1
|
Azevedo EM, Fracaro L, Hochuli AHD, Ilkiw J, Bail EL, Lisboa MDO, Rodrigues LS, Barchiki F, Correa A, Capriglione LGA, Brofman PRS, Lima MMS. Comparative analysis of uninduced and neuronally-induced human dental pulp stromal cells in a 6-OHDA model of Parkinson's disease. Cytotherapy 2024; 26:1052-1061. [PMID: 38739074 DOI: 10.1016/j.jcyt.2024.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND In recent years, dental pulp stromal cells (DPSCs) have emerged as a promising therapeutic approach for Parkinson's disease (PD), owing to their inherent neurogenic potential and the lack of neuroprotective treatments for this condition. However, uncertainties persist regarding the efficacy of these cells in an undifferentiated state versus a neuronally-induced state. This study aims to delineate the distinct therapeutic potential of uninduced and neuronally-induced DPSCs in a rodent model of PD induced by 6-Hydroxydopamine (6-OHDA). METHODS DPSCs were isolated from human teeth, characterized as mesenchymal stromal cells, and induced to neuronal differentiation. Neuronal markers were assessed before and after induction. DPSCs were transplanted into the substantia nigra pars compacta (SNpc) of rats 7 days following the 6-OHDA lesion. In vivo tracking of the cells, evaluation of locomotor behavior, dopaminergic neuron survival, and the expression of essential proteins within the dopaminergic system were conducted 7 days postgrafting. RESULTS Isolated DPSCs exhibited typical characteristics of mesenchymal stromal cells and maintained a normal karyotype. DPSCs consistently expressed neuronal markers, exhibiting elevated expression of βIII-tubulin following neuronal induction. Results from the animal model showed that both DPSC types promoted substantial recovery in dopaminergic neurons, correlating with enhanced locomotion. Additionally, neuronally-induced DPSCs prevented GFAP elevation, while altering DARPP-32 phosphorylation states. Conversely, uninduced DPSCs reduced JUN levels. Both DPSC types mitigated the elevation of glycosylated DAT. CONCLUSIONS Our results suggested that uninduced DPSCs and neuronally-induced DPSCs exhibit potential in reducing dopaminergic neuron loss and improving locomotor behavior, but their underlying mechanisms differ.
Collapse
Affiliation(s)
- Evellyn M Azevedo
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Agner H D Hochuli
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Jéssica Ilkiw
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Ellen L Bail
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Mateus de O Lisboa
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Lais S Rodrigues
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Fabiane Barchiki
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Alejandro Correa
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba, Brazil
| | - Luiz G A Capriglione
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Paulo R S Brofman
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Marcelo M S Lima
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
| |
Collapse
|
2
|
Jin X, Dong W, Chang K, Yan Y. Research on the signaling pathways related to the intervention of traditional Chinese medicine in Parkinson's disease:A literature review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117850. [PMID: 38331124 DOI: 10.1016/j.jep.2024.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is the most common progressive neurodegenerative disorder affecting more than 10 million people worldwide and is characterized by the progressive loss of Daergic (DA) neurons in the substantia nigra pars compacta. It has been reported that signaling pathways play a crucial role in the pathogenesis of PD, while the active ingredients of traditional Chinese medicine (TCM) have been found to possess a protective effect against PD. TCM has demonstrated significant potential in mitigating oxidative stress (OS), neuroinflammation, and apoptosis of DA neurons via the regulation of signaling pathways associated with PD. AIM OF THE REVIEW This study discussed and analyzed the signaling pathways involved in the occurrence and development of PD and the mechanism of active ingredients of TCM regulating PD via signaling pathways, with the aim of providing a basis for the development and clinical application of therapeutic strategies for TCM in PD. MATERIALS AND METHODS With "Parkinson's disease", "Idiopathic Parkinson's Disease", "Lewy Body Parkinson's Disease", "Parkinson's Disease, Idiopathic", "Parkinson Disease, Idiopathic", "Parkinson's disorders", "Parkinsonism syndrome", "Traditional Chinese medicine", "Chinese herbal medicine", "active ingredients", "medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS PD exhibits a close association with various signaling pathways, including but not limited to MAPKs, NF-κB, PI3K/Akt, Nrf2/ARE, Wnt/β-catenin, TLR/TRIF, NLRP3, Notch. The therapeutic potential of TCM lies in its ability to regulate these signaling pathways. In addition, the active ingredients of TCM have shown significant effects in improving OS, neuroinflammation, and DA neuron apoptosis in PD. CONCLUSION The active ingredients of TCM have unique advantages in regulating PD-related signaling pathways. It is suggested to combine network pharmacology and bioinformatics to study the specific targets of TCM. This not only provides a new way for the prevention and treatment of PD with the active ingredients of TCM, but also provides a scientific basis for the selection and development of TCM preparations.
Collapse
Affiliation(s)
- Xiaxia Jin
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wendi Dong
- Foshan Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Foshan 528000, China
| | - Kaile Chang
- Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Yongmei Yan
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Encephalopathy, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China.
| |
Collapse
|
3
|
Markina AA, Kazanskaya RB, Timoshina JA, Zavialov VA, Abaimov DA, Volnova AB, Fedorova TN, Gainetdinov RR, Lopachev AV. Na +,K +-ATPase and Cardiotonic Steroids in Models of Dopaminergic System Pathologies. Biomedicines 2023; 11:1820. [PMID: 37509460 PMCID: PMC10377002 DOI: 10.3390/biomedicines11071820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, enough evidence has accumulated to assert that cardiotonic steroids, Na+,K+-ATPase ligands, play an integral role in the physiological and pathophysiological processes in the body. However, little is known about the function of these compounds in the central nervous system. Endogenous cardiotonic steroids are involved in the pathogenesis of affective disorders, including depression and bipolar disorder, which are linked to dopaminergic system dysfunction. Animal models have shown that the cardiotonic steroid ouabain induces mania-like behavior through dopamine-dependent intracellular signaling pathways. In addition, mutations in the alpha subunit of Na+,K+-ATPase lead to the development of neurological pathologies. Evidence from animal models confirms the neurological consequences of mutations in the Na+,K+-ATPase alpha subunit. This review is dedicated to discussing the role of cardiotonic steroids and Na+,K+-ATPase in dopaminergic system pathologies-both the evidence supporting their involvement and potential pathways along which they may exert their effects are evaluated. Since there is an association between affective disorders accompanied by functional alterations in the dopaminergic system and neurological disorders such as Parkinson's disease, we extend our discussion to the role of Na+,K+-ATPase and cardiotonic steroids in neurodegenerative diseases as well.
Collapse
Affiliation(s)
- Alisa A Markina
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Rogneda B Kazanskaya
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Julia A Timoshina
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
- Biological Department, Lomonosov Moscow State University, Leninskiye Gory 1, 119991 Moscow, Russia
| | - Vladislav A Zavialov
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Denis A Abaimov
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Anna B Volnova
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Tatiana N Fedorova
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Saint Petersburg University Hospital, 199034 Saint Petersburg, Russia
| | - Alexander V Lopachev
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| |
Collapse
|
4
|
Pan Y, Liu J, Ren J, Luo Y, Sun X. Epac: A Promising Therapeutic Target for Vascular Diseases: A Review. Front Pharmacol 2022; 13:929152. [PMID: 35910387 PMCID: PMC9330031 DOI: 10.3389/fphar.2022.929152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular diseases affect the circulatory system and comprise most human diseases. They cause severe symptoms and affect the quality of life of patients. Recently, since their identification, exchange proteins directly activated by cAMP (Epac) have attracted increasing scientific interest, because of their role in cyclic adenosine monophosphate (cAMP) signaling, a well-known signal transduction pathway. The role of Epac in cardiovascular disease and cancer is extensively studied, whereas their role in kidney disease has not been comprehensively explored yet. In this study, we aimed to review recent studies on the regulatory effects of Epac on various vascular diseases, such as cardiovascular disease, cerebrovascular disease, and cancer. Accumulating evidence has shown that both Epac1 and Epac2 play important roles in vascular diseases under both physiological and pathological conditions. Additionally, there has been an increasing focus on Epac pharmacological modulators. Therefore, we speculated that Epac could serve as a novel therapeutic target for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Yunfeng Pan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Jia Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiahui Ren
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yun Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Fucoxanthin Prevents Long-Term Administration l-DOPA-Induced Neurotoxicity through the ERK/JNK-c-Jun System in 6-OHDA-Lesioned Mice and PC12 Cells. Mar Drugs 2022; 20:md20040245. [PMID: 35447917 PMCID: PMC9025159 DOI: 10.3390/md20040245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
As the most abundant marine carotenoid extracted from seaweeds, fucoxanthin is considered to have neuroprotective activity via its excellent antioxidant properties. Oxidative stress is regarded as an important starting factor for neuronal cell loss and necrosis, is one of the causes of Parkinson’s disease (PD), and is considered to be the cause of adverse reactions caused by the current PD commonly used treatment drug levodopa (l-DA). Supplementation with antioxidants early in PD can effectively prevent neurodegeneration and inhibit apoptosis in dopaminergic neurons. At present, the effect of fucoxanthin in improving the adverse effects triggered by long-term l-DA administration in PD patients is unclear. In the present study, we found that fucoxanthin can reduce cytotoxicity and suppress the high concentration of l-DA (200 μM)-mediated cell apoptosis in the 6-OHDA-induced PC12 cells through improving the reduction in mitochondrial membrane potential, suppressing ROS over-expression, and inhibiting active of ERK/JNK-c-Jun system and expression of caspase-3 protein. These results were demonstrated by PD mice with long-term administration of l-DA showing enhanced motor ability after intervention with fucoxanthin. Our data indicate that fucoxanthin may prove useful in the treatment of PD patients with long-term l-DA administration.
Collapse
|
6
|
Rossignoli G, Krämer K, Lugarà E, Alrashidi H, Pope S, De La Fuente Barrigon C, Barwick K, Bisello G, Ng J, Counsell J, Lignani G, Heales SJR, Bertoldi M, Barral S, Kurian MA. Aromatic l-amino acid decarboxylase deficiency: a patient-derived neuronal model for precision therapies. Brain 2021; 144:2443-2456. [PMID: 33734312 PMCID: PMC8418346 DOI: 10.1093/brain/awab123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Aromatic l-amino acid decarboxylase (AADC) deficiency is a complex inherited neurological disorder of monoamine synthesis which results in dopamine and serotonin deficiency. The majority of affected individuals have variable, though often severe cognitive and motor delay, with a complex movement disorder and high risk of premature mortality. For most, standard pharmacological treatment provides only limited clinical benefit. Promising gene therapy approaches are emerging, though may not be either suitable or easily accessible for all patients. To characterize the underlying disease pathophysiology and guide precision therapies, we generated a patient-derived midbrain dopaminergic neuronal model of AADC deficiency from induced pluripotent stem cells. The neuronal model recapitulates key disease features, including absent AADC enzyme activity and dysregulated dopamine metabolism. We observed developmental defects affecting synaptic maturation and neuronal electrical properties, which were improved by lentiviral gene therapy. Bioinformatic and biochemical analyses on recombinant AADC predicted that the activity of one variant could be improved by l-3,4-dihydroxyphenylalanine (l-DOPA) administration; this hypothesis was corroborated in the patient-derived neuronal model, where l-DOPA treatment leads to amelioration of dopamine metabolites. Our study has shown that patient-derived disease modelling provides further insight into the neurodevelopmental sequelae of AADC deficiency, as well as a robust platform to investigate and develop personalized therapeutic approaches.
Collapse
Affiliation(s)
- Giada Rossignoli
- Developmental Neurosciences, GOS Institute of Child Health, University College London, London WC1N 1EH, UK
- Biological Chemistry, NBM Department, University of Verona, 37134 Verona, Italy
| | - Karolin Krämer
- Developmental Neurosciences, GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Eleonora Lugarà
- Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Haya Alrashidi
- Genetics and Genomic Medicine, GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Simon Pope
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | | | - Katy Barwick
- Developmental Neurosciences, GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Giovanni Bisello
- Biological Chemistry, NBM Department, University of Verona, 37134 Verona, Italy
| | - Joanne Ng
- Developmental Neurosciences, GOS Institute of Child Health, University College London, London WC1N 1EH, UK
- Gene Transfer Technology Group, EGA-Institute for Women's Health, University College London, London WC1E 6HU, UK
| | - John Counsell
- Developmental Neurosciences, GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Gabriele Lignani
- Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Simon J R Heales
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
- Centre for Inborn Errors of Metabolism, GOS Institute of Child Health, UniversCity College London, London WC1N 1EH, UK
| | - Mariarita Bertoldi
- Biological Chemistry, NBM Department, University of Verona, 37134 Verona, Italy
- Correspondence may also be addressed to: Prof Mariarita Bertoldi Department of Neuroscience, Biomedicine and Movement Sciences Biological Chemistry Section, Room 1.24 Strada le Grazie 8, 37134 Verona, Italy E-mail:
| | - Serena Barral
- Developmental Neurosciences, GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Manju A Kurian
- Developmental Neurosciences, GOS Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Neurology, Great Ormond Street Hospital, London WC1N 3JH, UK
- Correspondence to: Prof Manju Kurian Zayed Centre for Research UCL Great Ormond Street Institute of Child Health 20 Guilford St, London WC1N 1DZ, UK E-mail:
| |
Collapse
|
7
|
Lai CY, Lin CY, Wu CR, Tsai CH, Tsai CW. Carnosic Acid Alleviates Levodopa-Induced Dyskinesia and Cell Death in 6-Hydroxydopamine-lesioned Rats and in SH-SY5Y Cells. Front Pharmacol 2021; 12:703894. [PMID: 34434108 PMCID: PMC8381221 DOI: 10.3389/fphar.2021.703894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
The present study investigated the impact of carnosic acid (CA) from rosemary on the levodopa (L-dopa)-induced dyskinesia (LID) in rats treated with 6-hydroxydopamine (6-OHDA). To establish the model of LID, 6-OHDA-lesioned rats were injected intraperitoneally with 30 mg/kg L-dopa once a day for 36 days. Rats were daily administrated with 3 or 15 mg/kg CA by oral intubation prior to L-dopa injection for 4 days. Rats pretreated with CA had reduced L-dopa-induced abnormal involuntary movements (AIMs) and ALO scores (a sum of axial, limb, and orofacial scores). Moreover, the increases of dopamine D1-receptor, p-DARPP-32, ΔFosB, p-ERK1/2, and p-c-Jun ser63, along with the decrease in p-c-Jun ser73, induced by L-dopa in 6-OHDA-treated rats were significantly reversed by pretreatment with CA. In addition, we used the model of SH-SY5Y cells to further examine the neuroprotective mechanisms of CA on L-dopa-induced cytotoxicity. SH-SY5Y cells were treated with CA for 18 h, and then co-treated with 400 μM L-dopa for the indicated time points. The results showed that pretreatment of CA attenuated the cell death and nuclear condensation induced by L-dopa. By the immunoblots, the reduction of Bcl-2, p-c-Jun ser73, and parkin and the induction of cleaved caspase 3, cleaved Poly (ADP-ribose) polymerase, p-ERK1/2, p-c-Jun ser63, and ubiquitinated protein by L-dopa were improved in cells pretreated with CA. In conclusion, CA ameliorates the development of LID via regulating the D1R signaling and prevents L-dopa-induced apoptotic cell death through modulating the ERK1/2-c-Jun and inducing the parkin. This study suggested that CA can be used to alleviate the adverse effects of LID for PD patients.
Collapse
Affiliation(s)
- Chun-Yi Lai
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Yuan Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chi-Rei Wu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chon-Haw Tsai
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan.,Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Yan Y, Yan Q, Qian L, Jiang Y, Chen X, Zeng S, Xu Z, Gong Z. S-adenosylmethionine administration inhibits levodopa-induced vascular endothelial growth factor-A expression. Aging (Albany NY) 2020; 12:21290-21307. [PMID: 33170152 PMCID: PMC7695432 DOI: 10.18632/aging.103863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Studies have demonstrated that S-adenosylmethionine could effectively affect the clinical wearing-off phenomena of levodopa, an antiparkinsonian agent; however, the detailed mechanisms for this effect need to be further clarified. RESULTS S-adenosylmethionine and levodopa had opposite effects on the protein stability of vascular endothelial growth factor-A. The analysis of tube formation and cell viability also showed the nonconforming functions of S-adenosylmethionine and levodopa on cell angiogenesis and proliferation. Meanwhile, S-adenosylmethionine could significantly abolish the increased angiogenesis and cell viability induced by levodopa. S-adenosylmethionine resulted in G1/S phase arrest, with decreased cyclin dependent kinase 4/6 and increased p16, a specific cyclin dependent kinase inhibitor. Mechanically, the different effects of levodopa and S-adenosylmethionine were dependent on the phosphorylation and activation of extracellular signal-regulated kinase. S-adenosylmethionine could be fitted into the predicted docking pocket in the crystal structure of vascular endothelial growth factor-A, enhancing its acetylation level and reducing half-life. CONCLUSIONS These observations suggested that methyl donor S-adenosylmethionine could act as a potential agent against vascular endothelial growth factor-A-related diseases induced by levodopa treatment. METHODS We performed in vitro cytological analyses to assess whether S-adenosylmethionine intake could influence levodopa-induced vascular endothelial growth factor-A expression in human umbilical vein endothelial cells.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Hunan, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, Hunan, China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Hunan, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Hunan, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Hunan, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Hunan, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Hunan, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| |
Collapse
|
9
|
Orrillo SJ, de Dios N, Asad AS, De Fino F, Imsen M, Romero AC, Zárate S, Ferraris J, Pisera D. Anterior pituitary gland synthesises dopamine from l-3,4-dihydroxyphenylalanine (l-dopa). J Neuroendocrinol 2020; 32:e12885. [PMID: 32671919 DOI: 10.1111/jne.12885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Prolactin (PRL) is a hormone principally secreted by lactotrophs of the anterior pituitary gland. Although the synthesis and exocytosis of this hormone are mainly under the regulation of hypothalamic dopamine (DA), the possibility that the anterior pituitary synthesises this catecholamine remains unclear. The present study aimed to determine if the anterior pituitary produces DA from the precursor l-3,4-dihydroxyphenylalanine (l-dopa). Accordingly, we investigated the expression of aromatic l-amino acid decarboxylase (AADC) enzyme and the transporter vesicular monoamine transporter 2 (VMAT2) in the anterior pituitary, AtT20 and GH3 cells by immunofluorescence and western blotting. Moreover, we investigated the production of DA from l-dopa and its release in vitro. Then, we explored the effects of l-dopa with respect to the secretion of PRL from anterior pituitary fragments. We observed that the anterior pituitary, AtT20 and GH3 cells express both AADC and VMAT2. Next, we detected an increase in DA content after anterior pituitary fragments were incubated with l-dopa. Also, the presence of l-dopa increased DA levels in incubation media and reduced PRL secretion. Likewise, the content of cellular DA increased after AtT20 cells were incubated with l-dopa. In addition, l-dopa reduced corticotrophin-releasing hormone-stimulated adrenocorticotrophic hormone release from these cells after AADC activity was inhibited by NSD-1015. Moreover, DA formation from l-dopa increased apoptosis and decreased proliferation. However, in the presence of NSD-1015, l-dopa decreased apoptosis and increased proliferation rates. These results suggest that the anterior pituitary synthesises DA from l-dopa by AADC and this catecholamine can be released from this gland contributing to the control of PRL secretion. In addition, our results suggest that l-dopa exerts direct actions independently from its metabolisation to DA.
Collapse
Affiliation(s)
- Santiago Jordi Orrillo
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nataly de Dios
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela Sofía Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernanda De Fino
- Instituto de Investigaciones Farmacológicas (ININFA, UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Imsen
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Clara Romero
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena Ferraris
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Pisera
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Park HJ, Zhao TT, Kim SH, Lee CK, Hwang BY, Lee KE, Lee MK. Ethanol extract from Gynostemma pentaphyllum ameliorates dopaminergic neuronal cell death in transgenic mice expressing mutant A53T human alpha-synuclein. Neural Regen Res 2020; 15:361-368. [PMID: 31552910 PMCID: PMC6905327 DOI: 10.4103/1673-5374.265557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Gynostemma (G.) pentaphyllum (Cucurbitaceae) contains various bioactive gypenosides. Ethanol extract from G. pentaphyllum (GP-EX) has been shown to have ameliorative effects on the death of dopaminergic neurons in animal models of Parkinson’s disease (PD) induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- and 6-hydroxydopamine. PD patients exhibit multiple symptoms, so PD-related research should combine neurotoxin models with genetic models. In the present study, we investigated the ameliorative effects of GP-EX, including gypenosides, on the cell death of dopaminergic neurons in the midbrain of A53T α-synuclein transgenic mouse models of PD (A53T). Both GP-EX and gypenosides at 50 mg/kg per day were orally administered to the A53T mice for 20 weeks. α-Synuclein-immunopositive cells and α-synuclein phosphorylation were increased in the midbrain of A53T mice, which was reduced following treatment with GP-EX. Treatment with GP-EX modulated the reduced phosphorylation of tyrosine hydroxylase, extracellular signal-regulated kinase (ERK1/2), Bcl-2-associated death promoter (Bad) at Ser112, and c-Jun N-terminal kinase (JNK1/2) due to α-synuclein overexpression. In the A53T group, GP-EX treatment prolonged the latency of the step-through passive avoidance test and shortened the transfer latency of the elevated plus maze test. Gypenosides treatment exhibited the effects and efficacy similar to those of GP-EX. Taken together, GP-EX, including gypenosides, has ameliorative effects on dopaminergic neuronal cell death due to the overexpression of α-synuclein by modulating ERK1/2, Bad at Ser112, and JNK1/2 signaling in the midbrain of A53T mouse model of PD. Further studies are needed to investigate GP-EX as a treatment for neurodegenerative synucleinopathies, including PD. This study was approved by the Animal Ethics Committee of Chungbuk National University (approval No. CBNUA-956-16-01) on September 21, 2016.
Collapse
Affiliation(s)
- Hyun Jin Park
- Department of Pharmacy, College of Pharmacy; Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Ting Ting Zhao
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Seung Hwan Kim
- Department of Social Physical Education, Songwon University, Gwangju, Republic of Korea
| | - Chong Kil Lee
- Department of Pharmacy, College of Pharmacy; Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Bang Yeon Hwang
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyung Eun Lee
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Myung Koo Lee
- Department of Pharmacy, College of Pharmacy; Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
11
|
Park HJ, Zhao TT, Park KH, Lee MK. Repeated treatments with the D 1 dopamine receptor agonist SKF-38393 modulate cell viability via sustained ERK-Bad-Bax activation in dopaminergic neuronal cells. Behav Brain Res 2019; 367:166-175. [PMID: 30930179 DOI: 10.1016/j.bbr.2019.03.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 01/23/2023]
Abstract
The D1 dopamine receptor agonist, SKF-38393, induces cytotoxicity in striatal dopaminergic neurons via an extracellular signal-regulated kinase (ERK) signaling cascade. However, the underlying mechanism remains unclear. We hypothesized that repeated activation of dopaminergic receptors by agonists could lead to neuronal cell death. This study investigated the effects of SKF-38393 on dopaminergic neuronal cell death in a 6-hydroxydopamine-lesioned rat model of Parkinson's disease (PD) and PC12 cells. In the PD model, SKF-38393 administration (3 and 10 mg/kg per day, s.c.) for 8 weeks significantly increased the number of tyrosine hydroxylase-immunopositive neuronal cells in nigrostriatal regions. SKF-38393 administration for 8 weeks induced phosphorylation of sustained ERK1/2 and Bad (Bcl-2-associated death promoter) at Ser155 (BadSer155), and augmented Bax (Bcl-2-associated X protein) expression. However, SKF-38393 only increased Bad phosphorylation at Ser112 (BadSer112) when administered for 4 weeks. In PC12 cells, toxic levels of SKF-38393 (20 and 50 μM) rapidly induced formation of neurite-like processes, but not in the presence of an adenylyl cyclase inhibitor (MDL-12330 A). SKF-38393 (20 and 50 μM) induced sustained ERK1/2 and BadSer155 phosphorylation as well as caspase-3 activation. At a non-toxic level (5 μM), SKF-38393 produced only transient ERK1/2 and BadSer112 phosphorylation. Repeated treatments with SKF-38393 (5 μM) for 1-3 days activated BadSer112. Repeated treatments for 4-7 days induced sustained ERK1/2 and BadSer155 phosphorylation as well as Bax and caspase-3 activation. These results suggest that SKF-38393 induces neurotoxicity by activation of the sustained ERK-Bad-Bax system. These findings contribute to an understanding of the adverse effects of D1 dopamine receptor agonists in patients with PD.
Collapse
Affiliation(s)
- Hyun Jin Park
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong, Heungduk-gu, Cheongju 28160, Republic of Korea
| | - Ting Ting Zhao
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong, Heungduk-gu, Cheongju 28160, Republic of Korea
| | - Keun Hong Park
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong, Heungduk-gu, Cheongju 28160, Republic of Korea
| | - Myung Koo Lee
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong, Heungduk-gu, Cheongju 28160, Republic of Korea.
| |
Collapse
|
12
|
Park HJ, Kang JK, Lee MK. 1- O-Hexyl-2,3,5-Trimethylhydroquinone Ameliorates l-DOPA-Induced Cytotoxicity in PC12 Cells. Molecules 2019; 24:molecules24050867. [PMID: 30823626 PMCID: PMC6429301 DOI: 10.3390/molecules24050867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/18/2022] Open
Abstract
1-O-Hexyl-2,3,5-trimethylhydroquinone (HTHQ) has previously been found to have effective anti-oxidant and anti-lipid-peroxidative activity. We aimed to elucidate whether HTHQ can prevent dopaminergic neuronal cell death by investigating the effect on l-DOPA-induced cytotoxicity in PC12 cells. HTHQ protected from both l-DOPA-induced cell death and superoxide dismutase activity reduction. When assessing the effect of HTHQ on oxidative stress-related signaling pathways, HTHQ inhibited l-DOPA-induced phosphorylation of sustained extracellular signal-regulated kinases (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK1/2). HTHQ also normalized l-DOPA-reduced Bcl-2-associated death protein (Bad) phosphorylation and Bcl-2-associated X protein (Bax) expression, promoting cell survival. Taken together, HTHQ exhibits protective effects against l-DOPA-induced cell death through modulation of the ERK1/2-p38MAPK-JNK1/2-Bad-Bax signaling pathway in PC12 cells. These results suggest that HTHQ may show ameliorative effects against oxidative stress-induced dopaminergic neuronal cell death, although further studies in animal models of Parkinson’s disease are required to confirm this.
Collapse
Affiliation(s)
- Hyun Jin Park
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyung 1-ro, Osong, Heungduk-gu, Cheongju 28160, Korea.
| | - Jong Koo Kang
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju 28644, Korea.
| | - Myung Koo Lee
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyung 1-ro, Osong, Heungduk-gu, Cheongju 28160, Korea.
| |
Collapse
|
13
|
Yu H, Wei W, Cao W, Zhan Z, Yan L, Wu K, Xie D, Cai B, Xie Y, Xiao Q. Regulation of cell proliferation and metastasis by microRNA-593-5p in human gastric cancer. Onco Targets Ther 2018; 11:7429-7440. [PMID: 30425531 PMCID: PMC6204852 DOI: 10.2147/ott.s178151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background MicroRNA (miRNA) array analysis has reported that the expression of miR-593-5p is associated with lymph node metastasis in gastric cancer (GC); however, the function and mechanism of miR-593-5p in GC have not been described yet. miR-593-5p has also not been elucidated widely in other cancers. Methods miR-593-5p expression was detected by quantitative RT-PCR (qRT-PCR) in human GC tissues and cell lines. Cell proliferation was investigated using CCK-8 assays, cell cycle was detected by flow cytometric method, and cell migration and invasion abilities were evaluated by wound-healing and transwell assays. miR-593-5p-influenced gene expression profiles were detected by total gene expression chip method in MGC-803 cells, and miR-593-5p candidate target genes were predicted using bioinformatics methods. The candidate target gene and downstream of miR-593-5p were determined by qRT-PCR, Western blot, and dual-luciferase reporter assays. The effects of miR-593-5p on the growth and metastasis of GC were evaluated by tumor xenograft experiment in vivo. Results miR-593-5p was frequently downregulated in GC patients and GC cell lines. miR-593-5p was significantly correlated with tumor size and distant metastasis in GC patients. miR-593-5p inhibited cell proliferation, migration, and invasion and also arrested cell cycle at the G0/G1 phase in SGC-7901 and MGC-803 cells in vitro. miR-593-5p also suppressed tumor growth and metastasis in vivo. miR-593-5p influenced gene expression profile in MGC-803 cells. MST4 was indirectly targeted by miR-593-5p. miR-593-5p also downregulated FAK, MMP12, and JUN protein expression. Conclusion Our study suggests that miR-593-5p may function as a tumor suppressor in GC through a mechanism that regulates JUN pathway via indirectly targeting the MST4 gene.
Collapse
Affiliation(s)
- Han Yu
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
| | - Weiyuan Wei
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China, .,Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Wenlong Cao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
| | - Zexu Zhan
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
| | - Linhai Yan
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Kun Wu
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
| | - Dongyi Xie
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
| | - Bin Cai
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
| | - Qiang Xiao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
| |
Collapse
|
14
|
Bohush A, Niewiadomska G, Filipek A. Role of Mitogen Activated Protein Kinase Signaling in Parkinson's Disease. Int J Mol Sci 2018; 19:ijms19102973. [PMID: 30274251 PMCID: PMC6213537 DOI: 10.3390/ijms19102973] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by insufficient dopamine production due to the loss of 50% to 70% of dopaminergic neurons. A shortage of dopamine, which is predominantly produced by the dopaminergic neurons within the substantia nigra, causes clinical symptoms such as reduction of muscle mass, impaired body balance, akinesia, bradykinesia, tremors, postural instability, etc. Lastly, this can lead to a total loss of physical movement and death. Since no cure for PD has been developed up to now, researchers using cell cultures and animal models focus their work on searching for potential therapeutic targets in order to develop effective treatments. In recent years, genetic studies have prominently advocated for the role of improper protein phosphorylation caused by a dysfunction in kinases and/or phosphatases as an important player in progression and pathogenesis of PD. Thus, in this review, we focus on the role of selected MAP kinases such as JNKs, ERK1/2, and p38 MAP kinases in PD pathology.
Collapse
Affiliation(s)
- Anastasiia Bohush
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
15
|
A MAPK/c-Jun-mediated switch regulates the initial adaptive and cell death responses to mitochondrial damage in a neuronal cell model. Int J Biochem Cell Biol 2018; 104:73-86. [PMID: 30236993 DOI: 10.1016/j.biocel.2018.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 01/26/2023]
Abstract
Parkinson's disease (PD) is defined by the progressive loss of dopaminergic neurons. Mitochondrial dysfunction and oxidative stress are associated with PD although it is not fully understood how neurons respond to these stresses. How adaptive and apoptotic neuronal stress response pathways are regulated and the thresholds at which they are activated remains ambiguous. Utilising SH-SY5Y neuroblastoma cells, we show that MAPK/AP-1 pathways are critical in regulating the response to mitochondrial uncoupling. Here we found the AP-1 transcription factor c-Jun can act in either a pro- or anti-apoptotic manner, depending on the level of stress. JNK-mediated cell death in differentiated cells only occurred once a threshold of stress was surpassed. We also identified a novel feedback loop between Parkin activity and the c-Jun response, suggesting defective mitophagy may initiate MAPK/c-Jun-mediated neuronal loss observed in PD. Our data supports the hypothesis that blocking cell death pathways upstream of c-Jun as a therapeutic target in PD may not be appropriate due to crossover of the pro- and anti-apoptotic responses. Boosting adaptive responses or targeting specific aspects of the neuronal death response may therefore represent more viable therapeutic strategies.
Collapse
|
16
|
El-Esawy R, Balaha M, Kandeel S, Hadya S, El-Rahman MNA. Filgrastim (G-CSF) ameliorates Parkinsonism l -dopa therapy’s drawbacks in mice. BASAL GANGLIA 2018; 13:17-26. [DOI: 10.1016/j.baga.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
17
|
Wei X, Zhou J, Hong L, Xu Z, Zhao H, Wu X, Chen J. Hint1 expression inhibits proliferation and promotes radiosensitivity of human SGC7901 gastric cancer cells. Oncol Lett 2018; 16:2135-2142. [PMID: 30008911 PMCID: PMC6036515 DOI: 10.3892/ol.2018.8900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/21/2017] [Indexed: 11/22/2022] Open
Abstract
Gastric cancer is a prevalent, malignant tumor that frequently escapes treatment. Histidine triad nucleotide-binding protein 1 (Hint1) is a haploinsufficient tumor suppressor gene which contributes to intercellular communication, helps to regulate cell proliferation and survival, and is frequently underexpressed in gastric cancer. To examine the involvement of Hint1 in gastric cancer, small interfering RNA was used to knock down Hint1 expression in the human gastric cancer cell line SGC-7901. The data revealed that Hint1 inhibited cell proliferation, reduced radiation-induced DNA damage repair and caused G1 phase arrest, which increased the radiosensitivity of gastric cancer cells. Further mechanistic studies revealed a novel function of Hint1, whereby it acted as a negative regulator of extracellular signal-regulated kinase. These results demonstrated the critical function of Hint1 in the biology of human gastric cancer. Acting as a tumor growth suppressor and a radiosensitive agent, this protein is a potential biomarker and may be an attractive target for specific therapeutic interventions against gastric cancer.
Collapse
Affiliation(s)
- Xiaowei Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Jin Zhou
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Lingzhi Hong
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Zhi Xu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Huanyu Zhao
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xiaomin Wu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Jinfei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
18
|
Zhao TT, Kim KS, Shin KS, Park HJ, Kim HJ, Lee KE, Lee MK. Gypenosides ameliorate memory deficits in MPTP-lesioned mouse model of Parkinson's disease treated with L-DOPA. Altern Ther Health Med 2017; 17:449. [PMID: 28877690 PMCID: PMC5585899 DOI: 10.1186/s12906-017-1959-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 08/31/2017] [Indexed: 12/27/2022]
Abstract
Background Previous studies have revealed that gypenosides (GPS) improve the symptoms of anxiety disorders in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned rat model of Parkinson’s disease (PD). The present study aimed to investigate the effects of GPS on memory deficits in an MPTP-lesioned mouse model of PD treated with L-3,4-dihydroxyphenylalanine (L-DOPA). Methods MPTP (30 mg/kg/day, 5 days)-lesioned mice were treated with GPS (50 mg/kg) and/or L-DOPA (10 and 25 mg/kg) for 21 days. After the final treatments, behavioral changes were assessed in all mice using passive avoidance and elevated plus-maze tests. We then evaluated the biochemical influences of GPS treatment on levels of tyrosine hydroxylase (TH), dopamine, N-methyl-D-aspartate (NMDA) receptors, extracellular signal-regulated kinase (ERK1/2), and cyclic AMP-response element binding protein (CREB) phosphorylation. Results MPTP-lesioned mice exhibited deficits associated with habit learning and spatial memory, which were further aggravated by treatment with L-DOPA (25 mg/kg). However, treatment with GPS (50 mg/kg) ameliorated memory deficits. Treatment with GPS (50 mg/kg) also improved L-DOPA (25 mg/kg)-treated MPTP lesion-induced decreases in retention latency on the passive avoidance test, as well as levels of TH-immunopositive cells and dopamine in the substantia nigra and striatum. GPS treatment also attenuated increases in retention transfer latency on the elevated plus-maze test and in NMDA receptor expression, as well as decreases in the phosphorylation of ERK1/2 and CREB in the hippocampus. Treatment with L-DOPA (10 mg/kg) also ameliorated deficits in habit learning and spatial memory in MPTP-lesioned mice, and this effect was further enhanced by treatment with GPS (50 mg/kg). Conclusion GPS ameliorate deficits in habit learning and spatial memory by modulating the dopaminergic neuronal and N-methyl-D-aspartate receptor-mediated signaling systems in MPTP-lesioned mice treated with L-DOPA. GPS may serve as an adjuvant therapeutic agent for memory deficits in patients with PD receiving L-DOPA.
Collapse
|
19
|
Kim KS, Zhao TT, Shin KS, Park HJ, Cho YJ, Lee KE, Kim SH, Lee MK. Gynostemma pentaphyllum Ethanolic Extract Protects Against Memory Deficits in an MPTP-Lesioned Mouse Model of Parkinson's Disease Treated with L-DOPA. J Med Food 2017; 20:11-18. [DOI: 10.1089/jmf.2016.3764] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Kyung Sook Kim
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Ting Ting Zhao
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Keon Sung Shin
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyun Jin Park
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
- Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Yoon Jeong Cho
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyung Eun Lee
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Seung Hwan Kim
- Department of Social Physical Education, Songwon University, Gwangju, Republic of Korea
| | - Myung Koo Lee
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
- Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
20
|
Effects of (−)-sesamin on motor and memory deficits in an MPTP-lesioned mouse model of Parkinson’s disease treated with l-DOPA. Neuroscience 2016; 339:644-654. [DOI: 10.1016/j.neuroscience.2016.10.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 01/22/2023]
|
21
|
Re-Cloning the N27 Dopamine Cell Line to Improve a Cell Culture Model of Parkinson's Disease. PLoS One 2016; 11:e0160847. [PMID: 27512998 PMCID: PMC4981411 DOI: 10.1371/journal.pone.0160847] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/26/2016] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease is characterized by the death of dopaminergic neurons in the substantia nigra. To understand the molecular mechanisms of the disease, an in vitro model is important. In the 1990s, we used the SV40 large T antigen to immortalize dopaminergic neurons derived from Embryonic Day 14 rat mesencephalon. We selected a clone for its high expression of dopaminergic neuron markers such as tyrosine hydroxylase (TH), and we named it 1RB3AN27 (N27). Because the original N27 cell line has been passaged many times, the line has become a mixture of cell types with highly variable expression of TH. In the current study, we have performed multiple rounds of clonal cultures and have identified a dopaminergic cell clone expressing high levels of TH and the dopamine transporter (DAT). We have named this new clone N27-A. Nearly 100% of N27-A cells express TH, DAT and Tuj1. Western blots have confirmed that N27-A cells have three to four times the levels of TH and DAT compared to the previous mixed population in N27. Further analysis has shown that the new clone expresses the dopamine neuron transcription factors Nurr1, En1, FoxA2 and Pitx3. The N27-A cells express the vesicular monoamine transporter (VMAT2), but do not express dopamine-beta-hydroxylase (DβH), the enzyme responsible for converting dopamine to norepinephrine. Functional analysis has shown that N27-A cells are more sensitive than N27 cells to neurotoxins taken up by the dopamine transporter such as 6-hydroxydopamine and 1-methyl-4-phenylpyridine (MPP+). The DAT inhibitor nomifensine can block MPP+ induced toxicity. The non-selective toxic effects of hydrogen peroxide were similar in both cell lines. The N27-A cells show dopamine release under basal and depolarization conditions. We conclude that the new N27-A clone of the immortalized rat dopaminergic cell line N27 should provide an improved in vitro model for Parkinson's disease research.
Collapse
|
22
|
Wang D, Wang J, Ding N, Li Y, Yang Y, Fang X, Zhao H. MAGE-A1 promotes melanoma proliferation and migration through C-JUN activation. Biochem Biophys Res Commun 2016; 473:959-965. [DOI: 10.1016/j.bbrc.2016.03.161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/31/2016] [Indexed: 12/21/2022]
|