaluate spontaneous locomotion videos. We applied this to a G1D mouse model that replicates the ataxia and other manifestations cardinal to the human disorder. Because the first two drugs that we examined in this manner (baclofen and acetazolamide) exerted various impacts on several gait aspects, we used deep learning neural networks to more comprehensively assess drug effects. Using this method, 49 locomotor parameters differentiated G1D from control mice. Thus, we used parameter modifiability to quantify efficacy on gait. We tested this by measuring the effects of saline as control and glucose as G1D therapy. The results indicate that this in vivo approach can estimate preclinical suitability from the perspective of G1D locomotion. This justifies the use of this method to evaluate our drugs or other interventions and sort candidates for further investigation. SIGNIFICANCE STATEMENT: There are few or no activators and few clinical inhibitors of glucose transport. Using Glut1-rich cells exposed to a glucose analog, we identified, in highthroughput fashion, a series of novel modulators. Some were drugs used to modify unrelated processes and some represented large but little studied chemical compound families. To facilitate their preclinical efficacy characterization regardless of potential mechanism of action, we developed a gait testing platform for deep learning neural network analysis of drug impact on Glut1-deficient mouse locomotion.
Collapse
Affiliation(s)
- Gauri Kathote
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qian Ma
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gustavo Angulo
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hong Chen
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vikram Jakkamsetti
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aksharkumar Dobariya
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Levi B Good
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bruce Posner
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jason Y Park
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Juan M Pascual
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
5
|
Liu B, Guan F, Zhao J, Niu Y, Jiang H. BHF177 Suppresses Diabetic Neuropathic Pain by Blocking PKC/CaMKII/ERK1/2/CREB Signaling Pathway through Activating GABA B Receptor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4661519. [PMID: 36439691 PMCID: PMC9691330 DOI: 10.1155/2022/4661519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 01/15/2022] [Indexed: 02/03/2025]
Abstract
The gamma-aminobutyric acid type B (GABAB) receptor may participate in the development of diabetic neuropathic pain (DNP). BHF177 serves as a positive allosteric modulator of the GABAB receptor. In the current study, we sought to study the role of the BHF177-GABAB receptor in DNP and its underlying mechanism. Streptozotocin was adopted to induce a rat model of DNP, followed by determination of the paw withdrawal threshold (PWT), paw withdrawal latency (PWL), and glucose level. The effect of BHF177 on DNP by regulating the GABAB receptor in vivo was determined by the injection of BHF177 and/or CGP46381 (a GABAB receptor antagonist) into rat models of DNP. Hippocampal neuronal cells were isolated and cultured, and the neurons and DNP model rats were treated with activators of PKC (PMA), CaMKII (CaCl2), or ERK1/2 (EGF) to study the role of GABAB receptors in DNP via regulation of the NR2B-PKC-CaMKII-ERK-CREB pathway. BHF177 suppressed DNP symptoms by activating the GABAB receptors, as evidenced by increased PWT and PWL of DNP rats and the increased number of neurons expressing the GABAB receptor, but this effect was reversed by CGP46381 treatment. BHF177 treatment markedly repressed PKC, CaMKII, p-ERK1/2, and p-CREB expressions in the rat DNP model, but these suppressive effects were abrogated by treatments with PMA, CaCl2, or EGF treatment, respectively. To sum up, BHF177 suppresses DNP symptoms by blocking the PKC/CaMKII/ERK1/2/CREB signaling pathway to activate the GABAB receptors.
Collapse
Affiliation(s)
- Boyu Liu
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Fengxi Guan
- Department of Ultrasonography, Yanggu People's Hospital, Yanggu 252300, China
| | - Jiapeng Zhao
- Department of Neurosurgery, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Yao Niu
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Hongbo Jiang
- Department of Nutrition, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
6
|
Wang P, Nan S, Zhang Y, Fan J. Effects of GABA B receptor positive allosteric modulator BHF177 and IRS-1 on apoptosis of hippocampal neurons in rats with refractory epilepsy via the PI3K/Akt pathway. Cell Biol Int 2022; 46:1775-1786. [PMID: 35989486 DOI: 10.1002/cbin.11839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/12/2021] [Accepted: 05/07/2022] [Indexed: 11/11/2022]
Abstract
The present study was conducted to determine the effects of the γ-aminobutyric acid B (GABAB ) receptor positive allosteric modulator BHF177 on refractory epilepsy (RE). An RE rat model was initially established via treatment with lithium-pilocarpine. The RE rats were then treated with BHF177 or the GABAB receptor antagonist CGP46381, followed by recording of their seizure rate and assessment of their spatial learning in the Morris water maze test. Treatment of BHF177 reduced the seizure intensity, whereas this effect was revered upoj treatment with CGP46381. Immunohistochemistry revealed that BHF177 treatment diminished P-glycoprotein (P-gp) expression in the hippocampal tissues of RE rats. Next, we found that BHF177 activated GABAB receptor, resulting in upregulated expression of insulin receptor substrate 1 (IRS-1) and PI3K, as well as antiapoptotic factors (Bcl-2 and mTOR), along with suppression of the apoptosis factors Bax and cleaved caspase-3 in the hippocampal tissues. Further, activation of GABAB receptors by BHF177 alleviated the inflammatory response in hippocampal tissues of RE rats, as evidenced by reduced VCAM-1, ICAM-1, and tumor necrosis factor-α levels. Next, we treated primary cultured rat hippocampal neurons with BHF177 and the IRS-1 selective inhibitor NT157. BHF177 inhibited hippocampal apoptosis in rat hippocampal neurons by regulating the IRS-1/PI3K/Akt axis through crosstalk between GABAB and insulin-like growth factor-1 receptors. Collectively, our findings indicate that the BHF177 inhibited neuron apoptosis, thus protecting against RE through the IRS-1/PI3K/Akt axis, which may present a new therapeutic channel for RE.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shanji Nan
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yizhi Zhang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jia Fan
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Bicakci AO, Sarkar M, Chang YH, Kahl E, Ragazzi L, Moldes-Anaya A, Fendt M. Anxiolytic-like Effects of the Positive GABAB Receptor Modulator GS39783 Correlate with Mice’s Individual Basal Anxiety and Stress Reactivity. Pharmaceuticals (Basel) 2022; 15:ph15020233. [PMID: 35215345 PMCID: PMC8878184 DOI: 10.3390/ph15020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
Positive gamma-aminobutyric acid type B (GABAB) receptor modulators such as GS39783 have showed anxiolytic-like effects in several studies while such effects were absent in other studies. These conflicting findings led us hypothesize that the anxiolytic-like effects of such compounds depend on the individual basal anxiety and/or the anxiogenic properties of the used tests. The present study addresses this hypothesis by testing GS39783 effects on mice’s anxiety-like behavior in a light–dark box. We found that GS39783 had no effects on a whole-group level. However, after grouping the mice for their basal anxiety, GS39783 reduced anxiety-like behavior in the subgroup with highest basal anxiety. Moreover, GS39783 effects correlated with individual basal anxiety. Next, the anxiogenic properties of the light–dark box test were increased by prior stress exposure. Again, GS39783 was not effective on a whole-group level. However, GS39783 had an anxiolytic-like effect in the most stress-responsive subgroup. Moreover, GS39783 effects correlated with individual stress responsiveness. Finally, we show that GS39783 brain levels were within a behaviorally relevant range. Overall, our study demonstrates that GS39783 effects depend on individual basal anxiety and stress responsiveness. This suggests that anxiety tests should generally be designed to capture individual basal anxiety and/or stress responsiveness as well as individual compound effects.
Collapse
Affiliation(s)
- Ahmet Oguzhan Bicakci
- Integrative Neuroscience Master Program, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (A.O.B.); (M.S.); (Y.-H.C.)
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
| | - Mousumi Sarkar
- Integrative Neuroscience Master Program, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (A.O.B.); (M.S.); (Y.-H.C.)
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
| | - Yu-Hsin Chang
- Integrative Neuroscience Master Program, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (A.O.B.); (M.S.); (Y.-H.C.)
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
| | - Evelyn Kahl
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
| | - Lorenzo Ragazzi
- Neurobiology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Angel Moldes-Anaya
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, 9037 Tromsø, Norway;
- Cyclotron and Radiochemistry Unit, The PET Imaging Center, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-67-21982
| |
Collapse
|
8
|
Abstract
Gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain, acts at the ionotropic GABAA and GABAC receptors, and the metabotropic GABAB receptor. This chapter summarizes the studies that have investigated the role of the GABAB receptor in stress-related psychiatric disorders including anxiety and mood disorders. Overall, clinical and preclinical evidences strongly suggest that the GABAB receptor is a therapeutic candidate for depression and anxiety disorders. However, the clinical development of GABAB receptor-based drugs to treat these disorders has been hampered by their potential side-effects, particularly those of agonists. Nevertheless, the discovery of novel GABAB receptor allosteric modulators, and increasing understanding of the influence of specific intracellular GABAB receptor-associated proteins on GABAB receptor activity, may now pave the way towards GABAB receptor therapeutics in the treatment of mood and anxiety disorders.
Collapse
Affiliation(s)
- Daniela Felice
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
9
|
Abstract
GABAB receptors are implicated in numerous central nervous system-based behaviours and mechanisms, including cognitive processing in preclinical animal models. Homeostatic changes in the expression and function of these receptors across brain structures have been found to affect cognitive processing. Numerous preclinical studies have focused on the role of GABAB receptors in learning, memory and cognition per se with some interesting, although sometimes contradictory, findings. The majority of the existing clinical literature focuses on alterations in GABAB receptor function in conditions and disorders whose main symptomatology includes deficits in cognitive processing. The aim of this chapter is to delineate the role of GABAB receptors in cognitive processes in health and disease of animal models and human clinical populations. More specifically, this review aims to present literature on the role of GABAB receptors in animal models with cognitive deficits, especially those of learning and memory. Further, it aims to capture the progress and advances of research studies on the effects of GABAB receptor compounds in neurodevelopmental and neurodegenerative conditions with cognitive dysfunctions. The neurodevelopmental conditions covered include autism spectrum disorders, fragile X syndrome and Down's syndrome and the neurodegenerative conditions discussed are Alzheimer's disease, epilepsy and autoimmune anti-GABAB encephalitis. Although some findings are contradictory, results indicate a possible therapeutic role of GABAB receptor compounds for the treatment of cognitive dysfunction and learning/memory impairments for some of these conditions, especially in neurodegeneration. Moreover, future research efforts should aim to develop selective GABAB receptor compounds with minimal, if any, side effects.
Collapse
|
10
|
Identification of a G-Protein-Independent Activator of GIRK Channels. Cell Rep 2021; 31:107770. [PMID: 32553165 DOI: 10.1016/j.celrep.2020.107770] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/24/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
G-protein-gated inwardly rectifying K+ (GIRK) channels are essential effectors of inhibitory neurotransmission in the brain. GIRK channels have been implicated in diseases with abnormal neuronal excitability, including epilepsy and addiction. GIRK channels are tetramers composed of either the same subunit (e.g., homotetramers) or different subunits (e.g., heterotetramers). Compounds that specifically target subsets of GIRK channels in vivo are lacking. Previous studies have shown that alcohol directly activates GIRK channels through a hydrophobic pocket located in the cytoplasmic domain of the channel. Here, we report the identification and functional characterization of a GIRK1-selective activator, termed GiGA1, that targets the alcohol pocket. GiGA1 activates GIRK1/GIRK2 both in vitro and in vivo and, in turn, mitigates the effects of a convulsant in an acute epilepsy mouse model. These results shed light on the structure-based development of subunit-specific GIRK modulators that could provide potential treatments for brain disorders.
Collapse
|
11
|
Khakpoor M, Vaseghi S, Mohammadi-Mahdiabadi-Hasani MH, Nasehi M. The effect of GABA-B receptors in the basolateral amygdala on passive avoidance memory impairment induced by MK-801 in rats. Behav Brain Res 2021; 409:113313. [PMID: 33891976 DOI: 10.1016/j.bbr.2021.113313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 11/19/2022]
Abstract
MK-801 (dizocilpine) is a potent non-competitive N-methyl-[D]-aspartate (NMDA) receptor antagonist that affects cognitive function, learning, and memory. As we know, NMDA receptors are significantly involved in memory function, as well as GABA (Gamma-Aminobutyric acid) receptors. In this study, we aimed to discover the effect of GABA-B receptors in the basolateral amygdala (BLA) on MK-801-induced memory impairment. We used 160 male Wistar rats. The shuttle box was used to evaluate passive avoidance memory and locomotion apparatus was used to evaluate locomotor activity. MK-801 (0.125, 0.25, and 0.5 μg/rat), baclofen (GABA-B agonist, 0.0001, 0.001, and 0.01 μg/rat) and phaclofen (GABA-B antagonist, 0.0001, 0.001, and 0.01 μg/rat) were injected intra-BLA, after the training. The results showed that MK-801 at the dose of 0.5 μg/rat, baclofen at the doses of 0.001 and 0.01 μg/rat, and phaclofen at the doses of 0.001 and 0.01 μg/rat, impaired passive avoidance memory. Locomotor activity did not alter in all groups. Furthermore, the subthreshold dose of both baclofen (0.0001 μg/rat) and phaclofen (0.0001 μg/rat) restored the impairment effect of MK-801 (0.5 μg/rat) on memory. Also, both baclofen (0.0001 μg/rat) potentiated the impairment effect of MK-801 (0.125 μg/rat) and phaclofen (0.0001 μg/rat) potentiated the impairment effect of MK-801 (0.125 and 0.25 μg/rat) on passive avoidance memory. In conclusion, our results indicated that BLA GABA-B receptors can alter the effect of NMDA inactivation on passive avoidance memory.
Collapse
Affiliation(s)
- Mitra Khakpoor
- Department of Basic Science, Farhangian University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | | | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
12
|
Porcu A, Mostallino R, Serra V, Melis M, Sogos V, Beggiato S, Ferraro L, Manetti F, Gianibbi B, Bettler B, Corelli F, Mugnaini C, Castelli MP. COR758, a negative allosteric modulator of GABA B receptors. Neuropharmacology 2021; 189:108537. [PMID: 33798546 DOI: 10.1016/j.neuropharm.2021.108537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Allosteric modulators of G protein coupled receptors (GPCRs), including GABABRs (GABABRs), are promising therapeutic candidates. While several positive allosteric modulators (PAM) of GABABRs have been characterized, only recently the first negative allosteric modulator (NAM) has been described. In the present study, we report the characterization of COR758, which acts as GABABR NAM in rat cortical membranes and CHO cells stably expressing GABABRs (CHO-GABAB). COR758 failed to displace the antagonist [3H]CGP54626 from the orthosteric binding site of GABABRs showing that it acts through an allosteric binding site. Docking studies revealed a possible new allosteric binding site for COR758 in the intrahelical pocket of the GABAB1 monomer. COR758 inhibited basal and GABABR-stimulated O-(3-[35Sthio)-triphosphate ([35S]GTPγS) binding in brain membranes and blocked the enhancement of GABABR-stimulated [35S]GTPγS binding by the PAM GS39783. Bioluminescent resonance energy transfer (BRET) measurements in CHO-GABAB cells showed that COR758 inhibited G protein activation by GABA and altered GABABR subunit rearrangements. Additionally, the compound altered GABABR-mediated signaling such as baclofen-induced inhibition of cAMP production in transfected HEK293 cells, agonist-induced Ca2+ mobilization as well as baclofen and the ago-PAM CGP7930 induced phosphorylation of extracellular signal-regulated kinases (ERK1/2) in CHO-GABAB cells. COR758 also prevented baclofen-induced outward currents recorded from rat dopamine neurons, substantiating its property as a NAM for GABABRs. Altogether, these data indicate that COR758 inhibits G protein signaling by GABABRs, likely by interacting with an allosteric binding-site. Therefore, COR758 might serve as a scaffold to develop additional NAMs for therapeutic intervention.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Valeria Serra
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products, and LTTA Center, University of Ferrara, Ferrara, Italy; Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products, and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100, Siena, SI, Italy
| | - Beatrice Gianibbi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100, Siena, SI, Italy
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Federico Corelli
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100, Siena, SI, Italy
| | - Claudia Mugnaini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, I-53100, Siena, SI, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Guy Everett Laboratory, University of Cagliari, 09042, Monserrato, Italy; Center of Excellence "Neurobiology of Addiction", University of Cagliari, 09042, Monserrato, Italy.
| |
Collapse
|
13
|
Štětkářová I, Krámská L, Keller J. Improvement of Memory Functions in Chronic Spinal Cord Injury After Long-Term Intrathecal Baclofen Delivery for Spasticity Relief. Neuromodulation 2021; 24:1199-1203. [PMID: 33533153 DOI: 10.1111/ner.13340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/23/2020] [Accepted: 11/23/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Intrathecal baclofen (ITB) pump delivery systems are safe and effective in the treatment of generalized spasticity in chronic spinal cord injury (SCI). Despite its widespread use, few and discrepant data are available in animal studies on the effects of ITB on cognitive functions, such as memory. The effects of chronic administration of baclofen on humans have not been investigated to date. The aim of this study is to find out, whether a long-term administration of ITB has any effects on cognitive functions in SCI subjects. MATERIALS AND METHODS In 11 out of 22 subjects with chronic SCI, we performed comprehensive neuropsychological assessment carried out using specialized tests focused on memory and other higher cognitive domains and emotional state. RESULTS All patients receiving ITB treatment for spasticity relief improved significantly in RAVLT Trials 1-5 (p = 0.049), Logical memory-immediate recall (p = 0.019) and Logical memory-delayed recall (p = 0.008). Visual memory, long-term semantic memory, attention, executive, perceptual and spatial functions, and mood status remained stable. CONCLUSION No significant decline in memory functions were detected following one year of ITB delivery, creating an opportunity for careful prescription of this treatment in chronic SCI. Moreover, we have detected a significant increase in short-term auditory-verbal memory and logical memory performance.
Collapse
Affiliation(s)
- Ivana Štětkářová
- Department of Neurology, Third Faculty of Medicine, Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Lenka Krámská
- Department of Clinical Psychology, Na Homolce Hospital, Prague, Czech Republic.,Department of Psychology, Faculty of Arts, Charles University, Prague, Czech Republic
| | - Jiří Keller
- Department of Neurology, Third Faculty of Medicine, Královské Vinohrady University Hospital, Prague, Czech Republic.,Department of Radiology, Na Homolce Hospital, Prague, Czech Republic
| |
Collapse
|
14
|
Roberts AJ, Khom S, Bajo M, Vlkolinsky R, Polis I, Cates-Gatto C, Roberto M, Gruol DL. Increased IL-6 expression in astrocytes is associated with emotionality, alterations in central amygdala GABAergic transmission, and excitability during alcohol withdrawal. Brain Behav Immun 2019; 82:188-202. [PMID: 31437534 PMCID: PMC6800653 DOI: 10.1016/j.bbi.2019.08.185] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/14/2023] Open
Abstract
Accumulating evidence from preclinical and clinical studies has implicated a role for the cytokine IL-6 in a variety of CNS diseases including anxiety-like and depressive-like behaviors, as well as alcohol use disorder. Here we use homozygous and heterozygous transgenic mice expressing elevated levels of IL-6 in the CNS due to increased astrocyte expression and non-transgenic littermates to examine a role for astrocyte-produced IL-6 in emotionality (response to novelty, anxiety-like, and depressive-like behaviors). Our results from homozygous IL-6 mice in a variety of behavioral tests (light/dark transfer, open field, digging, tail suspension, and forced swim tests) support a role for IL-6 in stress-coping behaviors. Ex vivo electrophysiological studies of neuronal excitability and inhibitory GABAergic synaptic transmission in the central nucleus of the amygdala (CeA) of the homozygous transgenic mice revealed increased inhibitory GABAergic signaling and increased excitability of CeA neurons, suggesting a role for astrocyte produced IL-6 in the amygdala in exploratory drive and depressive-like behavior. Furthermore, studies in the hippocampus of activation/expression of proteins associated with IL-6 signal transduction and inhibitory GABAergic mechanisms support a role for astrocyte produced IL-6 in depressive-like behaviors. Our studies indicate a complex and dose-dependent relationship between IL-6 and behavior and implicate IL-6 induced neuroadaptive changes in neuronal excitability and the inhibitory GABAergic system as important contributors to altered behavior associated with IL-6 expression in the CNS.
Collapse
Affiliation(s)
- Amanda J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Sophia Khom
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Michal Bajo
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Roman Vlkolinsky
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Ilham Polis
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Chelsea Cates-Gatto
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Marisa Roberto
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Donna L. Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037 U.S.A,Corresponding Author: Dr. Donna L. Gruol, Neuroscience Department, SP30-1522, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, Phone: (858) 784-7060, Fax: (858) 784-7393,
| |
Collapse
|
15
|
Sahraei H, Askaripour M, Esmaeilpour K, Shahsavari F, Rajabi S, Moradi-Kor N. GABA B receptor activation ameliorates spatial memory impairments in stress-exposed rats. Neuropsychiatr Dis Treat 2019; 15:1497-1506. [PMID: 31213819 PMCID: PMC6549409 DOI: 10.2147/ndt.s205951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/14/2019] [Indexed: 01/31/2023] Open
Abstract
Objective: Due to the prevalence of stress in modern life and its impact on spatial memory, the role of inhibitory systems in brain areas such as the nucleus accumbens (NAc) in reducing stress is important. The current study aimed to examine the response of NAc shell GABAB receptors to stress and the role of intraperitoneally (i.p.) and intra-NAc injection of the GABAB receptor agonist baclofen on spatial memory impairments in stress-exposed rats. Methods: Eighty adult male Wistar rats were randomly divided into ten groups (n=8): two were control groups for intra-NAc and i.p baclofen; two groups were subjected to stress and injected with saline (baclofen vehicle); three groups were given baclofen (1, 5, and 10 µg/rat) intra-NAc 5 mins before stress was induced; and three groups received baclofen (1, 5, and 10 mg/kg/i.p.) 30 mins before being subjected to stress. Foot-shock stress was applied for 7 consecutive days. Behavioral assays using the Barnes maze were performed 24 hrs after the last baclofen injection. Results: Both the intra-NAc and the i.p administration of baclofen dose-dependently reduced escape latency and total distance and increased velocity in the treatment groups in the training trials. In the probe test, the rats that had received 5 mg/kg of baclofen had the highest target frequency, but there no significant differences were observed in velocity, duration, or distance to the target between the groups. Conclusion: According to the findings, baclofen can dose-dependently improve spatial memory, and GABAB receptor in the NAc plays an important role in spatial memory.
Collapse
Affiliation(s)
- Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Majid Askaripour
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Shahsavari
- Department of Biology, Faculty of Science, Shahid Bahonar University, Kerman, Iran
| | - Soodeh Rajabi
- Physiology Research Center and Department of Physiology, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
16
|
Dai X, Yan X, Xie P, Lian J. [Sodium valprovate suppresses autophagy in SH-SY5Y cells via activating miR-34c-5p/ATG4B signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1415-1420. [PMID: 30613007 DOI: 10.12122/j.issn.1673-4254.2018.12.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of sodium valproate (VPA) on activation of miR-34c-5p/ATG4B signaling pathway and autophagy in SH-SY5Y cells. METHODS Routinely cultured SH-SY5Y cells were treated with VPA at different doses for 24 h, and the changes in the mRNA levels of ATG4B and miR-34c-5p and the protein expression of ATG4B were assessed using qRTPCR and immunoblotting, respectively. The effect of transfection with a plasmid containing ATG4B promoter on the promoter activity of ATG4B in VPA-treated SH-SY5Y cells was assessed using the reporter gene assay. The stability of ATG4B mRNA was analyzed with qPCR in SH-SY5Y cells treated with VPA alone or with VPA combined with the transcription inhibitor actinomycin D. The expression level of miR-34c-5p was detected using qPCR in SH-SY5Y cells treated with VPA alone or with VPA combined with miR-34c-5p mimics or antagonist, and the role of miR-34c-5p in VPA-induced ATG4B down-regulation was evaluated. The changes in the level of autophagy were evaluated by detecting LC3-Ⅱ expression in the cells after treatment with VPA or VPA combined with miR-34c-5p antagonist. RESULTS VPA dose-dependently down-regulated the expression of ATG4B at both the mRNA and protein levels in SH-SY5Y cells. VPA treatment did not significantly affect the promoter activity of ATG4B, but obviously lowered the mRNA stability of ATG4B in SH-SY5Y cells. VPA treatment up-regulated the expression of miR-34c-5p, and the miR-34c-5p antagonist reversed VPA-induced down-regulation of ATG4B in SH-SY5Y cells. VPA also down-regulated the expression level of LC3-Ⅱ in SH-SY5Y cells. CONCLUSIONS VPA suppresses autophagy in SH-SY5Y cells possibly via activating miR-34c-5p/ATG4B signaling pathway.
Collapse
Affiliation(s)
- Xufang Dai
- Chongqing Key Laboratory of Psychological Diagnosis and Educational Technology for Children with Special Needs.,Facultiy of Educationfor Children with Special Needs, College of Education Science, Chongqing Normal University, Chongqing 400047, China
| | - Xiaojing Yan
- Department ofBiochemistry and Molecular Biology, Army Medical University, Chongqing 400038, China
| | - Peng Xie
- Department ofBiochemistry and Molecular Biology, Army Medical University, Chongqing 400038, China
| | - Jiqin Lian
- Department ofBiochemistry and Molecular Biology, Army Medical University, Chongqing 400038, China
| |
Collapse
|
17
|
Carbone S, Ponzo OJ, Gobetto N, Samaniego YA, Reynoso R, Moguilevsky JA, Cutrera RA. Effect of di(2-ethylhexyl) phthalate on the neuroendocrine regulation of reproduction in adult male rats and its relationship to anxiogenic behavior: Participation of GABAergic system. Hum Exp Toxicol 2018; 38:25-35. [DOI: 10.1177/0960327118774868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The endocrine disruptor di-(2-ethylhexyl) phthalate (DEHP) is used in a variety of consumer products made with polyvinyl chloride and also in the manufacture of medical devices. DEHP disrupts reproductive tract development in an antiandrogenic manner and also may induce neurobehavioral changes. The aim of this study was to investigate the effects of chronic postnatal exposure to DEHP (30 mg/kg body weight/day, orally from birth to day 60) on the neuroendocrine regulation of the gonadal axis and its impact on the anxiety-like behavior in adult male rats, as well as the probable participation of the GABAergic system in these effects. DEHP produced a significant increase in plasmatic luteinizing hormone and follicle stimulating hormone, as well as significant testosterone decrease, accompanied with a decrease in hypothalamic gamma-aminobutyric acid (GABA) concentration. On the other hand, DEHP increased the anxiety-like behavior in the elevated plus maze test, evidenced by a significant decrease in the percentages of time spent in the open arms and the frequency in the open arm entries and a significant increase in the percentage of time spent in closed arms. Neuroendocrine and behavioral effects were reversed by GABA agonists, muscimol (2 mg/kg i.p. ) and baclofen (10 mg/kg i.p.). In conclusion, chronic DEHP postnatal exposure induced a disruption in the neuroendocrine regulation of the testicular axis in young adult male rats, and this effect was correlated with an anxiety-like behavior. Since GABA agonists reversed these effects, the results suggest that GABA could participate in the modulation of reproductive and behavioral DEHP effects.
Collapse
Affiliation(s)
- S Carbone
- Laboratorio de Endocrinologí, Departamento de Fisiologí, Facultad de Medicina, Universidad de Buenos Aires. Buenos Aires, Argentina
- Laboratorio de Neurobiologí y Ritmos, Instituto de Fisiologí y Biofísica Bernardo Houssay (IFIBIO), Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - OJ Ponzo
- Laboratorio de Endocrinologí, Departamento de Fisiologí, Facultad de Medicina, Universidad de Buenos Aires. Buenos Aires, Argentina
| | - N Gobetto
- Laboratorio de Endocrinologí, Departamento de Fisiologí, Facultad de Medicina, Universidad de Buenos Aires. Buenos Aires, Argentina
| | - YA Samaniego
- Laboratorio de Endocrinologí, Departamento de Fisiologí, Facultad de Medicina, Universidad de Buenos Aires. Buenos Aires, Argentina
| | - R Reynoso
- Laboratorio de Endocrinologí, Departamento de Fisiologí, Facultad de Medicina, Universidad de Buenos Aires. Buenos Aires, Argentina
| | - JA Moguilevsky
- Facultad de Ciencias Médicas, Universidad Favaloro. Buenos Aires, Argentina
| | - RA Cutrera
- Laboratorio de Neurobiologí y Ritmos, Instituto de Fisiologí y Biofísica Bernardo Houssay (IFIBIO), Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Autoantibodies to Central nervous system (CNS) metabotropic receptors are associated with a growing family of autoimmune brain diseases, including encephalitis, basal ganglia encephalitis, Ophelia syndrome, and cerebellitis. The purpose of this review is to summarize the state of knowledge regarding the target receptors, the neurological autoimmune disorders, and the pathogenic mechanisms. RECENT FINDINGS Antibodies to the γ-aminobutyric acid B receptor are associate with limbic encephalitis and severe seizures, often with small cell lung cancers. Metabotropic glutamate receptor 5 (mGluR5) antibodies associate with Ophelia syndrome, a relatively mild form of encephalitis linked to Hodgkin lymphoma. mGluR1 antibodies associate with a form of cerebellar degeneration, and also Hodgkin lymphoma. Antibodies to Homer 3, a protein associated with mGluR1, have also been reported in two patients with cerebellar syndromes. Dopamine-2 receptor antibodies have been reported by one group in children with basal ganglia encephalitis and other disorders. SUMMARY CNS metabotropic receptor antibodies may exert direct inhibitory effects on their target receptors, but the evidence is more limited than with autoantibodies to ionotropic glutamate receptors. In the future, improved recognition of these patients may lead to better outcomes. Understanding the molecular mechanisms of the diseases may uncover novel treatment strategies.
Collapse
|
19
|
Ebrahimi-Ghiri M, Rostampour M, Jamshidi-Mehr M, Nasehi M, Zarrindast MR. Role of CA1 GABAA and GABAB receptors on learning deficit induced by D-AP5 in passive avoidance step-through task. Brain Res 2018; 1678:164-173. [DOI: 10.1016/j.brainres.2017.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/24/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
|
20
|
Jiménez-Ferrer E, Santillán-Urquiza MA, Alegría-Herrera E, Zamilpa A, Noguerón-Merino C, Tortoriello J, Navarro-García V, Avilés-Flores M, Fuentes-Mata M, Herrera-Ruiz M. Anxiolytic effect of fatty acids and terpenes fraction from Aloysia triphylla: Serotoninergic, GABAergic and glutamatergic implications. Biomed Pharmacother 2017; 96:320-327. [PMID: 29017144 DOI: 10.1016/j.biopha.2017.10.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/16/2022] Open
Abstract
Aloysia triphylla (Verbenaceae) is an aromatic medicinal plant, and it is used for the treatment of "nervous" problems as, "sadness" and "nervousness". While, there are no reports about its pharmacological activity in animal models. The objective of this work was to evaluate the anxiolytic effect of the extracts and fractions of this species and to measure the interaction of the most active fraction with serotonergic, glutamatergic and GABAergic drugs. An elevated plus maze test was carried ought where the methanol (AtM), dicloromethane (AtD) and hexanic (AtH) extracts presented anxiolytic activity in mice when exposed to the test. Also, different fractions obtained from the AtD were evaluated (AtF1, AtF2 and AtF3, 15mg/kg), and showed that fraction AtF1 possessed the anxiolytic activity, in the same model. Then, AtF1 was co-administered with different drugs, which act on GABAergic (bicuculline, picrotoxin, pentylenetetrazol, baclofen and phaclofen), or serotononinergic (DOI, 8-OH-DPAT, WAY 100635 and ketanserine) or glutamatergic (NMDA, MPEP and MK-801) systems. The anxiolytic activity of AtF1 was modified by GABAergic and serotoninergic drugs. Chemical analysis of this fraction by using GC-MS, showed that it contains hexadecanoic acid, hexadecanoic acid methyl ester, octadecanoic acid methyl ester, eicosanoic acid methyl ester, vitamin E, α-amiryn, campesterol, sitosterol, stigmastan-2,22, dien-3-ol (4) and stigmasta 5, 24 (28) dien-3-ol.
Collapse
Affiliation(s)
- Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, 62790 Xochitepec, Morelos, Mexico
| | - Mayra Alejandra Santillán-Urquiza
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, 62790 Xochitepec, Morelos, Mexico
| | - Elian Alegría-Herrera
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, 62790 Xochitepec, Morelos, Mexico
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, 62790 Xochitepec, Morelos, Mexico
| | - Carmen Noguerón-Merino
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, 62790 Xochitepec, Morelos, Mexico
| | - Jaime Tortoriello
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, 62790 Xochitepec, Morelos, Mexico; INAH-Morelos, Matamoros 14 Acapantzingo, Cuernavaca, Morelos, CP 62440, Mexico
| | - Victor Navarro-García
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, 62790 Xochitepec, Morelos, Mexico
| | | | | | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, 62790 Xochitepec, Morelos, Mexico.
| |
Collapse
|
21
|
Zarrabian S, Nasehi M, Farrahizadeh M, Zarrindast MR. The role of CA3 GABA B receptors on anxiolytic-like behaviors and avoidance memory deficit induced by D-AP5 with respect to Ca 2+ ions. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:515-524. [PMID: 28800869 DOI: 10.1016/j.pnpbp.2017.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 01/21/2023]
Abstract
Glutamatergic and GABAergic systems play key roles in the hippocampus and affect the pathogenesis of anxiety- and memory-related processes. Some investigations have assessed the role of balancing the function of these two systems in different areas of the central nervous system (CNS) as an approach to manage the related disorders. We investigated the anxiety and avoidance memory states using the test-retest protocol in the elevated plus maze to understand the role of GABAB receptors (GABABRs) in relation to the NMDA receptor blockade by D-AP5 (an NMDA receptor antagonist). Also, we examined the function of Ca2+ ions by blocking its entrance to the cell using SKF96365 (a Ca2+ channel blocker). The drugs were injected into the CA3 region before the test. Our data showed that D-AP5 induced anxiolytic-like behaviors and impaired the avoidance memory. Injection of baclofen (a GABABR agonist), but not phaclofen (a GABABR antagonist) induced anxiolytic-like behaviors. Neither baclofen nor phaclofen altered avoidance memory-related behaviors. When baclofen was injected before D-AP5, it potentiated the anxiolytic-like behaviors induced by D-AP5, but counteracted its effect on avoidance memory. Phaclofen pretreatment attenuated D-AP5-induced anxiolytic-like behaviors, but potentiated its effect on avoidance memory. The effect of baclofen application before D-AP5 on anxiety and phaclofen application before D-AP5 on avoidance memory at the heist doses were accompanied by a decrease in locomotion. The application of SKF96365 did not alter anxiety-like behaviors but induced avoidance memory impairment. SKF96365 application before the combination of baclofen and D-AP5 counteracted the effects produced by the combination of baclofen and D-AP5 on anxiety and memory states. Our findings showed that the CA3 GABABRs had a critical role in anxiolytic-like behaviors and avoidance memory deficit induced by D-AP5 and confirmed the role of Ca2+ ions in the observed results.
Collapse
Affiliation(s)
- Shahram Zarrabian
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran.
| | - Maryam Farrahizadeh
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Medical Genomics Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
22
|
Rich MT, Torregrossa MM. Molecular and synaptic mechanisms regulating drug-associated memories: Towards a bidirectional treatment strategy. Brain Res Bull 2017; 141:58-71. [PMID: 28916448 DOI: 10.1016/j.brainresbull.2017.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/21/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022]
Abstract
The successful treatment of substance use disorders is dependent on the establishment of a long-term abstinent state. Relapse can be suppressed by interfering with memories of drug use that are evoked by re-exposure to drug-associated contexts and cues. Two strategies for accomplishing this goal are either to prevent drug-memory reconsolidation or to induce the formation of a competing, extinction memory. However, clinical attempts to prolong abstinence by behavioral modification of drug-related memories have had limited success. One approach to improve behavioral treatment strategies is to identify the molecular mechanisms that regulate these memory processes and then use pharmacological tools as supplements to improve efficacy. Still, due to the involvement of several overlapping signaling cascades in both reconsolidation and extinction, it is difficult to specifically modify one of the two processes. For example, attempting to elicit extinction may instead initiate reconsolidation, resulting in the unintentional strengthening of drug-related memories. A better approach is to identify diverging components of the two processes, whereby a single medication would simultaneously weaken reconsolidation and enhance extinction. This review will provide an overview of the neural substrates that are involved in the regulation of drug-associated memories, and will discuss emerging approaches to pharmacologically weaken these memories, including recent efforts to precisely and bidirectionally target reconsolidation and extinction. Ultimately, pharmacologically-enhanced memory-based approaches have the potential to produce more informed relapse-prevention therapies.
Collapse
Affiliation(s)
- Matthew T Rich
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara St., Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Ave, Pittsburgh, PA, 15213, United States.
| | - Mary M Torregrossa
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, United States.
| |
Collapse
|
23
|
Winsky L, Brady LS. Athina Markou's contributions to treatment development for mental illnesses: a perspective. Psychopharmacology (Berl) 2017; 234:1645-1647. [PMID: 27882396 DOI: 10.1007/s00213-016-4485-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Lois Winsky
- Division of Neuroscience and Basic Behavioral Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Linda S Brady
- Division of Neuroscience and Basic Behavioral Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Kalinichev M, Girard F, Haddouk H, Rouillier M, Riguet E, Royer-Urios I, Mutel V, Lütjens R, Poli S. The drug candidate, ADX71441, is a novel, potent and selective positive allosteric modulator of the GABA B receptor with a potential for treatment of anxiety, pain and spasticity. Neuropharmacology 2016; 114:34-47. [PMID: 27889489 DOI: 10.1016/j.neuropharm.2016.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 11/13/2016] [Accepted: 11/21/2016] [Indexed: 11/17/2022]
Abstract
Positive allosteric modulation of the GABAB receptor is a promising alternative to direct activation of the receptor as a therapeutic approach for treatment of addiction, chronic pain, anxiety, epilepsy, autism, Fragile X syndrome, and psychosis. Here we describe in vitro and in vivo characterization of a novel, potent and selective GABAB positive allosteric modulator (PAM) N-(5-(4-(4-chloro-3-fluorobenzyl)-6-methoxy-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)-2-fluorophenyl)acetamide (ADX71441). In vitro, Schild plot and reversibility tests at the target confirmed PAM properties of the compound. In mice and rats ADX71441 is bioavailable after oral administration and is brain penetrant. A single dose of ADX71441 had an anxiolytic-like profile in the mouse marble burying test (minimum effective dose; MED 3 mg/kg) as well as in the elevated plus maze test in mice and rats (both MED 3 mg/kg). Also, in mice, acute administration of ADX71441 reduced visceral pain-associated behaviors in the acetic acid-induced writhing test. ADX71441 dose-dependently reduced time on rotarod in rats (MED 10 mg/kg) indicative of muscle-relaxant qualities. ADX71441 reduced locomotor activity in mice (10 mg/kg) and rats (3 mg/kg) after single dose; however, following sub-chronic administration in mice, 30 mg/kg ADX71441 was associated with normal locomotor activity. While acute administration of ADX71441 reduced body temperature in rats and mice (both MED 10 mg/kg), the effect in the former was transient, rapidly returning to normal levels despite high concentrations of the compound remaining in plasma. Thus, the GABAB PAM ADX71441 represents a valid therapeutic approach for development of novel treatment of anxiety, pain and spasticity.
Collapse
Affiliation(s)
- Mikhail Kalinichev
- Addex Therapeutics SA, Chemin des Mines 9, CH-1202, Geneva, Switzerland.
| | - Françoise Girard
- Addex Therapeutics SA, Chemin des Mines 9, CH-1202, Geneva, Switzerland
| | - Hasnaà Haddouk
- Addex Therapeutics SA, Chemin des Mines 9, CH-1202, Geneva, Switzerland
| | - Mélanie Rouillier
- Addex Therapeutics SA, Chemin des Mines 9, CH-1202, Geneva, Switzerland
| | - Eric Riguet
- Addex Therapeutics SA, Chemin des Mines 9, CH-1202, Geneva, Switzerland
| | | | - Vincent Mutel
- Addex Therapeutics SA, Chemin des Mines 9, CH-1202, Geneva, Switzerland
| | - Robert Lütjens
- Addex Therapeutics SA, Chemin des Mines 9, CH-1202, Geneva, Switzerland
| | - Sonia Poli
- Addex Therapeutics SA, Chemin des Mines 9, CH-1202, Geneva, Switzerland
| |
Collapse
|
25
|
Porcu A, Lobina C, Giunta D, Solinas M, Mugnaini C, Castelli MP. In vitro and in vivo pharmacological characterization of SSD114, a novel GABAB positive allosteric modulator. Eur J Pharmacol 2016; 791:115-123. [PMID: 27578262 DOI: 10.1016/j.ejphar.2016.08.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/18/2022]
Abstract
Positive allosteric modulators (PAMs) of the GABAB receptor have emerged as a novel approach to the pharmacological manipulation of the GABAB receptor, enhancing the effects of receptor agonists with few side effects. Here, we identified N-cyclohexyl-4-methoxy-6-(4-(trifluoromethyl)phenyl)pyrimidin-2-amine (SSD114) as a new compound with activity as a GABAB PAM in in vitro and in vivo assays. SSD114 potentiated GABA-stimulated [35S]GTPγS binding to native GABAB receptors, whereas it had no effect when used alone. Its effect on GTPγS stimulation was suppressed when GABA-induced activation was blocked with CGP54626, a competitive antagonist of the GABAB receptor. SSD114 failed to potentiate WIN55,212,2-, morphine- and quinpirole-induced [35S]GTPγS binding to cortical and striatal membranes, respectively, indicating that it is a selective GABAB PAM. Increasing SSD114 fixed concentrations induced a leftward shift of the GABA concentration-response curve, enhancing the potency of GABA rather than its efficacy. SSD114 concentration-response curves in the presence of fixed concentrations of GABA (1, 10, and 20μM) revealed a potentiating effect on GABA-stimulated binding of [35S]GTPγS to rat cortical membranes, with EC50 values in the low micromolar range. Bioluminescence resonance energy transfer (BRET) experiments in Chinese Hamster Ovary (CHO)-cells expressing GABAB receptors showed that SSD114 potentiates the GABA inhibition of adenylyl-cyclase mediated by GABAB receptors. Our compound is also effective in vivo potentiating baclofen-induced sedation/hypnosis in mice, with no effect when tested alone. These findings indicate that SSD114, a molecule with a different chemical structure compared to known GABAB PAMs, is a novel GABAB PAM with potential usefulness in the GABAB-receptor research field.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Carla Lobina
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Cagliari, Italy
| | - Daniela Giunta
- Biomolecular Chemistry Institute, National Research Council of Italy, Section of Sassari, Sassari, Italy
| | - Maurizio Solinas
- Biomolecular Chemistry Institute, National Research Council of Italy, Section of Sassari, Sassari, Italy
| | - Claudia Mugnaini
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
26
|
Beas BS, Setlow B, Bizon JL. Effects of acute administration of the GABA(B) receptor agonist baclofen on behavioral flexibility in rats. Psychopharmacology (Berl) 2016; 233:2787-97. [PMID: 27256354 PMCID: PMC4919234 DOI: 10.1007/s00213-016-4321-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/09/2016] [Indexed: 12/20/2022]
Abstract
RATIONALE The ability to adjust response strategies when faced with changes in the environment is critical for normal adaptive behavior. Such behavioral flexibility is compromised by experimental disruption of cortical GABAergic signaling, as well as in conditions such as schizophrenia and normal aging that are characterized by cortical hyperexcitability. The current studies were designed to determine whether stimulation of GABAergic signaling using the GABA(B) receptor agonist baclofen can facilitate behavioral flexibility. METHODS Male Fischer 344 rats were trained in a set-shifting task in which they learned to discriminate between two response levers to obtain a food reward. Correct levers were signaled in accordance with two distinct response rules (rule 1: correct lever signaled by a cue light; rule 2: correct lever signaled by its left/right position). The order of rule presentation varied, but they were always presented sequentially, with the trials and errors to reach criterion performance on the second (set shift) rule providing the measure of behavioral flexibility. Experiments determined the effects of the GABA(B) receptor agonist baclofen (intraperitoneal, 0, 1.0, 2.5, and 4.0 mg/kg) administered acutely before the shift to the second rule. RESULTS Baclofen enhanced set-shifting performance. Control experiments demonstrated that this enhancement was not simply due to improved discrimination learning, nor was it due to impaired recall of the initial discrimination rule. CONCLUSIONS The results demonstrate that baclofen can facilitate behavioral flexibility, suggesting that GABA(B) receptor agonists may have utility for treating behavioral dysfunction in neuropsychiatric disorders.
Collapse
Affiliation(s)
- B. Sofia Beas
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL
| | - Barry Setlow
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL,Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL
| | - Jennifer L. Bizon
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL,Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
27
|
Shimizu N, Wood S, Kushiro K, Perachio A, Makishima T. The role of GABAB receptors in the vestibular oculomotor system in mice. Behav Brain Res 2016; 302:152-9. [PMID: 26778789 DOI: 10.1016/j.bbr.2016.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 11/28/2022]
Abstract
Systemic administration of a gamma-amino butyric acid type B (GABAB) receptor agonist, baclofen, affects various physiological and psychological processes. To date, the effects on oculomotor system have been well characterized in primates, however those in mice have not been explored. In this study, we investigated the effects of baclofen focusing on vestibular-related eye movements. Two rotational paradigms, i.e. sinusoidal rotation and counter rotation were employed to stimulate semicircular canals and otolith organs in the inner ear. Experimental conditions (dosage, routes and onset of recording) were determined based on the prior studies exploring the behavioral effects of baclofen in mice. With an increase in dosage, both canal and otolith induced ocular responses were gradually affected. There was a clear distinction in the drug sensitivity showing that eye movements derived from direct vestibulo-ocular reflex pathways were relatively unaltered, while the responses through higher-order neural networks in the vestibular system were substantially decreased. These findings were consistent with those observed in primates suggesting a well-conserved role of GABAB receptors in the oculomotor system across frontal-eyed and lateral-eyed animals. We showed here a previously unrecognized effect of baclofen on the vestibular oculomotor function in mice. When interpreting general animal performance under the drug, the potential contribution of altered balance system should be taken into consideration.
Collapse
Affiliation(s)
- Naoki Shimizu
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, USA.
| | - Scott Wood
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, USA; Department of Psychology, Azusa Pacific University, Azusa California, USA
| | - Keisuke Kushiro
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Adrian Perachio
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tomoko Makishima
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
28
|
Engin E, Smith KS, Gao Y, Nagy D, Foster RA, Tsvetkov E, Keist R, Crestani F, Fritschy JM, Bolshakov VY, Hajos M, Heldt SA, Rudolph U. Modulation of anxiety and fear via distinct intrahippocampal circuits. eLife 2016; 5:e14120. [PMID: 26971710 PMCID: PMC4816644 DOI: 10.7554/elife.14120] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/24/2016] [Indexed: 11/13/2022] Open
Abstract
Recent findings indicate a high level of specialization at the level of microcircuits and cell populations within brain structures with regards to the control of fear and anxiety. The hippocampus, however, has been treated as a unitary structure in anxiety and fear research despite mounting evidence that different hippocampal subregions have specialized roles in other cognitive domains. Using novel cell-type- and region-specific conditional knockouts of the GABAA receptor α2 subunit, we demonstrate that inhibition of the principal neurons of the dentate gyrus and CA3 via α2-containing GABAA receptors (α2GABAARs) is required to suppress anxiety, while the inhibition of CA1 pyramidal neurons is required to suppress fear responses. We further show that the diazepam-modulation of hippocampal theta activity shows certain parallels with our behavioral findings, suggesting a possible mechanism for the observed behavioral effects. Thus, our findings demonstrate a double dissociation in the regulation of anxiety versus fear by hippocampal microcircuitry. DOI:http://dx.doi.org/10.7554/eLife.14120.001 Fear and anxiety can be thought of as different but related emotional states. Fear is triggered by specific harmful situations, such as the immediate presence of a predator. Anxiety instead results from the possibility of an obscure threat, such as being in an exposed environment, which increases the chance of being detected by a predator. Evidence suggests that slightly different areas of the brain control fear and anxiety, but much remains unknown about the specific brain regions that help to regulate these two emotional states. One brain region that has been implicated in both anxiety and fear – as well as in learning and memory – is the hippocampus. Named after the Greek word for seahorse because of its shape, the hippocampus is made up of three subregions: CA1, CA3 and the dentate gyrus. Each of these subregions has a distinct role in learning and memory. However, their individual contributions to the control of fear and anxiety were not known. An inhibitory receptor protein found in the surface of some hippocampal neurons had previously been shown to be involved in controlling fear and anxiety. Now, Engin et al. have studied three different groups of genetically modified mice, each of which lacks the receptor protein in a different subregion of the hippocampus. The mice completed tests that stimulated anxiety or fear, some while under the influence of the anxiety and fear-reducing drug diazepam. Notably, diazepam failed to reduce fear in animals that lacked the inhibitory receptor protein in the CA1 subregion of the hippocampus, suggesting that this subregion participates in the fear response. However, mice that lacked the receptor in the dentate gyrus or CA3 responded normally to the drug (they showed reduced fear when given diazepam). In tests of anxiety, the picture was exactly the opposite. Diazepam failed to reduce anxiety in animals lacking the inhibitory receptor in the dentate gyrus or CA3, indicating that these subregions are involved in the regulation of anxiety. However, the drug still reduced anxiety in mice that lacked the receptor protein in the CA1 subregion. Further studies are now needed to clarify how manipulating specific subregions of the hippocampus alters how it communicates with other brain structures to generate changes in anxiety or fear-related behaviors. DOI:http://dx.doi.org/10.7554/eLife.14120.002
Collapse
Affiliation(s)
- Elif Engin
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, United States.,Department of Psychiatry, Harvard Medical School, Boston, United States
| | - Kiersten S Smith
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, United States.,Department of Psychiatry, Harvard Medical School, Boston, United States
| | - Yudong Gao
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, United States
| | - David Nagy
- Section of Comparative Medicine, Yale School of Medicine, New Haven, United States
| | - Rachel A Foster
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, United States.,Department of Psychiatry, Harvard Medical School, Boston, United States
| | - Evgeny Tsvetkov
- Department of Psychiatry, Harvard Medical School, Boston, United States.,Cellular Neurobiology Laboratory, McLean Hospital, Belmont, United States.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ruth Keist
- Institute for Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Florence Crestani
- Institute for Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jean-Marc Fritschy
- Institute for Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Vadim Y Bolshakov
- Department of Psychiatry, Harvard Medical School, Boston, United States.,Cellular Neurobiology Laboratory, McLean Hospital, Belmont, United States
| | - Mihaly Hajos
- Section of Comparative Medicine, Yale School of Medicine, New Haven, United States
| | - Scott A Heldt
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, United States
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, United States.,Department of Psychiatry, Harvard Medical School, Boston, United States
| |
Collapse
|
29
|
Wang H, Zhang W, Wang X. Elucidation of a CGP7930 in vitro metabolite by liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:491-496. [PMID: 26777679 DOI: 10.1002/rcm.7465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE γ-Aminobutyric acid-B (GABAB ) receptors are widely expressed in the nervous system and have been implicated as targets for various neurological and psychiatric disorders. CGP7930 is a positive allosteric modulator of GABAB receptors. It has been demonstrated to reduce drug self-administration and has gained increased research as a potential psychotropic treatment. METHODS An in vitro metabolic system with liver microsomes of SD rats has been conducted and evaluated by probe drugs. The predominant in vitro metabolite of CGP7930 was identified and elucidated using liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry (LC/ESI-QTOF-MS/MS). Its structure was determined by comparing the characteristic ions of CGP7930 and those of the metabolite, based on the accurate mass measurement by MS and the fragmentation pattern obtained by MS/MS. RESULTS We found that the main metabolic pathway of CGP7930 was via a monohydroxylation reaction and the hydroxylation site located at the terminal butyl-carbon. The collision-induced dissociation (CID) fragmentation of the hydroxylated metabolite underwent McLafferty rearrangement and α-cleavage. CONCLUSIONS This work provides an understanding of the in vitro metabolism of CGP7930, which is helpful for the further study of the development of potential drug candidates targeting GABAB receptors, for the treatment of depression. The work also demonstrates that the LC/ESI-QTOF-MS/MS method has the advantage of possibly determining the structures of drug metabolites without the use of standards.
Collapse
Affiliation(s)
- Haidong Wang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, P.R. China
| | - Wenxiang Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, P.R. China
| | - Xian Wang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, P.R. China
| |
Collapse
|
30
|
Role of GABA(B) receptors in learning and memory and neurological disorders. Neurosci Biobehav Rev 2016; 63:1-28. [PMID: 26814961 DOI: 10.1016/j.neubiorev.2016.01.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/31/2015] [Accepted: 01/21/2016] [Indexed: 01/13/2023]
Abstract
Although it is evident from the literature that altered GABAB receptor function does affect behavior, these results often do not correspond well. These differences could be due to the task protocol, animal strain, ligand concentration, or timing of administration utilized. Because several clinical populations exhibit learning and memory deficits in addition to altered markers of GABA and the GABAB receptor, it is important to determine whether altered GABAB receptor function is capable of contributing to the deficits. The aim of this review is to examine the effect of altered GABAB receptor function on synaptic plasticity as demonstrated by in vitro data, as well as the effects on performance in learning and memory tasks. Finally, data regarding altered GABA and GABAB receptor markers within clinical populations will be reviewed. Together, the data agree that proper functioning of GABAB receptors is crucial for numerous learning and memory tasks and that targeting this system via pharmaceuticals may benefit several clinical populations.
Collapse
|
31
|
Vavers E, Zvejniece L, Svalbe B, Volska K, Makarova E, Liepinsh E, Rizhanova K, Liepins V, Dambrova M. The neuroprotective effects of R-phenibut after focal cerebral ischemia. Pharmacol Res 2015; 113:796-801. [PMID: 26621244 DOI: 10.1016/j.phrs.2015.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 11/25/2022]
Abstract
R-phenibut is a γ-aminobutyric acid (GABA)-B receptor and α2-δ subunit of the voltage-dependent calcium channel (VDCC) ligand. The aim of the present study was to test the effects of R-phenibut on the motor, sensory and tactile functions and histological outcomes in rats following transient middle cerebral artery occlusion (MCAO). In this study, MCAO was induced by filament insertion (f-MCAO) or endothelin-1 (ET1) microinjection (ET1-MCAO) in male Wistar or CD rats, respectively. R-phenibut was administrated at doses of 10 and 50mg/kg for 14 days in the f-MCAO or 7 days in the ET1-MCAO. The vibrissae-evoked forelimb-placing and limb-placing tests were used to assess sensorimotor, tactile and proprioceptive function. Quantitative reverse transcriptase-PCR was used to detect brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) gene expression in the damaged brain hemisphere. Both f-MCAO and ET1-MCAO resulted in statistically significant impairment of sensorimotor function and brain infarction. R-phenibut at a dose of 10mg/kg significantly improved histological outcome at day 7 in the ET1-MCAO. R-phenibut treatment at a dose of 50mg/kg significantly alleviated reduction of brain volume in damaged hemisphere in both f-MCAO and ET1-MCAO. In R-phenibut treated animals a trend of recovery of tactile and proprioceptive stimulation in the vibrissae-evoked forelimb-placing test was observed. After R-phenibut treatment at a dose of 50mg/kg statistically significant increase of BDNF and VEGF gene expression was found in damaged brain hemisphere. Taken together, obtained results provide evidence for the neuroprotective activity of R-phenibut in experimental models of stroke. These effects might be related to the modulatory effects of the drug on the GABA-B receptor and α2-δ subunit of VDCC.
Collapse
Affiliation(s)
- Edijs Vavers
- Latvian Institute of Organic Synthesis, Riga, Latvia; Riga Stradins University, Riga, Latvia.
| | | | - Baiba Svalbe
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Kristine Volska
- Latvian Institute of Organic Synthesis, Riga, Latvia; Riga Stradins University, Riga, Latvia
| | | | | | | | | | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga, Latvia; Riga Stradins University, Riga, Latvia
| |
Collapse
|
32
|
Brown JW, Moeller A, Schmidt M, Turner SC, Nimmrich V, Ma J, Rueter LE, van der Kam E, Zhang M. Anticonvulsant effects of structurally diverse GABA(B) positive allosteric modulators in the DBA/2J audiogenic seizure test: Comparison to baclofen and utility as a pharmacodynamic screening model. Neuropharmacology 2015; 101:358-69. [PMID: 26471422 DOI: 10.1016/j.neuropharm.2015.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/31/2015] [Accepted: 10/04/2015] [Indexed: 02/02/2023]
Abstract
The GABA(B) receptor has been indicated as a promising target for multiple CNS-related disorders. Baclofen, a prototypical orthosteric agonist, is used clinically for the treatment of spastic movement disorders, but is associated with unwanted side-effects, such as sedation and motor impairment. Positive allosteric modulators (PAM), which bind to a topographically-distinct site apart from the orthosteric binding pocket, may provide an improved side-effect profile while maintaining baclofen-like efficacy. GABA, the major inhibitory neurotransmitter in the CNS, plays an important role in the etiology and treatment of seizure disorders. Baclofen is known to produce anticonvulsant effects in the DBA/2J mouse audiogenic seizure test (AGS), suggesting it may be a suitable assay for assessing pharmacodynamic effects. Little is known about the effects of GABA(B) PAMs, however. The studies presented here sought to investigate the AGS test as a pharmacodynamic (PD) screening model for GABA(B) PAMs by comparing the profile of structurally diverse PAMs to baclofen. GS39783, rac-BHFF, CMPPE, A-1295120 (N-(3-(4-(4-chloro-3-fluorobenzyl)-6-methoxy-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)phenyl)acetamide), and A-1474713 (N-(3-(4-(4-chlorobenzyl)-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)phenyl)acetamide) all produced robust, dose-dependent anticonvulsant effects; a similar profile was observed with baclofen. Pre-treatment with the GABA(B) antagonist SCH50911 completely blocked the anticonvulsant effects of baclofen and CMPPE in the AGS test, indicating such effects are likely mediated by the GABA(B) receptor. In addition to the standard anticonvulsant endpoint of the AGS test, video tracking software was employed to assess potential drug-induced motor side-effects during the acclimation period of the test. This analysis was sensitive to detecting drug-induced changes in total distance traveled, which was used to establish a therapeutic index (TI = hypoactivity/anticonvulsant effects). Calculated TIs for A-1295120, CMPPE, rac-BHFF, GS39783, and A-1474713 were 5.31x, 5.00x, 4.74x, 3.41x, and 1.83x, respectively, whereas baclofen was <1. The results presented here suggest the DBA/2J mouse AGS test is a potentially useful screening model for detecting PD effects of GABA(B) PAMs and can provide an initial read-out on target-related motor side-effects. Furthermore, an improved TI was observed for PAMs compared to baclofen, indicating the PAM approach may be a viable therapeutic alternative to baclofen.
Collapse
Affiliation(s)
- Jordan W Brown
- Neuroscience Discovery, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States.
| | - Achim Moeller
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Martin Schmidt
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Sean C Turner
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Volker Nimmrich
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Junli Ma
- Drug Metabolism and Pharmacokinetics, AbbVie, Inc., North Chicago, IL 60064, United States
| | - Lynne E Rueter
- Neuroscience Discovery, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States
| | - Elizabeth van der Kam
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Min Zhang
- Neuroscience Discovery, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States
| |
Collapse
|
33
|
Falsafi SK, Ghafari M, Miklósi AG, Engidawork E, Gröger M, Höger H, Lubec G. Mouse hippocampal GABAB1 but not GABAB2 subunit-containing receptor complex levels are paralleling retrieval in the multiple-T-maze. Front Behav Neurosci 2015; 9:276. [PMID: 26539091 PMCID: PMC4609755 DOI: 10.3389/fnbeh.2015.00276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
GABAB receptors are heterodimeric G-protein coupled receptors known to be involved in learning and memory. Although a role for GABAB receptors in cognitive processes is evident, there is no information on hippocampal GABAB receptor complexes in a multiple T maze (MTM) task, a robust paradigm for evaluation of spatial learning. Trained or untrained (yoked control) C57BL/6J male mice (n = 10/group) were subjected to the MTM task and sacrificed 6 h following their performance. Hippocampi were taken, membrane proteins extracted and run on blue native PAGE followed by immunoblotting with specific antibodies against GABAB1, GABAB1a, and GABAB2. Immunoprecipitation with subsequent mass spectrometric identification of co-precipitates was carried out to show if GABAB1 and GABAB2 as well as other interacting proteins co-precipitate. An antibody shift assay (ASA) and a proximity ligation assay (PLA) were also used to see if the two GABAB subunits are present in the receptor complex. Single bands were observed on Western blots, each representing GABAB1, GABAB1a, or GABAB2 at an apparent molecular weight of approximately 100 kDa. Subsequently, densitometric analysis revealed that levels of GABAB1 and GABAB1a but not GABAB2- containing receptor complexes were significantly higher in trained than untrained groups. Immunoprecipitation followed by mass spectrometric studies confirmed the presence of GABAB1, GABAB2, calcium calmodulin kinases I and II, GluA1 and GluA2 as constituents of the complex. ASA and PLA also showed the presence of the two subunits of GABAB receptor within the complex. It is shown that increased levels of GABAB1 subunit-containing complexes are paralleling performance in a land maze.
Collapse
Affiliation(s)
- Soheil K Falsafi
- Department of Pediatrics, Medical University of Vienna Vienna, Austria
| | - Maryam Ghafari
- Department of Pediatrics, Medical University of Vienna Vienna, Austria
| | - András G Miklósi
- Department of Pediatrics, Medical University of Vienna Vienna, Austria
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University Addis Ababa, Ethiopia
| | - Marion Gröger
- Skin and Endothelium Research Division, Department of Dermatology, Medical University Vienna, Austria
| | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna Vienna, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna Vienna, Austria
| |
Collapse
|
34
|
Zvejniece L, Vavers E, Svalbe B, Veinberg G, Rizhanova K, Liepins V, Kalvinsh I, Dambrova M. R-phenibut binds to the α2-δ subunit of voltage-dependent calcium channels and exerts gabapentin-like anti-nociceptive effects. Pharmacol Biochem Behav 2015; 137:23-9. [PMID: 26234470 DOI: 10.1016/j.pbb.2015.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/26/2015] [Accepted: 07/29/2015] [Indexed: 02/02/2023]
Abstract
Phenibut is clinically used anxiolytic, mood elevator and nootropic drug. R-phenibut is responsible for the pharmacological activity of racemic phenibut, and this activity correlates with its binding affinity for GABAB receptors. In contrast, S-phenibut does not bind to GABAB receptors. In this study, we assessed the binding affinities of R-phenibut, S-phenibut, baclofen and gabapentin (GBP) for the α2-δ subunit of the voltage-dependent calcium channel (VDCC) using a subunit-selective ligand, radiolabelled GBP. Binding experiments using rat brain membrane preparations revealed that the equilibrium dissociation constants (Kis) for R-phenibut, S-phenibut, baclofen and GBP were 23, 39, 156 and 0.05μM, respectively. In the pentylenetetrazole (PTZ)-induced seizure test, we found that at doses up to 100mg/kg, R-phenibut did not affect PTZ-induced seizures. The anti-nociceptive effects of R-phenibut were assessed using the formalin-induced paw-licking test and the chronic constriction injury (CCI) of the sciatic nerve model. Pre-treatment with R-phenibut dose-dependently decreased the nociceptive response during both phases of the test. The anti-nociceptive effects of R-phenibut in the formalin-induced paw-licking test were not blocked by the GABAB receptor-selective antagonist CGP35348. In addition, treatment with R- and S-phenibut alleviated the mechanical and thermal allodynia induced by CCI of the sciatic nerve. Our data suggest that the binding affinity of R-phenibut for the α2-δ subunit of the VDCC is 4 times higher than its affinity for the GABAB receptor. The anti-nociceptive effects of R-phenibut observed in the tests of formalin-induced paw licking and CCI of the sciatic nerve were associated with its effect on the α2-δ subunit of the VDCC rather than with its effects on GABAB receptors. In conclusion, our results provide experimental evidence for GBP-like, anti-nociceptive properties of R-phenibut, which might be used clinically to treat neuropathic pain disorders.
Collapse
Affiliation(s)
- Liga Zvejniece
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia.
| | - Edijs Vavers
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia; Riga Stradins University, Dzirciema 16, Riga, LV-1007, Latvia
| | - Baiba Svalbe
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Grigory Veinberg
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | | | | | - Ivars Kalvinsh
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia; Riga Stradins University, Dzirciema 16, Riga, LV-1007, Latvia
| |
Collapse
|
35
|
Abstract
We found that a neuron-specific isoform of LSD1, LSD1n, which results from an alternative splicing event, acquires a new substrate specificity, targeting histone H4 Lys20 methylation, both in vitro and in vivo. Selective genetic ablation of LSD1n led to deficits in spatial learning and memory, revealing the functional importance of LSD1n in neuronal activity-regulated transcription that is necessary for long-term memory formation. LSD1n occupied neuronal gene enhancers, promoters and transcribed coding regions, and was required for transcription initiation and elongation steps in response to neuronal activity, indicating the crucial role of H4K20 methylation in coordinating gene transcription with neuronal function. Our results indicate that this alternative splicing of LSD1 in neurons, which was associated with altered substrate specificity, serves as a mechanism acquired by neurons to achieve more precise control of gene expression in the complex processes underlying learning and memory.
Collapse
|
36
|
The GABA(B) receptor positive modulator BHF177 attenuated anxiety, but not conditioned fear, in rats. Neuropharmacology 2015; 97:357-64. [PMID: 26002628 DOI: 10.1016/j.neuropharm.2015.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/27/2015] [Accepted: 05/02/2015] [Indexed: 01/25/2023]
Abstract
GABAB (γ-aminobutyric acid B) receptors may be a therapeutic target for anxiety disorders. Here we characterized the effects of the GABAB receptor positive allosteric modulator (PAM) BHF177 on conditioned and unconditioned physiological responses to threat in the light-enhanced startle (LES), stress-induced hyperthermia, and fear-potentiated startle (FPS) procedures in rats. The effects of BHF177 on LES were compared with those of the GABAB receptor agonists baclofen and CGP44532, and the positive control buspirone, a 5-HT1A receptor partial agonist with anxiolytic activity in humans. Baclofen (0.4, 0.9 and 1.25 mg/kg) and CGP44532 (0.065, 0.125 and 0.25 mg/kg) administration had significant sedative, but not anxiolytic, activity reflected in overall decrease in the startle response in the LES tests. BHF177 (10, 20 and 40 mg/kg) had no effect on LES, nor did it produce an overall sedative effect. Interesting, however, when rats were grouped by high and low LES responses, BHF177 had anxiolytic-like effects only on LES in high, but not low, LES responding rats. BHF177 also blocked stress-induced hyperthermia, but had no effect on conditioned fear responses in the FPS test. Buspirone (1 and 3 mg/kg) had an anxiolytic-like profile in both LES and FPS tests. These results indicate that BHF177 may specifically attenuate unconditioned anxiety in individuals that exhibit a high anxiety state, and has fewer sedative effects than direct agonists. Thus, BHF177 or other GABAB receptor PAMs may be promising compounds for alleviating increased anxiety seen in various psychiatric disorders with a superior side-effect profile compared to GABAB receptor agonists.
Collapse
|
37
|
Altered emotionality and neuronal excitability in mice lacking KCTD12, an auxiliary subunit of GABAB receptors associated with mood disorders. Transl Psychiatry 2015; 5:e510. [PMID: 25689571 PMCID: PMC4445757 DOI: 10.1038/tp.2015.8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/02/2014] [Accepted: 12/19/2014] [Indexed: 12/26/2022] Open
Abstract
Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the brain, is fundamental to brain function and implicated in the pathophysiology of several neuropsychiatric disorders. GABA activates G-protein-coupled GABAB receptors comprising principal GABAB1 and GABAB2 subunits as well as auxiliary KCTD8, 12, 12b and 16 subunits. The KCTD12 gene has been associated with bipolar disorder, major depressive disorder and schizophrenia. Here we compare Kctd12 null mutant (Kctd12(-/-)) and heterozygous (Kctd12(+/-)) with wild-type (WT) littermate mice to determine whether lack of or reduced KCTD12 expression leads to phenotypes that, extrapolating to human, could constitute endophenotypes for neuropsychiatric disorders with which KCTD12 is associated. Kctd12(-/-) mice exhibited increased fear learning but not increased memory of a discrete auditory-conditioned stimulus. Kctd12(+/-) mice showed increased activity during the inactive (light) phase of the circadian cycle relative to WT and Kctd12(-/-) mice. Electrophysiological recordings from hippocampal slices, a region of high Kctd12 expression, revealed an increased intrinsic excitability of pyramidal neurons in Kctd12(-/-) and Kctd12(+/-) mice. This is the first direct evidence for involvement of KCTD12 in determining phenotypes of emotionality, behavioral activity and neuronal excitability. This study provides empirical support for the polymorphism and expression evidence that KCTD12 confers risk for and is associated with neuropsychiatric disorders.
Collapse
|
38
|
Filip M, Frankowska M, Sadakierska-Chudy A, Suder A, Szumiec Ł, Mierzejewski P, Bienkowski P, Przegaliński E, Cryan JF. GABAB receptors as a therapeutic strategy in substance use disorders: Focus on positive allosteric modulators. Neuropharmacology 2015; 88:36-47. [DOI: 10.1016/j.neuropharm.2014.06.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 06/15/2014] [Indexed: 12/16/2022]
|
39
|
Jackson E, Demarest K, Eckert WJ, Cates-Gatto C, Nadav T, Cates LN, Howard H, Roberts AJ. Aspen shaving versus chip bedding: effects on breeding and behavior. Lab Anim 2014; 49:46-56. [DOI: 10.1177/0023677214553320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The choice of laboratory cage bedding material is often based on both practical and husbandry issues, whereas behavioral outcomes rarely appear to be considered. It has been noted that a breeding success difference appears to be associated with the differential use of aspen chip and aspen shaving bedding in our facility; therefore, we sought to analyze breeding records maintained over a 20-month period. In fact, in all four mouse strains analyzed, shaving bedding was associated with a significant increase in average weanlings per litter relative to chip bedding. To determine whether these bedding types also resulted in differences in behaviors associated with wellbeing, we examined nest building, anxiety-like, depressive-like (or helpless-like), and social behavior in mice housed on chip versus shaving bedding. We found differences in the nests built, but no overall effect of bedding type on the other behaviors examined. Therefore, we argue that breeding success, perhaps especially in more challenging strains, is improved on shaving bedding and this is likely due to improved nest-building potential. For standard laboratory practices, however, these bedding types appear equivalent.
Collapse
Affiliation(s)
- E Jackson
- Mouse Behavioral Assessment Core Facility, The Scripps Research Institute, LA Jolla, CA, USA
| | - K Demarest
- Department of Animal Resources, The Scripps Research Institute, La Jolla, CA, USA
| | - W J Eckert
- Department of Animal Resources, The Scripps Research Institute, La Jolla, CA, USA
| | - C Cates-Gatto
- Mouse Behavioral Assessment Core Facility, The Scripps Research Institute, LA Jolla, CA, USA
| | - T Nadav
- Mouse Behavioral Assessment Core Facility, The Scripps Research Institute, LA Jolla, CA, USA
| | - L N Cates
- Mouse Behavioral Assessment Core Facility, The Scripps Research Institute, LA Jolla, CA, USA
| | - H Howard
- Department of Animal Resources, The Scripps Research Institute, La Jolla, CA, USA
| | - A J Roberts
- Mouse Behavioral Assessment Core Facility, The Scripps Research Institute, LA Jolla, CA, USA
| |
Collapse
|
40
|
Hwa LS, Kalinichev M, Haddouk H, Poli S, Miczek KA. Reduction of excessive alcohol drinking by a novel GABAB receptor positive allosteric modulator ADX71441 in mice. Psychopharmacology (Berl) 2014; 231:333-43. [PMID: 23975038 PMCID: PMC3947346 DOI: 10.1007/s00213-013-3245-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022]
Abstract
RATIONALE A promising pharmacotherapy for alcohol use disorders has been positive allosteric modulators (PAMs) of the γ-aminobutyric acid receptor B (GABAB R) since GABAB R PAMs reduce ethanol drinking and self-administration in rodents. OBJECTIVE The current studies investigated a novel, selective GABAB R PAM, ADX71441, in comparison to naltrexone in a protocol of ethanol binge-like drinking, drinking-in-the-dark (DID), and in a model of long-term, excessive drinking, intermittent access to ethanol (IA). METHODS Male C57BL/6 J mice were given doses of ADX71441 (3, 10, 30 mg/kg, p.o.) before the fourth test day of repeated DID access to 20 % ethanol. Another group of mice had a history of 4 weeks of IA before ADX71441 (3, 10, 17 mg/kg, p.o.) treatment. The opioid antagonist, naltrexone (0.1, 1, 10 mg/kg, i.p.), was administered to different groups of mice in both protocols as a positive control. RESULTS In both DID and IA protocols, ADX71441 showed a selective and potent reduction of ethanol drinking, but not water drinking, while naltrexone had a more modest and transient effect on reducing ethanol drinking. The long-lasting effect of ADX71441 agrees with its plasma pharmacokinetics in showing peak concentrations at 2 h followed by a slow decay lasting well beyond 8 h. CONCLUSIONS These findings support previous studies demonstrating that GABAB R PAMs decrease voluntary ethanol intake without altering water intake. ADX71441 may be a worthwhile candidate for developing a treatment of alcoholism, yet its site of action in the brain and long-term pharmacological effects require further exploration.
Collapse
Affiliation(s)
- Lara S. Hwa
- Department of Psychology, Tufts University, 530 Boston Avenue, Medford, MA 02155, USA
| | | | | | | | - Klaus A. Miczek
- Department of Psychology, Tufts University, 530 Boston Avenue, Medford, MA 02155, USA. Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
41
|
Fox H, Sinha R. The role of guanfacine as a therapeutic agent to address stress-related pathophysiology in cocaine-dependent individuals. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:217-65. [PMID: 24484979 DOI: 10.1016/b978-0-12-420118-7.00006-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The pathophysiology of cocaine addiction is linked to changes within neural systems and brain regions that are critical mediators of stress system sensitivity and behavioral processes associated with the regulation of adaptive goal-directed behavior. This is characterized by the upregulation of core adrenergic and corticotropin-releasing factor mechanisms that subserve negative affect and anxiety and impinge upon intracellular pathways in the prefrontal cortex underlying cognitive regulation of stress and negative emotional state. Not only are these mechanisms essential to the severity of cocaine withdrawal symptoms, and hence the trajectory of clinical outcome, but also they may be particularly pertinent to the demography of cocaine dependence. The ability of guanfacine to target overlapping stress, reward, and anxiety pathophysiology suggests that it may be a useful agent for attenuating the stress- and cue-induced craving state not only in women but also in men. This is supported by recent research findings from our own laboratory. Additionally, the ability of guanfacine to improve regulatory mechanisms that are key to exerting cognitive and emotional control over drug-seeking behavior also suggests that guanfacine may be an effective medication for reducing craving and relapse vulnerability in many drugs of abuse. As cocaine-dependent individuals are typically polydrug abusers and women may be at a greater disadvantage for compulsive drug use than men, it is plausible that medications that target catecholaminergic frontostriatal inhibitory circuits and simultaneously reduce stress system arousal may provide added benefits for attenuating cocaine dependence.
Collapse
Affiliation(s)
- Helen Fox
- Yale Stress Center, Yale University School of Medicine, New Haven Connecticut USA.
| | - Rajita Sinha
- Yale Stress Center, Yale University School of Medicine, New Haven Connecticut USA
| |
Collapse
|
42
|
Li X, Semenova S, D'Souza MS, Stoker AK, Markou A. Involvement of glutamatergic and GABAergic systems in nicotine dependence: Implications for novel pharmacotherapies for smoking cessation. Neuropharmacology 2014; 76 Pt B:554-65. [PMID: 23752091 PMCID: PMC3830589 DOI: 10.1016/j.neuropharm.2013.05.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 01/29/2023]
Abstract
Tobacco smoking continues to be a major global health hazard despite significant public awareness of its harmful consequences. Although several treatment options are currently available for smoking cessation, these medications are effective in only a small subset of smokers, and relapse rates continue to be high. Therefore, a better understanding of the neurobiological mechanisms that mediate tobacco dependence is essential for the development of effective smoking cessation medications. Nicotine is the primary psychoactive component of tobacco that drives the harmful tobacco smoking habit. Nicotine binds to nicotinic acetylcholine receptors (nAChRs) in the brain, resulting in the release of a wide range of neurotransmitters, including glutamate and γ-aminobutyric acid (GABA). This review article focuses on the role of the excitatory glutamate system and inhibitory GABA system in nicotine dependence. Accumulating evidence suggests that blockade of glutamatergic transmission or facilitation of GABAergic transmission attenuates the positive reinforcing and incentive motivational aspects of nicotine, inhibits the reward-enhancing and conditioned rewarding effects of nicotine, and blocks nicotine-seeking behavior. Chronic nicotine exposure produced long-term neuroadaptations that contribute to nicotine withdrawal, but the role of GABA and glutamate transmission in nicotine withdrawal is less understood. Overall, the findings presented in this review provide strong converging evidence for the potential effectiveness of glutamatergic and GABAergic medications in nicotine dependence. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
| | | | | | - Astrid K. Stoker
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Athina Markou
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
43
|
Sweeney FF, O’Leary OF, Cryan JF. GABAB receptor ligands do not modify conditioned fear responses in BALB/c mice. Behav Brain Res 2013; 256:151-6. [DOI: 10.1016/j.bbr.2013.07.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/21/2013] [Indexed: 01/15/2023]
|