1
|
Zimmerman AJ, Mangano N, Park G, Kaushal AK, Bergese SD. Glial Modulator Antibiotics for Neuropathic Pain: Current Insights and Future Directions. Pharmaceuticals (Basel) 2025; 18:346. [PMID: 40143124 PMCID: PMC11944926 DOI: 10.3390/ph18030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Pathological pain is defined as pain that outlives its usefulness as a protective warning system and becomes debilitating, disrupting normal life function. Understanding the mechanism of transition from physiological to pathological pain is essential to provide the effective prevention of chronic pain. The main subcategories of pathological pain are nociceptive pain, neuropathic pain, and nociplastic pain. Glial cells play pivotal roles in the development and maintenance of each of these pathological pain states, specifically neuropathic pain. Consequently, targeting these cells has emerged as a promising therapeutic strategy, as limited efficacy and harmful adverse effects are associated with current pharmacotherapies. This paper aims to review specific antibiotics that modulate glial cells, which can be used to treat neuropathic pain. These antibiotics include minocycline, doxycycline, ceftriaxone, and azithromycin. The potential of these antibiotics appears promising, particularly given the extensive prior research and use of these antibiotics in humans for other illnesses. However, each presents its own set of limitations, ultimately making the translation from preclinical findings to human therapies for neuropathic pain challenging.
Collapse
Affiliation(s)
- Alex J. Zimmerman
- Department of Physical Medicine and Rehabilitation, Stony Brook Medicine, Stony Brook, NY 11794, USA;
| | - Nicholas Mangano
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY 11794, USA;
| | - Grace Park
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Amit K. Kaushal
- Chronic Pain Division, Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY 11794, USA;
| | - Sergio D. Bergese
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY 11794, USA;
| |
Collapse
|
2
|
Liang L, Chen S, Su W, Zhang H, Yu R. Integrated Transcriptomic and Proteomic Study of the Mechanism of Action of the Novel Small-Molecule Positive Allosteric Modulator 1 in Targeting PAC1-R for the Treatment of D-Gal-Induced Aging Mice. Int J Mol Sci 2024; 25:3872. [PMID: 38612681 PMCID: PMC11011505 DOI: 10.3390/ijms25073872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Small-molecule positive allosteric modulator 1 (SPAM1), which targets pituitary adenylate cyclase-activating polypeptide receptor 1 (PAC1-R), has been found to have a neuroprotective effect, and the underlying mechanism was explored in this study. First, using a D-galactose (D-gal)-induced aging mouse model, we confirmed that SPAM1 improves the structure of the hippocampal dentate gyrus and restores the number of neurons. Compared with D-gal model mice, SPAM1-treated mice showed up-regulated expression of Sirtuin 6 (SIRT6) and Lamin B1 and down-regulated expression of YinYang 1 (YY1) and p16. A similar tendency was observed in senescent RGC-5 cells induced by long-term culture, indicating that SPAM1 exhibits significant in vitro and in vivo anti-senescence activity in neurons. Then, using whole-transcriptome sequencing and proteomic analysis, we further explored the mechanism behind SPAM1's neuroprotective effects and found that SPAM is involved in the longevity-regulating pathway. Finally, the up-regulation of neurofilament light and medium polypeptides indicated by the proteomics results was further confirmed by Western blotting. These results help to lay a pharmacological network foundation for the use of SPAM1 as a potent anti-aging therapeutic drug to combat neurodegeneration with anti-senescence, neuroprotective, and nerve regeneration activity.
Collapse
Affiliation(s)
- Lili Liang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shang Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wanlin Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huahua Zhang
- Department of Medical Genetics, Guangdong Medical University, Dongguan 523808, China
| | - Rongjie Yu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| |
Collapse
|
3
|
Satapathy T, Singh G, Pandey RK, Shukla SS, Bhardwaj SK, Gidwani B. Novel Targets and Drug Delivery System in the Treatment of Postoperative Pain: Recent Studies and Clinical Advancement. Curr Drug Targets 2024; 25:25-45. [PMID: 38037995 DOI: 10.2174/0113894501271207231127063431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Pain is generated by a small number of peripheral targets. These can be made more sensitive by inflammatory mediators. The number of opioids prescribed to the patients can be reduced dramatically with better pain management. Any therapy that safely and reliably provides extended analgesia and is flexible enough to facilitate a diverse array of release profiles would be useful for improving patient comfort, quality of care, and compliance after surgical procedures. Comparisons are made between new and traditional methods, and the current state of development has been discussed; taking into account the availability of molecular and cellular level data, preclinical and clinical data, and early post-market data. There are a number of benefits associated with the use of nanotechnology in the delivery of analgesics to specific areas of the body. Nanoparticles are able to transport drugs to inaccessible bodily areas because of their small molecular size. This review focuses on targets that act specifically or primarily on sensory neurons, as well as inflammatory mediators that have been shown to have an analgesic effect as a side effect of their anti- inflammatory properties. New, regulated post-operative pain management devices that use existing polymeric systems were presented in this article, along with the areas for potential development. Analgesic treatments, both pharmacological and non-pharmacological, have also been discussed.
Collapse
Affiliation(s)
- Trilochan Satapathy
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Gulab Singh
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Ravindra Kumar Pandey
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Shiv Shankar Shukla
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Shiv Kumar Bhardwaj
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Beena Gidwani
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| |
Collapse
|
4
|
do Amaral L, Dos Santos NAG, Sisti FM, Del Bel E, Dos Santos AC. Doxycycline inhibits dopaminergic neurodegeneration through upregulation of axonal and synaptic proteins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1787-1796. [PMID: 36843128 DOI: 10.1007/s00210-023-02435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
Doxycycline (DOX) is a widely used antibiotic that is able to cross the blood-brain barrier. Several studies have shown its neuroprotective effect against neurodegeneration and have associated it with antioxidant, anti-apoptotic, and anti-inflammatory mechanisms. We have recently demonstrated that DOX mimics nerve growth factor (NGF) signaling in PC12 cells. However, the involvement of this mechanism in the neuroprotective effect of DOX is unknown. Axonal degeneration and synaptic loss are key events at the early stages of neurodegeneration, and precede the neuronal death in neurodegenerative diseases, including Parkinson's disease (PD). Therefore, the regeneration of the axonal and synaptic network might be beneficial in PD. The effect of DOX in PC12 cells treated with the Parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP+) was addressed. Doxycycline reduced the inhibition of neuritogenesis induced by MPP+, even in cells deprived of NGF. The mechanism involved the upregulation of GAP-43, synapsin I, β-III-tubulin, F-actin, and neurofilament-200, proteins that are associated with axonal and synaptic plasticity. Considering the role of axonal degeneration and synaptic loss at the initial stages of PD, the recent advances in early diagnosis of neurodegeneration, and the advantages of drug repurposing, doxycycline is a promising candidate to treat PD.
Collapse
Affiliation(s)
- Lilian do Amaral
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Av Do Café S/N, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Neife Aparecida Guinaim Dos Santos
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Av Do Café S/N, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Flávia Malvestio Sisti
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Av Do Café S/N, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Elaine Del Bel
- Department of Basic and Oral Biology, Faculty of Dentistry of Ribeirão Preto, USP, Av Do Café S/N, 14040-904, Ribeirão Preto, SP, Brazil
| | - Antônio Cardozo Dos Santos
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Av Do Café S/N, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
5
|
Catumbela CSG, Giridharan VV, Barichello T, Morales R. Clinical evidence of human pathogens implicated in Alzheimer's disease pathology and the therapeutic efficacy of antimicrobials: an overview. Transl Neurodegener 2023; 12:37. [PMID: 37496074 PMCID: PMC10369764 DOI: 10.1186/s40035-023-00369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
A wealth of pre-clinical reports and data derived from human subjects and brain autopsies suggest that microbial infections are relevant to Alzheimer's disease (AD). This has inspired the hypothesis that microbial infections increase the risk or even trigger the onset of AD. Multiple models have been developed to explain the increase in pathogenic microbes in AD patients. Although this hypothesis is well accepted in the field, it is not yet clear whether microbial neuroinvasion is a cause of AD or a consequence of the pathological changes experienced by the demented brain. Along the same line, the gut microbiome has also been proposed as a modulator of AD. In this review, we focus on human-based evidence demonstrating the elevated abundance of microbes and microbe-derived molecules in AD hosts as well as their interactions with AD hallmarks. Further, the direct-purpose and potential off-target effects underpinning the efficacy of anti-microbial treatments in AD are also addressed.
Collapse
Affiliation(s)
- Celso S G Catumbela
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, 8370993, Santiago, Chile.
| |
Collapse
|
6
|
Fan G, Chen S, Liang L, Zhang H, Yu R. Novel Small Molecule Positive Allosteric Modulator SPAM1 Triggers the Nuclear Translocation of PAC1-R to Exert Neuroprotective Effects through Neuron-Restrictive Silencer Factor. Int J Mol Sci 2022; 23:ijms232415996. [PMID: 36555637 PMCID: PMC9784932 DOI: 10.3390/ijms232415996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) exerts effective neuroprotective activity through its specific receptor, PAC1-R. We accidentally discovered that as a positive allosteric modulator (PAM) of PAC1-R, the small-molecule PAM (SPAM1) has a hydrazide-like structure, but different binding characteristics, from hydrazide for the N-terminal extracellular domain of PAC1-R (PAC1-R-EC1). SPAM1 had a significant neuroprotective effect against oxidative stress, both in a cell model treated with hydrogen peroxide (H2O2) and an aging mouse model induced by D-galactose (D-gal). SPAM1 was found to block the decrease in PACAP levels in brain tissues induced by D-gal and significantly induced the nuclear translocation of PAC1-R in PAC1R-CHO cells and mouse retinal ganglion cells. Nuclear PAC1-R was subjected to fragmentation and the nuclear 35 kDa, but not the 15 kDa fragments, of PAC1-R interacted with SP1 to upregulate the expression of Huntingtin (Htt), which then exerted a neuroprotective effect by attenuating the binding availability of the neuron-restrictive silencer factor (NRSF) to the neuron-restrictive silencer element (NRSE). This resulted in an upregulation of the expression of NRSF-related neuropeptides, including PACAP, the brain-derived neurotrophic factor (BDNF), tyrosine hydroxylase (TH), and synapsin-1 (SYN1). The novel mechanism reported in this study indicates that SPAM1 has potential use as a drug, as it exerts a neuroprotective effect by regulating NRSF.
Collapse
Affiliation(s)
- Guangchun Fan
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shang Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lili Liang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huahua Zhang
- Department of Medical Genetics, Guangdong Medical University, Dongguan 523808, China
| | - Rongjie Yu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Correspondence: or ; Tel.: +86-133-9262-5921
| |
Collapse
|
7
|
A novel small positive allosteric modulator of neuropeptide receptor PAC1-R exerts neuroprotective effects in MPTP mouse Parkinson's disease model. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1349-1364. [PMID: 36082935 PMCID: PMC9909460 DOI: 10.3724/abbs.2022126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
As a neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP)-preferring receptor, PAC1-R mediates effective neuroprotective activity. Based on the finding that the antibiotic doxycycline (DOX) with clinical neuroprotective activity functions as a positive allosteric modulator (PAM) of neuropeptide PACAP receptor 1 (PAC1-R), we use virtual and laboratory screening to search for novel small molecule PAMs of PAC1-R. Virtual screening is carried out using a small-molecule library TargetMol. After two-level precision screening with Glide, the top five compounds with the best predicted affinities for PAC1-R are selected and named small positive allosteric modulator 1‒5 (SPAM1‒5). Our results show that only 4-{[4-(4-Oxo-3,4-2-yl)butanamido]methyl}benzoic acid (SPAM1) has stronger neuroprotective activity than DOX in the MPP+ PD cell model and MPTP PD mouse model. SPAM1 has a higher affinity for PAC1-R than DOX, but has no antibiotic activity. Moreover, both SPAM1 and DOX block the decrease of PAC1-R level in mouse brain tissues induced by MPTP. The successful screening of SPAM1 offers a novel drug for the treatment of neurodegenerative disease targeting the PAC1-R.
Collapse
|
8
|
Lu J, Piper SJ, Zhao P, Miller LJ, Wootten D, Sexton PM. Targeting VIP and PACAP Receptor Signaling: New Insights into Designing Drugs for the PACAP Subfamily of Receptors. Int J Mol Sci 2022; 23:8069. [PMID: 35897648 PMCID: PMC9331257 DOI: 10.3390/ijms23158069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/16/2022] Open
Abstract
Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Vasoactive Intestinal Peptide (VIP) are neuropeptides involved in a diverse array of physiological and pathological processes through activating the PACAP subfamily of class B1 G protein-coupled receptors (GPCRs): VIP receptor 1 (VPAC1R), VIP receptor 2 (VPAC2R), and PACAP type I receptor (PAC1R). VIP and PACAP share nearly 70% amino acid sequence identity, while their receptors PAC1R, VPAC1R, and VPAC2R share 60% homology in the transmembrane regions of the receptor. PACAP binds with high affinity to all three receptors, while VIP binds with high affinity to VPAC1R and VPAC2R, and has a thousand-fold lower affinity for PAC1R compared to PACAP. Due to the wide distribution of VIP and PACAP receptors in the body, potential therapeutic applications of drugs targeting these receptors, as well as expected undesired side effects, are numerous. Designing selective therapeutics targeting these receptors remains challenging due to their structural similarities. This review discusses recent discoveries on the molecular mechanisms involved in the selectivity and signaling of the PACAP subfamily of receptors, and future considerations for therapeutic targeting.
Collapse
Affiliation(s)
- Jessica Lu
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Sarah J. Piper
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Peishen Zhao
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Denise Wootten
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Patrick M. Sexton
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| |
Collapse
|
9
|
Positive allosteric regulation of PAC1-R up-regulates PAC1-R and its specific ligand PACAP. Acta Biochim Biophys Sin (Shanghai) 2022; 54:657-672. [PMID: 35593471 PMCID: PMC9828401 DOI: 10.3724/abbs.2022041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PAC1-R is a recognized preferential receptor for the neuropeptide of pituitary adenylate cyclase-activating polypeptide (PACAP), which mediates neuroprotective and nerve regenerative activities of PACAP. In this study, we found that in both PAC1R-CHO cells with high expression of PAC1R-eGFP and retinal ganglion cells (RGC-5) with the natural expression of PAC1-R, oligo-peptide PACAP(28-38) and the positively charged arginine-rich penetrating peptide TAT, as positive allosteric modulators of PAC1-R, significantly trigger the nuclear translocation of PAC1-R. The chromatin immunoprecipitation (ChIP)-PCR results show that the nuclear translocated PAC1-R binds with the promoter regions of PAC1-R and its specific ligand PACAP. The up-regulated promoter activities of PAC1-R and PACAP induced by PACAP(28-38) or TAT are positively correlative with the increase of the expression levels of PAC1-R and PACAP. Moreover, the nuclear translocation of PAC1-R induced by PACAP(28-38) or TAT is significantly inhibited by the mutation of PAC1-R on Cys25 and the palmitoylation inhibitor 2-bromopalmitate. Meanwhile, the increase in both PAC1-R and PACAP levels and the neuroprotective activities of PACAP(28-38) and TAT in MPP-induced cell model of Parkinson ' s disease are synchronously inhibited by 2-bromopalmitate, which are positively correlated with the nuclear translocation of PAC1-R induced by PACAP(28-38) or TAT. Bioinformatics analysis and motif enrichment analysis following ChIP-sequencing show that the transcription factors including SP1, Zic2, GATA1, REST and YY1 may be recruited by nuclear PAC1-R and involved in regulating the promoter activities of PAC1-R and PACAP. ChIP-sequencing and related bioinformatics analysis show that the downstream target genes regulated by the nuclear PAC1-R are mostly involved in the process of cellular stress and related to neuroprotection, neuronal genesis and development.
Collapse
|
10
|
Van C, Condro MC, Ko HH, Hoang AQ, Zhu R, Lov K, Ricaflanca PT, Diep AL, Nguyen NNM, Lipshutz GS, MacKenzie-Graham A, Waschek JA. Targeted deletion of PAC1 receptors in retinal neurons enhances neuron loss and axonopathy in a model of multiple sclerosis and optic neuritis. Neurobiol Dis 2021; 160:105524. [PMID: 34610465 DOI: 10.1016/j.nbd.2021.105524] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/26/2021] [Accepted: 10/01/2021] [Indexed: 01/24/2023] Open
Abstract
Chronic inflammation drives synaptic loss in multiple sclerosis (MS) and is also commonly observed in other neurodegenerative diseases. Clinically approved treatments for MS provide symptomatic relief but fail to halt neurodegeneration and neurological decline. Studies in animal disease models have demonstrated that the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP, ADCYAP1) exhibits anti-inflammatory, neuroprotective and regenerative properties. Anti-inflammatory actions appear to be mediated primarily by two receptors, VPAC1 and VPAC2, which also bind vasoactive intestinal peptide (VIP). Pharmacological experiments indicate that another receptor, PAC1 (ADCYAP1R1), which is highly selective for PACAP, provides protection to neurons, although genetic evidence and other mechanistic information is lacking. To determine if PAC1 receptors protect neurons in a cell-autonomous manner, we used adeno-associated virus (AAV2) to deliver Cre recombinase to the retina of mice harboring floxed PAC1 alleles. Mice were then subjected to chronic experimental autoimmune encephalomyelitis (EAE), a disease model that recapitulates major clinical and pathological features of MS and associated optic neuritis. Unexpectedly, deletion of PAC1 in naïve mice resulted in a deficit of retinal ganglionic neurons (RGNs) and their dendrites, suggesting a homeostatic role of PAC1. Moreover, deletion of PAC1 resulted in increased EAE-induced loss of a subpopulation of RGNs purported to be vulnerable in animal models of glaucoma. Increased axonal pathology and increased secondary presence of microglia/macrophages was also prominently seen in the optic nerve. These findings demonstrate that neuronal PAC1 receptors play a homeostatic role in protecting RGNs and directly protects neurons and their axons against neuroinflammatory challenge. SIGNIFICANCE STATEMENT: Chronic inflammation is a major component of neurodegenerative diseases and plays a central role in multiple sclerosis (MS). Current treatments for MS do not prevent neurodegeneration and/or neurological decline. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to have anti-inflammatory, neuroprotective and regenerative properties but the cell type- and receptor-specific mechanisms are not clear. To test whether the protective effects of PACAP are direct on the PAC1 receptor subtype on neurons, we delete PAC1 receptors from neurons and investigate neuropathologigical changes in an animal model of MS. The findings demonstrate that PAC1 receptors on neurons play a homeostatic role in maintaining neuron health and can directly protect neurons and their axons during neuroinflammatory disease.
Collapse
Affiliation(s)
- Christina Van
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America; Molecular Biology Interdepartmental Program at University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| | - Michael C Condro
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| | - Henly H Ko
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Anh Q Hoang
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| | - Ruoyan Zhu
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| | - Kenny Lov
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Patrick T Ricaflanca
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Anna L Diep
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| | - Nhat N M Nguyen
- Calabasas High School, Calabasas, CA 91302, United States of America.
| | - Gerald S Lipshutz
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America; Molecular Biology Interdepartmental Program at University of California, Los Angeles, Los Angeles, CA 90095, United States of America; Departments of Surgery, Medical Pharmacology, Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States of America.
| | - Allan MacKenzie-Graham
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America.
| | - James A Waschek
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| |
Collapse
|
11
|
Mansour NO, Shama MA, Werida RH. The effect of doxycycline on neuron-specific enolase in patients with traumatic brain injury: a randomized controlled trial. Ther Adv Chronic Dis 2021; 12:20406223211024362. [PMID: 34262678 PMCID: PMC8246481 DOI: 10.1177/20406223211024362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022] Open
Abstract
Objective: We aimed to examine the effect of doxycycline on serum levels of neuron-specific enolase (NSE), a marker of neuronal damage in traumatic brain injury (TBI) patients. Methods: Patients were randomly assigned into two groups (n = 25 each) to receive either placebo or doxycycline (200 mg daily), with their standard management for 7 days. Results: NSE serum levels in the doxycycline and control groups on day 3 were 14.66 ± 1.78 versus 18.09 ± 4.38 ng/mL, respectively (p = 0.008), and on day 7 were 12.3 ± 2.0 versus 16.43 ± 3.85 ng/mL, respectively (p = 0.003). Glasgow Coma Scale (GCS) on day 7 was 11.90 ± 2.83 versus 9.65 ± 3.44 in the doxycycline and control groups, respectively (p = 0.031). NSE serum levels and GCS scores were negatively correlated (r = −0.569, p < 0.001). Conclusion: Adjunctive early use of doxycycline might be a novel option that halts the ongoing secondary brain injury in patients with moderate to severe TBI. Future larger clinical trials are warranted to confirm these findings.
Collapse
Affiliation(s)
- Noha O Mansour
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, El-Dakahelia, Egypt
| | - Mohamed A Shama
- Emergency Medicine and Traumatology Department, Faculty of Medicine, Tanta University, Tanta, El-Gharbia, Egypt
| | - Rehab H Werida
- Clinical Pharmacy and Pharmacy Practice Department - Faculty of Pharmacy, Damanhour University, Elchorniash Street, Damanhour, Elbehairah 31527, Egypt
| |
Collapse
|
12
|
Moody TW, Jensen RT. Pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal peptide [Part 1]: biology, pharmacology, and new insights into their cellular basis of action/signaling which are providing new therapeutic targets. Curr Opin Endocrinol Diabetes Obes 2021; 28:198-205. [PMID: 33449573 PMCID: PMC7957349 DOI: 10.1097/med.0000000000000617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To discuss recent advances of vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in pharmacology, cell biology, and intracellular signaling in cancer. RECENT FINDINGS Recent studies provide new insights into the pharmacology, cell biology of the VIP/PACAP system and show they play important roles in a number of human cancers, as well as in tumor growth/differentiation and are providing an increased understanding of their signaling cascade that is suggesting new treatment targets/approaches. SUMMARY Recent insights from studies of VIP/PACAP and their receptors in both central nervous system disorders and inflammatory disorders suggest possible new treatment approaches. Elucidation of the exact roles of VIP/PACAP in these disorders and development of new therapeutic approaches involving these peptides have been limited by lack of specific pharmacological tools, and exact signaling mechanisms involved, mediating their effects. Reviewed here are recent insights from the elucidation of structural basis for VIP/PACAP receptor activation as well as the signaling cascades mediating their cellular effects (using results primarily from the study of their effects in cancer) that will likely lead to novel targets and treatment approaches in these diseases.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Training
| | - Robert T Jensen
- National Institutes of Health, National Institute of Diabetes, Digestive and Kidney Diseases, Digestive Diseases Branch, Bethesda, Maryland 20892, USA
| |
Collapse
|
13
|
Amaral LD, Santos NAGD, Sisti FM, Del Bel E, Santos ACD. The antibiotic doxycycline mimics the NGF signaling in PC12 cells: A relevant mechanism for neuroprotection. Chem Biol Interact 2021; 341:109454. [PMID: 33798505 DOI: 10.1016/j.cbi.2021.109454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/07/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Doxycycline has been used as antibiotic since the 1960s. Recently, studies have shown that doxycycline is neuroprotective in models of neurodegenerative diseases and brain injuries, mainly due to anti-inflammatory and anti-apoptotic effects. However, it is not known if doxycycline has neurotrophic potential, which is relevant, considering the role of axonal degeneration at the early stages of neurodegeneration in Alzheimer's disease, Amyotrophic Lateral Sclerosis and Parkinson's disease as well as in normal aging. Axons are preceded by the formation of neurites, the hallmark of the neuronal differentiation induced by neurotrophins like NGF. Therefore, the modulation of neurotrophin receptors aimed at formation and regeneration of axons has been proposed as a strategy to delay the progression of neurodegeneration and has gained relevance as new techniques for early diagnosis arise. Based on these premises, we investigated the potential of doxycycline to mimic the effects of Nerve Growth Factor (NGF) with focus on the signaling pathways and neuronal modulators of neurite initiation, growth and branching. We used PC12 cells, a neuronal model widely employed to study the neurotrophic pathways and mechanisms induced by NGF. Results showed that doxycycline induced neurite outgrowth via activation of the trkA receptor and the downstream signaling pathways, PI3K/Akt and MAPK/ERK, without inducing the expression of NGF. Doxycycline also increased the expression of GAP-43, synapsin I and NF200, proteins involved in axonal and synaptic plasticity. Altogether, these data demonstrate, for the first time, the neurotrophic potential of doxycycline, which might be useful to restore the neuronal connectivity lost at the initial phase of neurodegeneration.
Collapse
Affiliation(s)
- Lilian do Amaral
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av Do Café S/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Neife Aparecida Guinaim Dos Santos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av Do Café S/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Flávia Malvestio Sisti
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av Do Café S/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Elaine Del Bel
- Departamento de Morfologia, Estomatologia e Fisiologia, Faculdade de Odontologia de Ribeirão Preto - USP, 14040-904, Ribeirão Preto, SP, Brazil
| | - Antônio Cardozo Dos Santos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av Do Café S/n, 14040-903, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
14
|
Raison-Peyron N, Litovsky J, Huet P, Dereure O. Cold contact urticaria triggered by a permanent tattoo. J Cosmet Dermatol 2020; 20:2463-2465. [PMID: 33251653 DOI: 10.1111/jocd.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 11/28/2022]
Abstract
Cold contact urticaria is an inducible urticaria triggered by exposure to cold air, liquids, or objects. Symptoms may range from mild, localized urticaria to genuine anaphylaxis particularly after extensive contact of large skin areas to cold. Treatment mainly requires a strict avoidance of cold exposure and the use of second-generation H1 antihistamine. In most cases, it is not associated with any specific etiology although in rare cases it can be secondary to various associated diseases or triggered by a number of external factors. We present the observation of a 38-year-old woman for whom cold contact urticaria began on a recent tattoo area.
Collapse
Affiliation(s)
| | - Julie Litovsky
- Department of Dermatology, University of Montpellier, Montpellier, France
| | - Pascale Huet
- Cabinet de Dermatologie, Zone médicale de Fescau, Montferrier sur Lez, France
| | - Olivier Dereure
- Department of Dermatology, University of Montpellier, Montpellier, France
| |
Collapse
|
15
|
Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors. New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-related publications, which was also used to identify topics.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
16
|
Yu R, Li J, Lin Z, Ouyang Z, Huang X, Reglodi D, Vaudry D. TAT-tagging of VIP exerts positive allosteric modulation of the PAC1 receptor and enhances VIP neuroprotective effect in the MPTP mouse model of Parkinson's disease. Biochim Biophys Acta Gen Subj 2020; 1864:129626. [PMID: 32335135 DOI: 10.1016/j.bbagen.2020.129626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/10/2020] [Accepted: 04/22/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The cationic Arginine-rich peptide (CARP) TAT had been tagged at the C-terminal end of the vasoactive intestinal peptide (VIP) to construct VIP-TAT in order to improve traversing ability. Interestingly, it was found that TAT may bind the positive allosteric modulation (PAM) site of the N-terminal extracellular domain of neuropeptide receptor PAC1 (PAC1-EC1), imitating the C-terminus part of pituitary adenylate cyclase-activating polypeptide (PACAP) PACAP(28-38) fragment. METHODS To test this hypothesis, we addressed the neuroprotective effects of VIP, VIP-TAT and PACAP38 in Parkinson's Disease (PD) cellular and mouse models. We also analyzed the peptides affinity for PAC1 and their ability to activate it. RESULTS VIP-TAT had in vitro and in vivo neuroprotective effects much efficient than VIP in PD cellular and mouse models. The isothermal titration calorimetry (ITC) and competition binding bioassays confirmed that TAT binds PAC1-EC1 at the same site as PACAP(28-38). The cAMP experiments showed TAT-VIP results in a higher activation potency of PAC1 than VIP alone. CONCLUSIONS The correlation of the peptides cationic properties with their affinity for PAC1 and their ability to activate the receptor, indicated that electrostatic interactions mediate the binding of TAT to the PAM domain of the PAC1-EC1, which induces the conformational changes of PAC1-EC1 required to promote the subsequent structural interaction and activation of the receptor with VIP. GENERAL SIGNIFICANCE VIP-TAT has some potency for the development of a novel drug targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Rongjie Yu
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Junfeng Li
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zhuochao Lin
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zehua Ouyang
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoling Huang
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Dora Reglodi
- Department of Anatomy, University of Pecs Medical School, Pecs, Hungary
| | - David Vaudry
- Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death, Cell plasticity Team, Rouen, France
| |
Collapse
|
17
|
Liao C, de Molliens MP, Schneebeli ST, Brewer M, Song G, Chatenet D, Braas KM, May V, Li J. Targeting the PAC1 Receptor for Neurological and Metabolic Disorders. Curr Top Med Chem 2019; 19:1399-1417. [PMID: 31284862 PMCID: PMC6761004 DOI: 10.2174/1568026619666190709092647] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/23/2018] [Accepted: 12/26/2018] [Indexed: 12/16/2022]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP)-selective PAC1 receptor (PAC1R, ADCYAP1R1) is a member of the vasoactive intestinal peptide (VIP)/secretin/glucagon family of G protein-coupled receptors (GPCRs). PAC1R has been shown to play crucial roles in the central and peripheral nervous systems. The activation of PAC1R initiates diverse downstream signal transduction pathways, including adenylyl cyclase, phospholipase C, MEK/ERK, and Akt pathways that regulate a number of physiological systems to maintain functional homeostasis. Accordingly, at times of tissue injury or insult, PACAP/PAC1R activation of these pathways can be trophic to blunt or delay apoptotic events and enhance cell survival. Enhancing PAC1R signaling under these conditions has the potential to mitigate cellular damages associated with cerebrovascular trauma (including stroke), neurodegeneration (such as Parkinson's and Alzheimer's disease), or peripheral organ insults. Conversely, maladaptive PACAP/PAC1R signaling has been implicated in a number of disorders, including stressrelated psychopathologies (i.e., depression, posttraumatic stress disorder, and related abnormalities), chronic pain and migraine, and metabolic diseases; abrogating PAC1R signaling under these pathological conditions represent opportunities for therapeutic intervention. Given the diverse PAC1R-mediated biological activities, the receptor has emerged as a relevant pharmaceutical target. In this review, we first describe the current knowledge regarding the molecular structure, dynamics, and function of PAC1R. Then, we discuss the roles of PACAP and PAC1R in the activation of a variety of signaling cascades related to the physiology and diseases of the nervous system. Lastly, we examine current drug design and development of peptides and small molecules targeting PAC1R based on a number of structure- activity relationship studies and key pharmacophore elements. At present, the rational design of PAC1R-selective peptide or small-molecule therapeutics is largely hindered by the lack of structural information regarding PAC1R activation mechanisms, the PACAP-PAC1R interface, and the core segments involved in receptor activation. Understanding the molecular basis governing the PACAP interactions with its different cognate receptors will undoubtedly provide a basis for the development and/or refinement of receptor-selective therapeutics.
Collapse
Affiliation(s)
- Chenyi Liao
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| | | | - Severin T Schneebeli
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| | - Matthias Brewer
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| | - Gaojie Song
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - David Chatenet
- INRS - Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Karen M Braas
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT 05405, United States
| | - Victor May
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT 05405, United States
| | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| |
Collapse
|
18
|
Tang KS. The cellular and molecular processes associated with scopolamine-induced memory deficit: A model of Alzheimer's biomarkers. Life Sci 2019; 233:116695. [DOI: 10.1016/j.lfs.2019.116695] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
|
19
|
Song S, Wang L, Li J, Huang X, Yu R. The allosteric modulation effects of doxycycline, minocycline, and their derivatives on the neuropeptide receptor PAC1-R. Acta Biochim Biophys Sin (Shanghai) 2019; 51:627-637. [PMID: 31056648 DOI: 10.1093/abbs/gmz045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 11/13/2022] Open
Abstract
Class B G-protein coupled receptors (GPCR) PAC1-R is a neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP)-preferring receptor that mediates the effective neuroprotective activity. Based on our previous data showing that doxycycline and minocycline work as the positive allosteric modulator (PAM) of PAC1-R, we used computer molecular docking and isothermal titration calorimetry assay to further determine the bindings of doxycycline/minocycline's derivatives including tetracycline/tigecycline with the N-terminal extracellular domain of PAC1-R (PAC1-EC1). Then the cAMP assay combined with the PAC1-R natural agonist PACAP27 was used to confirm the possible PAM roles of the small-molecule antibiotics. The results showed that tetracycline/tigecycline had significant lower affinity to PAC1-EC1 than doxycycline/minocycline, which was consistent with their non-positive allosteric modulation activity on PAC1-R. Furthermore, by comparing the key residues contributing to the PAM binding with the predicted allosteric site in PAC1-EC1, we characterized four motifs contributing to PAM binding in PAC1-EC1. The site-directed mutation results showed that ASN60 played the most important role in the PAM binding of the small-molecule antibiotics, while ASP116 played a sensitive marginal role in the PAM binding. These results not only help to explain the clinical and experimental neuroprotective effects of doxycycline/minocycline, but also help to characterize the PAM binding site in PAC1-EC1, which will promote the screening and characterization of novel small-molecule PAMs targeting PAC1-EC1 with drug development potency in nerve system disease.
Collapse
Affiliation(s)
- Suqin Song
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Like Wang
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Junfeng Li
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaoling Huang
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Rongjie Yu
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
20
|
Bortolanza M, Nascimento GC, Socias SB, Ploper D, Chehín RN, Raisman-Vozari R, Del-Bel E. Tetracycline repurposing in neurodegeneration: focus on Parkinson’s disease. J Neural Transm (Vienna) 2018; 125:1403-1415. [DOI: 10.1007/s00702-018-1913-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/03/2018] [Indexed: 01/03/2023]
|
21
|
Kandasamy R, Wickremasinghe S, Guymer R. New Treatment Modalities for Geographic Atrophy. Asia Pac J Ophthalmol (Phila) 2017; 6:508-513. [PMID: 28905539 DOI: 10.22608/apo.2017262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Age‑related macular degeneration (AMD) is a significant cause of global visual morbidity and is projected to affect 288 million people by the year 2040. The advent of treatment with anti‒vascular endothelial growth factor (anti‑VEGF) drugs has revolutionized the treatment of neovascular AMD (nAMD) but there have been no similar breakthroughs for the treatment of geographic atrophy (GA) to retard its progression. The advancements in imaging and new understanding of disease mechanisms, based on molecular and genetic models, have paved the way for the development of novel experimental treatment options for GA that aim to cater to a thus far largely unmet need. This review paper focuses on the recent clinical trials of new treatment options for slowing GA progression rates with emphasis on the agents that are currently undergoing, or have already undergone, significant clinical trial testing. Several new groups of drugs, including those targeting the complement cascade and agents considered as neuroprotective, have shown some promising results and could potentially pave the way forward in the treatment of this devastating disease.
Collapse
Affiliation(s)
- Rathika Kandasamy
- Centre for Eye Research Australia, Department of Surgery (Ophthalmology), University of Melbourne, Royal Victorian Eye and Ear, Hospital, Melbourne, Australia
| | - Sanjeewa Wickremasinghe
- Centre for Eye Research Australia, Department of Surgery (Ophthalmology), University of Melbourne, Royal Victorian Eye and Ear, Hospital, Melbourne, Australia
| | - Robyn Guymer
- Centre for Eye Research Australia, Department of Surgery (Ophthalmology), University of Melbourne, Royal Victorian Eye and Ear, Hospital, Melbourne, Australia
| |
Collapse
|
22
|
Wang N, Tian X, Chen Y, Tan HQ, Xie PJ, Chen SJ, Fu YC, Chen YX, Xu WC, Wei CJ. Low dose doxycycline decreases systemic inflammation and improves glycemic control, lipid profiles, and islet morphology and function in db/db mice. Sci Rep 2017; 7:14707. [PMID: 29089617 PMCID: PMC5666019 DOI: 10.1038/s41598-017-14408-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/09/2017] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to determine whether low dose doxycycline as an anti-inflammatory agent could improve glucose metabolism in diabetic animals. Therefore, doxycycline was supplemented in drinking water to 6-week-old male db/db mice for 10 weeks. Doxycycline reduced perirenal/epididymal fat, Lee's index, and liver cholesterol. Blood HDL-cholesterol increased, but total cholesterol and aspartate transaminase decreased. Glucose and insulin tolerances were improved, accompanying with reduced fasting blood glucose, insulin, HOMA-IR and advanced glycation end products. Islet number, β-cell percentage and mass increased, while islet size decreased. Consistently, less apoptosis but more β-cell proliferation were found in islets of treated mice. Freshly isolated islets from treated mice showed higher insulin content and enhanced glucose stimulated insulin secretion (GSIS). In addition, purified islets of Balb/c mice showed increased GSIS after cultivation in vitro with doxycycline, but not with chloramphenicol and levofloxacin. Inflammation markers, including lipopolysaccharides (LPS) and C-reactive protein (CRP) in serum as well as CD68-positive cells in treated islets, decreased significantly. Finally, LPS stimulated the production of inflammatory factors but inhibited GSIS of MIN6 cells; however, the effects were completely reversed by doxycycline. The results support further study of possible long-term usage of sub-antimicrobial doxycycline in diabetic patients.
Collapse
Affiliation(s)
- Na Wang
- Multidisciplinary Research Center, Shantou University, Shantou, 515063, Guangdong, China
| | - Xiong Tian
- Multidisciplinary Research Center, Shantou University, Shantou, 515063, Guangdong, China
| | - Yu Chen
- Multidisciplinary Research Center, Shantou University, Shantou, 515063, Guangdong, China
| | - Hui-Qi Tan
- Multidisciplinary Research Center, Shantou University, Shantou, 515063, Guangdong, China
| | - Pei-Jian Xie
- Multidisciplinary Research Center, Shantou University, Shantou, 515063, Guangdong, China
| | - Shao-Jun Chen
- Multidisciplinary Research Center, Shantou University, Shantou, 515063, Guangdong, China
| | - Yu-Cai Fu
- Laboratory of Cell Senescence, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Yi-Xin Chen
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Wen-Can Xu
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China.
| | - Chi-Ju Wei
- Multidisciplinary Research Center, Shantou University, Shantou, 515063, Guangdong, China.
| |
Collapse
|
23
|
Fang Q, Xing M, Guo C, Liu Y. Probing the interaction of doxycycline to trypsin and bovine hemoglobin by using multi-spectral techniques and molecular docking. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|