1
|
Wang H, Lu X, Ye Y, Huang C, Fang Y, Yang R, Sun M, Ren J, Song R, Xu F, Su J, Hong H, Huang C. Stimulation of microglia leads to a rapid antidepressant effect by triggering astrocytic P2Y1Rs and promoting BDNF-mediated neurogenesis in the hippocampus. Brain Behav Immun 2025; 128:134-151. [PMID: 40194747 DOI: 10.1016/j.bbi.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/29/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025] Open
Abstract
Reversing the decline of microglia in the dentate gyrus of stressed animals has antidepressant effects, but the molecular mechanisms are unclear. Since microglia normally interact with astrocytes and astrocytic purinergic 2Y1 receptor (P2Y1R) signaling plays an important role in regulating cellular crosstalk, we hypothesize that astrocytic P2Y1R signaling may mediate the antidepressant effects of microglia stimulation. Our results showed that a single injection of low-dose lipopolysaccharide (LPS) (100 μg/kg) elicited rapid antidepressant effects and a significant increase in adenosine triphosphate (ATP) levels in the dentate gyrus in chronically stressed mice, and that these effects of LPS were abolished by chemogenetic inhibition of microglia. Depletion of endogenous ATP, non-specific antagonization of purinergic receptors, or specific inhibition of P2Y1Rs, but not other purinergic receptors, by MRS2179 in the hippocampus abolished the antidepressant effects of low-dose LPS. Conditional gene knockout data showed that the antidepressant effect of low-dose LPS could not be observed in mice lacking P2Y1Rs in astrocytes but not in forebrain neurons. Chemogenetic inhibition of microglia in the dentate gyrus, specific deletion of P2Y1Rs in astrocytes and the absence of ATP abolished the increase in doublecortin (DCX)+ cells and brain-derived neurotrophic factor (BDNF) induced by a low dose of LPS in the dentate gyrus of stressed mice, and infusion of BDNF antibodies into the hippocampus simultaneously abolished the pro-neurogenesis and antidepressant effects of microglia stimulation in stressed mice. Taken together, these results suggest that ATP signaling mobilized by microglia stimulation has an antidepressant effect by triggering astrocytic P2Y1R-dependent synthesis of BDNF.
Collapse
Affiliation(s)
- Hanxiao Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001 Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001 Jiangsu, China
| | - Ying Ye
- Department of Ultrasound, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001 Jiangsu, China
| | - Chen Huang
- Department of Vascular Surgery, Affiliated Hospital of Nantong University, Jiangsu Province, #20 Xisi Road, Nantong 226001 Jiangsu, China
| | - Yunli Fang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001 Jiangsu, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001 Jiangsu, China
| | - Micona Sun
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001 Jiangsu, China
| | - Jie Ren
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001 Jiangsu, China
| | - Rongrong Song
- Department of Emergency and Critical Care Medicine, Tongzhou People's Hospital, #999 Jianshe Road, Nantong 226300 Jiangsu, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, #666 Shengli Road, Nantong 226006 Jiangsu, China
| | - Jianbin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, #666 Shengli Road, Nantong 226006 Jiangsu, China
| | - Hongxiang Hong
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, #666 Shengli Road, Nantong 226006 Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001 Jiangsu, China.
| |
Collapse
|
2
|
Reynolds KE, Huang E, Sabbineni M, Wiseman E, Murtaza N, Ahuja D, Napier M, Murphy KM, Singh KK, Scott AL. Purinergic Signalling Mediates Aberrant Excitability of Developing Neuronal Circuits in the Fmr1 Knockout Mouse Model. Mol Neurobiol 2024; 61:9507-9528. [PMID: 38652351 DOI: 10.1007/s12035-024-04181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Neuronal hyperexcitability within developing cortical circuits is a common characteristic of several heritable neurodevelopmental disorders, including Fragile X Syndrome (FXS), intellectual disability and autism spectrum disorders (ASD). While this aberrant circuitry is typically studied from a neuron-centric perspective, glial cells secrete soluble factors that regulate both neurite extension and synaptogenesis during development. The nucleotide-mediated purinergic signalling system is particularly instrumental in facilitating these effects. We recently reported that within a FXS animal model, the Fmr1 KO mouse, the purinergic signalling system is upregulated in cortical astrocytes leading to altered secretion of synaptogenic and plasticity-related proteins. In this study, we examined whether elevated astrocyte purinergic signalling also impacts neuronal morphology and connectivity of Fmr1 KO cortical neurons. Here, we found that conditioned media from primary Fmr1 KO astrocytes was sufficient to enhance neurite extension and complexity of both wildtype and Fmr1 KO neurons to a similar degree as UTP-mediated outgrowth. Significantly enhanced firing was also observed in Fmr1 KO neuron-astrocyte co-cultures grown on microelectrode arrays but was associated with large deficits in firing synchrony. The selective P2Y2 purinergic receptor antagonist AR-C 118925XX effectively normalized much of the aberrant Fmr1 KO activity, designating P2Y2 as a potential therapeutic target in FXS. These results not only demonstrate the importance of astrocyte soluble factors in the development of neural circuitry, but also show that P2Y purinergic receptors play a distinct role in pathological FXS neuronal activity.
Collapse
Affiliation(s)
- Kathryn E Reynolds
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Eileen Huang
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Monica Sabbineni
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Eliza Wiseman
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Nadeem Murtaza
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Desmond Ahuja
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Matt Napier
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon St, Guelph, ON, Canada
| | - Kathryn M Murphy
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
| | | | - Angela L Scott
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
- Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon St, Guelph, ON, Canada.
| |
Collapse
|
3
|
Braune M, Scherf N, Heine C, Sygnecka K, Pillaiyar T, Parravicini C, Heimrich B, Abbracchio MP, Müller CE, Franke H. Involvement of GPR17 in Neuronal Fibre Outgrowth. Int J Mol Sci 2021; 22:ijms222111683. [PMID: 34769111 PMCID: PMC8584086 DOI: 10.3390/ijms222111683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
Characterization of new pharmacological targets is a promising approach in research of neurorepair mechanisms. The G protein-coupled receptor 17 (GPR17) has recently been proposed as an interesting pharmacological target, e.g., in neuroregenerative processes. Using the well-established ex vivo model of organotypic slice co-cultures of the mesocortical dopaminergic system (prefrontal cortex (PFC) and substantia nigra/ventral tegmental area (SN/VTA) complex), the influence of GPR17 ligands on neurite outgrowth from SN/VTA to the PFC was investigated. The growth-promoting effects of Montelukast (MTK; GPR17- and cysteinyl-leukotriene receptor antagonist), the glial cell line-derived neurotrophic factor (GDNF) and of two potent, selective GPR17 agonists (PSB-16484 and PSB-16282) were characterized. Treatment with MTK resulted in a significant increase in mean neurite density, comparable with the effects of GDNF. The combination of MTK and GPR17 agonist PSB-16484 significantly inhibited neuronal growth. qPCR studies revealed an MTK-induced elevated mRNA-expression of genes relevant for neuronal growth. Immunofluorescence labelling showed a marked expression of GPR17 on NG2-positive glia. Western blot and RT-qPCR analysis of untreated cultures suggest a time-dependent, injury-induced stimulation of GPR17. In conclusion, MTK was identified as a stimulator of neurite fibre outgrowth, mediating its effects through GPR17, highlighting GPR17 as an interesting therapeutic target in neuronal regeneration.
Collapse
Affiliation(s)
- Max Braune
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.B.); (C.H.); (K.S.)
| | - Nico Scherf
- Methods and Development Group Neural Data Analysis and Statistical Computing, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany;
| | - Claudia Heine
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.B.); (C.H.); (K.S.)
| | - Katja Sygnecka
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.B.); (C.H.); (K.S.)
| | - Thanigaimalai Pillaiyar
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (T.P.); (C.E.M.)
| | - Chiara Parravicini
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (C.P.); (M.P.A.)
| | - Bernd Heimrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Albertstr. 23, 79104 Freiburg, Germany;
| | - Maria P. Abbracchio
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (C.P.); (M.P.A.)
| | - Christa E. Müller
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (T.P.); (C.E.M.)
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.B.); (C.H.); (K.S.)
- Correspondence: ; Tel.: +49-(0)341-9724602; Fax: +49-(0)341-9724609
| |
Collapse
|
4
|
BAC transgenic mice to study the expression of P2X2 and P2Y 1 receptors. Purinergic Signal 2021; 17:449-465. [PMID: 34050505 PMCID: PMC8410928 DOI: 10.1007/s11302-021-09792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
Extracellular purines are important signaling molecules involved in numerous physiological and pathological processes via the activation of P2 receptors. Information about the spatial and temporal P2 receptor (P2R) expression and its regulation remains crucial for the understanding of the role of P2Rs in health and disease. To identify cells carrying P2X2Rs in situ, we have generated BAC transgenic mice that express the P2X2R subunits as fluorescent fusion protein (P2X2-TagRFP). In addition, we generated a BAC P2Y1R TagRFP reporter mouse expressing a TagRFP reporter for the P2RY1 gene expression. We demonstrate expression of the P2X2R in a subset of DRG neurons, the brain stem, the hippocampus, as well as on Purkinje neurons of the cerebellum. However, the weak fluorescence intensity in our P2X2R-TagRFP mouse precluded tracking of living cells. Our P2Y1R reporter mice confirmed the widespread expression of the P2RY1 gene in the CNS and indicate for the first time P2RY1 gene expression in mouse Purkinje cells, which so far has only been described in rats and humans. Our P2R transgenic models have advanced the understanding of purinergic transmission, but BAC transgenic models appeared not always to be straightforward and permanent reliable. We noticed a loss of fluorescence intensity, which depended on the number of progeny generations. These problems are discussed and may help to provide more successful animal models, even if in future more versatile and adaptable nuclease-mediated genome-editing techniques will be the methods of choice.
Collapse
|
5
|
Menéndez Méndez A, Smith J, Engel T. Neonatal Seizures and Purinergic Signalling. Int J Mol Sci 2020; 21:ijms21217832. [PMID: 33105750 PMCID: PMC7660091 DOI: 10.3390/ijms21217832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Neonatal seizures are one of the most common comorbidities of neonatal encephalopathy, with seizures aggravating acute injury and clinical outcomes. Current treatment can control early life seizures; however, a high level of pharmacoresistance remains among infants, with increasing evidence suggesting current anti-seizure medication potentiating brain damage. This emphasises the need to develop safer therapeutic strategies with a different mechanism of action. The purinergic system, characterised by the use of adenosine triphosphate and its metabolites as signalling molecules, consists of the membrane-bound P1 and P2 purinoreceptors and proteins to modulate extracellular purine nucleotides and nucleoside levels. Targeting this system is proving successful at treating many disorders and diseases of the central nervous system, including epilepsy. Mounting evidence demonstrates that drugs targeting the purinergic system provide both convulsive and anticonvulsive effects. With components of the purinergic signalling system being widely expressed during brain development, emerging evidence suggests that purinergic signalling contributes to neonatal seizures. In this review, we first provide an overview on neonatal seizure pathology and purinergic signalling during brain development. We then describe in detail recent evidence demonstrating a role for purinergic signalling during neonatal seizures and discuss possible purine-based avenues for seizure suppression in neonates.
Collapse
Affiliation(s)
- Aida Menéndez Méndez
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
| | - Jonathon Smith
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- Correspondence: ; Tel.: +35-314-025-199
| |
Collapse
|
6
|
Das R, Chinnathambi S. Actin-mediated Microglial Chemotaxis via G-Protein Coupled Purinergic Receptor in Alzheimer's Disease. Neuroscience 2020; 448:325-336. [PMID: 32941933 DOI: 10.1016/j.neuroscience.2020.09.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease mainly associated with aging, oxidative stress and genetic mutations. There are two pathological proteins involved in AD; Amyloid-β peptide and microtubule-associated protein Tau (MAPT). The β- and γ-secretase enzyme cleaves the Amyloid precursor protein, which results in the formation of extracellular plaques in brain. While, Tau undergoes hyperphosphorylation and other post-translational modifications (PTMs), which eventually generates Tau oligomers, and intracellular neurofibrillary tangles (NFTs) in neurons. Moreover, the brain-resident glia and infiltrated macrophages elevate the level of CNS inflammation, which trigger the oxidative damage of neuronal circuits by reactive oxygen species (ROS) and Nitric oxide (NO). Microglia is the primary immune cell in the CNS, which is continuously surveilling the neuronal synapses and pathogen invasion. Microglia in the resting state is called 'Ramified', which possess long surveilling extensions with a small cell body. But, upon activation, microglia retracts the cellular extensions and transform into round migratory cells, called as 'Amoeboid' state. Activated microglia undergoes actin remodeling by forming lamellipodia and filopodia, which directs the migratory axis while podosomes formed are involved in extracellular matrix degradation for invasion. Protein-aggregates in malfunctioning synapses and in CNS milieu can be detected by microglia, which results in its activation and migration. Subsequently, the phagocytosis of synapses leads to the inflammatory burst and memory loss. The extracellular nucleotides released from damaged neurons and the cytokine-chemokine gradients allow the neighboring microglia and macrophages to migrate-infiltrate at the site of neuronal-damage. The ionotropic (P2XR) and metabotropic (P2YR) purinergic receptor recognize extracellular ATP/ADP, which propagates through the intracellular calcium signaling, chemotaxis, phagocytosis and inflammation. The P2Y receptors give 'find me' or 'eat me' signals to microglia to either migrate or phagocytose cellular debris. Further, the actin cytoskeleton helps microglia to mediate directed chemotaxis and neuronal repair during neurodegeneration. Hence, we aim to emphasize the connection between purinergic signaling and actin-driven mechanical movements of microglia for migration and inflammation in AD.
Collapse
Affiliation(s)
- Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India.
| |
Collapse
|
7
|
Rodrigues RJ, Marques JM, Cunha RA. Purinergic signalling and brain development. Semin Cell Dev Biol 2019; 95:34-41. [DOI: 10.1016/j.semcdb.2018.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/01/2018] [Accepted: 12/01/2018] [Indexed: 11/27/2022]
|
8
|
de Almeida-Pereira L, Repossi MG, Magalhães CF, Azevedo RDF, Corrêa-Velloso JDC, Ulrich H, Ventura ALM, Fragel-Madeira L. P2Y 12 but not P2Y 13 Purinergic Receptor Controls Postnatal Rat Retinogenesis In Vivo. Mol Neurobiol 2018; 55:8612-8624. [PMID: 29574630 DOI: 10.1007/s12035-018-1012-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/16/2018] [Indexed: 12/16/2022]
Abstract
Adenine nucleotides through P2Y1 receptor stimulation are known to control retinal progenitor cell (RPC) proliferation by modulating expression of the p57KIP2, a cell cycle regulator. However, the role of Gi protein-coupled P2Y12 and P2Y13 receptors also activated by adenine nucleotides in RPC proliferation is still unknown. Gene expression of the purinergic P2Y12 subtype was detected in rat retina during early postnatal days (P0 to P5), while expression levels of P2Y13 were low. Immunohistochemistry assays performed with rat retina on P3 revealed P2Y12 receptor expression in both Ki-67-positive cells in the neuroblastic layer and Ki-67-negative cells in the ganglion cell layer and inner nuclear layer. Nonetheless, P2Y13 receptor expression could not be detected in any stratum of rat retina. Intravitreal injection of PSB 0739 or clopidogrel, both selective P2Y12 receptor antagonists, increased by 20 and 15%, respectively, the number of Ki-67-positive cells following 24 h of exposure. Moreover, the P2Y12 receptor inhibition increased cyclin D1 and decreased p57KIP2 expression. However, there were no changes in the S phase of the cell cycle (BrdU-positive cells) or in mitosis (phospho-histone-H3-positive cells). Interestingly, an increase in the number of cyclin D1/TUNEL-positive cells after treatment with PSB 0739 was observed. These data suggest that activation of P2Y12 receptors is required for the successful exit of RPCs from cell cycle in the postnatal rat retina.
Collapse
Affiliation(s)
- Luana de Almeida-Pereira
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Marinna Garcia Repossi
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Camila Feitosa Magalhães
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | | | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Lucianne Fragel-Madeira
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil.
| |
Collapse
|
9
|
Khalafalla FG, Greene S, Khan H, Ilves K, Monsanto MM, Alvarez R, Chavarria M, Nguyen J, Norman B, Dembitsky WP, Sussman MA. P2Y 2 Nucleotide Receptor Prompts Human Cardiac Progenitor Cell Activation by Modulating Hippo Signaling. Circ Res 2017; 121:1224-1236. [PMID: 28923792 DOI: 10.1161/circresaha.117.310812] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/08/2017] [Accepted: 09/15/2017] [Indexed: 12/31/2022]
Abstract
RATIONALE Autologous stem cell therapy using human c-Kit+ cardiac progenitor cells (hCPCs) is a promising therapeutic approach for treatment of heart failure (HF). However, hCPCs derived from aged patients with HF with genetic predispositions and comorbidities of chronic diseases exhibit poor proliferative and migratory capabilities, which impair overall reparative potential for injured myocardium. Therefore, empowering functionally compromised hCPCs with proregenerative molecules ex vivo is crucial for improving the therapeutic outcome in patients with HF. OBJECTIVE To improve hCPC proliferation and migration responses that are critical for regeneration by targeting proregenerative P2Y2 nucleotide receptor (P2Y2R) activated by extracellular ATP and UTP molecules released following injury/stress. METHODS AND RESULTS c-Kit+ hCPCs were isolated from cardiac tissue of patients with HF undergoing left ventricular assist device implantation surgery. Correlations between P2 nucleotide receptor expression and hCPC growth kinetics revealed downregulation of select P2 receptors, including P2Y2R, in slow-growing hCPCs compared with fast growers. hCPC proliferation and migration significantly improved by overexpressing or stimulating P2Y2R. Mechanistically, P2Y2R-induced proliferation and migration were dependent on activation of YAP (yes-associated protein)-the downstream effector of Hippo signaling pathway. CONCLUSIONS Proliferation and migration of functionally impaired hCPCs are enhanced by P2Y2R-mediated YAP activation, revealing a novel link between extracellular nucleotides released during injury/stress and Hippo signaling-a central regulator of cardiac regeneration. Functional correlations exist between hCPC phenotypic properties and P2 purinergic receptor expression. Lack of P2Y2R and other crucial purinergic stress detectors could compromise hCPC responsiveness to presence of extracellular stress signals. These findings set the stage for subsequent studies to assess purinergic signaling modulation as a potential strategy to improve therapeutic outcome for use of hCPCs in patients with HF.
Collapse
Affiliation(s)
- Farid G Khalafalla
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Steven Greene
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Hashim Khan
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Kelli Ilves
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Megan M Monsanto
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Roberto Alvarez
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Monica Chavarria
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Jonathan Nguyen
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Benjamin Norman
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Walter P Dembitsky
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Mark A Sussman
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.).
| |
Collapse
|
10
|
Yang X, Lou Y, Liu G, Wang X, Qian Y, Ding J, Chen S, Xiao Q. Microglia P2Y6 receptor is related to Parkinson's disease through neuroinflammatory process. J Neuroinflammation 2017; 14:38. [PMID: 28219441 PMCID: PMC5319038 DOI: 10.1186/s12974-017-0795-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Microglia in the central nervous system (CNS) were reported to play crucial role in neurodegeneration. Previous studies showed that P2Y6 receptor (P2Y6R) mainly contributed to microglia activation and phagocytosis in CNS. However, the level of P2Y6R in Parkinson's disease (PD) patients is unclear. Therefore, we measured the level of P2Y6R in PD patients and speculated whether it could be a potential biomarker for PD. Given on the basis that P2Y6R was higher in PD patients, we further explored the mechanisms underlying P2Y6R in the pathogenesis of PD. METHODS We tested the expression level of P2Y6R in the peripheral blood mononuclear cells (PBMCs) among 145 PD patients, 170 healthy controls, and 30 multiple system atrophy (MSA) patients. We also used a lipopolysaccharide (LPS)-stimulated microglial cell culture model to investigate (i) the effects of LPS on P2Y6R expression with western blot and RT-PCR, (ii) the effects of LPS on UDP expression using HPLC, (iii) the effects of UDP/P2Y6R signaling on cytokine expression using western blot, RT-PCR, and ELISA, and (iv) the signaling pathways activated by the P2Y6R involved in the neuroinflammation. RESULTS Expression levels of P2Y6R in PD patients were higher than healthy controls and MSA patients. P2Y6R could be a good biomarker of PD. P2Y6R was also upregulated in LPS-treated BV-2 cells and involved in proinflammatory cytokine release through an autocrine loop based on LPS-triggered UDP secretion and accelerated neuroinflammatory responses through the ERK1/2 pathway. Importantly, blocking UDP/P2Y6R signaling could reverse these pathological processes. CONCLUSIONS P2Y6R may be a potential clinical biomarker of PD. Blocking P2Y6R may be a potential therapeutic approach to the treatment of PD patients through inhibition of microglia-activated neuroinflammation.
Collapse
Affiliation(s)
- Xiaodong Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yue Lou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Guidong Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xueping Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yiwei Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Jianqing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Qin Xiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
11
|
von Kügelgen I, Hoffmann K. Pharmacology and structure of P2Y receptors. Neuropharmacology 2015; 104:50-61. [PMID: 26519900 DOI: 10.1016/j.neuropharm.2015.10.030] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/30/2023]
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14). P2Y receptors are widely expressed and play important roles in physiology and pathophysiology. One important example is the ADP-induced platelet aggregation mediated by P2Y1 and P2Y12 receptors. Active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel as well as the nucleoside analogue ticagrelor block P2Y12 receptors and thereby platelet aggregation. These drugs are used for the prevention and therapy of cardiovascular events. Moreover, P2Y receptors play important roles in the nervous system. Adenine nucleotides modulate neuronal activity and neuronal fibre outgrowth by activation of P2Y1 receptors and control migration of microglia by P2Y12 receptors. UDP stimulates microglial phagocytosis through activation of P2Y6 receptors. There is evidence for a role for P2Y2 receptors in Alzheimer's disease pathology. The P2Y receptor subtypes are highly diverse in both their amino acid sequences and their pharmacological profiles. Selective receptor ligands have been developed for the pharmacological characterization of the receptor subtypes. The recently published three-dimensional crystal structures of the human P2Y1 and P2Y12 receptors will facilitate the development of therapeutic agents that selectively target P2Y receptors. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127 Bonn, Germany.
| | - Kristina Hoffmann
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127 Bonn, Germany
| |
Collapse
|
12
|
Purines in neurite growth and astroglia activation. Neuropharmacology 2015; 104:255-71. [PMID: 26498067 DOI: 10.1016/j.neuropharm.2015.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 12/19/2022]
Abstract
The mammalian nervous system is a complex, functional network of neurons, consisting of local and long-range connections. Neuronal growth is highly coordinated by a variety of extracellular and intracellular signaling molecules. Purines turned out to be an essential component of these processes. Here, we review the current knowledge about the involvement of purinergic signaling in the regulation of neuronal development. We particularly focus on its role in neuritogenesis: the formation and extension of neurites. In the course of maturation mammals generally lose their ability to regenerate the central nervous system (CNS) e.g. after traumatic brain injury; although, spontaneous regeneration still occurs in the peripheral nervous system (PNS). Thus, it is crucial to translate the knowledge about CNS development and PNS regeneration into novel approaches to enable neurons of the mature CNS to regenerate. In this context we give a general overview of growth-inhibitory and growth-stimulatory factors and mechanisms involved in neurite growth. With regard to neuronal growth, astrocytes are an important cell population. They provide structural and metabolic support to neurons and actively participate in brain signaling. Astrocytes respond to injury with beneficial or detrimental reactions with regard to axonal growth. In this review we present the current knowledge of purines in these glial functions. Moreover, we discuss organotypic brain slice co-cultures as a model which retains neuron-glia interactions, and further presents at once a model for CNS development and regeneration. In summary, the purinergic system is a pivotal factor in neuronal development and in the response to injury. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
|
13
|
Oliveira SLB, Trujillo CA, Negraes PD, Ulrich H. Effects of ATP and NGF on Proliferation and Migration of Neural Precursor Cells. Neurochem Res 2015; 40:1849-57. [PMID: 26233465 DOI: 10.1007/s11064-015-1674-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/24/2015] [Accepted: 07/17/2015] [Indexed: 12/20/2022]
Abstract
Purinergic receptors belong to the most ancient neurotransmitter system. While their relevance in neurotransmission is well characterized, it has become clear that they have many other cellular functions. During development, they participate in regulation of proliferation and differentiation of stem cells. Here, we used rat embryonic telencephalon neurosphere cultures to detect purinergic P2 receptor subtype expression and possible synergistic actions of these receptors with NGF. Neurospheres proliferate in the presence of EGF and FGF-2; however, upon depletion of these growth factors, they migrate and differentiate into neurons and glial phenotypes. Expression patterns of P2X and P2Y receptors changed along neural differentiation. Gene expression of P2X2-7 and P2Y1,2,4,6,12,14 receptors was confirmed in undifferentiated and neural-differentiated neurospheres, with an up-regulation of P2X2 and P2X6 subtypes, together with a down-regulation of P2X4, P2X7 and P2Y subtypes upon induction to differentiation. BrdU-labeling and subsequent flow cytometry analysis was used to measure cell proliferation, which was increased by chronic exposure to NGF and increasing concentrations of ATP, in line with the expression levels of PCNA. Furthermore, a synergistic effect on proliferation was observed in conditions of co-incubation with ATP and NGF. While ATP and NGF independently promoted neural migration, no inter-relation between these factors was detected for this cellular process. As conclusion, an unknown synergism of ATP and NGF in proliferation is described. Future efforts may elucidate the underlying mechanisms of the interrelationship of ATP and NGF during neurogenesis.
Collapse
Affiliation(s)
- Sophia L B Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, CEP 05513-970, Brazil
| | | | | | | |
Collapse
|