1
|
Cai Y, Zhao R, Huang Y, Yang H, Liu Y, Yang R, Zhang X, Liu Y, Yan S, Liu X, Liu X, Yin X, Yu Y, Gao S, Li Y, Zhao Y, Shi H. Environmental enrichment attenuates maternal separation-induced excessive hoarding behavior in adult female mice. Pharmacol Biochem Behav 2024; 245:173913. [PMID: 39581387 DOI: 10.1016/j.pbb.2024.173913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Previous studies have demonstrated that early life stress (ELS) impacts hoarding behavior in adult humans. This study aimed to assess the potential mitigation by environmental enrichment on hoarding behavior in rodents caused by maternal separation, thereby providing insights into therapeutic strategies for hoarding disorder. METHODS Newborn mice were randomly divided into four groups. The control group was allowed to grow naturally. The maternal separation group underwent two weeks of maternal separation. The short-term environmental enrichment group received two weeks of environmental enrichment intervention after the two weeks of maternal separation. The long-term environmental enrichment group received five weeks of environmental enrichment intervention after the two weeks of maternal separation. Hoarding behavior was assessed during adolescence and adulthood. Hippocampal tissue from adult female mice was analyzed using LC-MS/MS-based metabolomics. Spearman correlation analysis was then performed to assess the relationship between differentially expressed metabolites and hoarding behavior. RESULTS Environmental enrichment attenuates maternal separation-induced excessive hoarding behavior in adult female mice. The untargeted metabolomics of the hippocampal region in female mice showed that long-term environmental enrichment reversed multiple differential metabolites, including Substance P, which were mainly concentrated in metabolic pathways such as cancer choline metabolism, glycolipid metabolism, and linoleic acid metabolism. CONCLUSIONS Our findings indicate that ELS and long-term environmental enrichment have sex-dependent effects on adult hoarding behavior, potentially related to altered hippocampal metabolism. This study highlights the importance of environmental enrichment in mitigating the long-term effects of early maternal separation on hoarding behavior.
Collapse
Affiliation(s)
- Yiming Cai
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Ruofan Zhao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuxuan Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Huiping Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Ye Liu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiangyu Zhang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Yiran Liu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Shu Yan
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoyu Liu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiao Liu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Xueyong Yin
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Yang Yu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Shuai Gao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Yating Li
- Nursing School, Hebei Medical University, Shijiazhuang 050031, China
| | - Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Nursing School, Hebei Medical University, Shijiazhuang 050031, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
2
|
Gawryluk A, Cybulska-Klosowicz A, Charzynska A, Zakrzewska R, Sobolewska A, Kossut M, Liguz-Lecznar M. Mitigation of aging-related plasticity decline through taurine supplementation and environmental enrichment. Sci Rep 2024; 14:19546. [PMID: 39174711 PMCID: PMC11341750 DOI: 10.1038/s41598-024-70261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
Aging-related biochemical changes in nerve cells lead to dysfunctional synapses and disrupted neuronal circuits, ultimately affecting vital processes such as brain plasticity, learning, and memory. The imbalance between excitation and inhibition in synaptic function during aging contributes to cognitive impairment, emphasizing the importance of compensatory mechanisms. Fear conditioning-related plasticity of the somatosensory barrel cortex, relying on the proper functioning and extensive up regulation of the GABAergic system, in particular interneurons containing somatostatin, is compromised in aging (one-year-old) mice. The present research explores two potential interventions, taurine supplementation, and environmental enrichment, revealing their effectiveness in supporting learning-induced plasticity in the aging mouse brain. They do not act through a mechanism normalizing the Glutamate/GABA balance that is disrupted in aging. Still, they allow for increased somatostatin levels, an effect observed in young animals after learning. These findings highlight the potential of lifestyle interventions and diet supplementation to mitigate age-related cognitive decline by promoting experience-dependent plasticity.
Collapse
Affiliation(s)
- Aleksandra Gawryluk
- Laboratory of Epileptogenesis, Polish Academy of Sciences, Nencki Institute of Experimental Biology, 3 Pasteur Str., 02-093, Warsaw, Poland
| | - Anita Cybulska-Klosowicz
- Laboratory of Emotions Neurobiology, Polish Academy of Sciences, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Agata Charzynska
- Laboratory of Language Neurobiology, Polish Academy of Sciences, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Renata Zakrzewska
- Laboratory of Behavioral Methods, Polish Academy of Sciences, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Alicja Sobolewska
- Department of Experimental and Clinical Neuroscience, Institute of Psychiatry and Neurology , Warsaw, Poland
| | - Malgorzata Kossut
- Science Diplomacy Board, Polish Academy of Sciences, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Monika Liguz-Lecznar
- Laboratory of Epileptogenesis, Polish Academy of Sciences, Nencki Institute of Experimental Biology, 3 Pasteur Str., 02-093, Warsaw, Poland.
| |
Collapse
|
3
|
Joushi S, Taherizadeh Z, Eghbalian M, Esmaeilpour K, Sheibani V. Boosting decision-making in rat models of early-life adversity with environmental enrichment and intranasal oxytocin. Psychoneuroendocrinology 2024; 165:107050. [PMID: 38677097 DOI: 10.1016/j.psyneuen.2024.107050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Impaired decision-making constitutes a fundamental issue in numerous psychiatric disorders. Extensive research has established that early life adversity (ELA) increases vulnerability to psychiatric disorders later in life. ELA in human neonates is associated with changes in cognitive, emotional, as well as reward-related processing. Maternal separation (MS) is an established animal model of ELA and has been shown to be associated with decision-making deficits. On the other hand, enriched environment (EE) and intranasal oxytocin (OT) administration have been demonstrated to have beneficial effects on decision-making in humans or animals. Given these considerations, our investigation sought to explore the impact of brief exposure to EE and intranasal OT administration on the decision-making abilities of adolescent rats that had experienced MS during infancy. The experimental protocol involved subjecting rat pups to the MS regimen for 180 min per day from postnatal day (PND) 1 to PND 21. Then, from PND 22 to PND 34, the rats were exposed to EE and/or received intranasal OT (2 μg/μl) for seven days. The assessment of decision-making abilities, using a rat gambling task (RGT), commenced during adolescence. Our findings revealed that MS led to impaired decision-making and a decreased percentage of advantageous choices. However, exposure to brief EE or intranasal OT administration mitigated the deficits induced by MS and improved the decision-making skills of maternally-separated rats. Furthermore, combination of these treatments did not yield additional benefits. These results suggest that EE and OT may hold promise as therapeutic interventions to enhance certain aspects of cognitive performance.
Collapse
Affiliation(s)
- Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Taherizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mostafa Eghbalian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Pintori N, Piva A, Mottarlini F, Díaz FC, Maggi C, Caffino L, Fumagalli F, Chiamulera C. Brief exposure to enriched environment rapidly shapes the glutamate synapses in the rat brain: A metaplastic fingerprint. Eur J Neurosci 2024; 59:982-995. [PMID: 38378276 DOI: 10.1111/ejn.16279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 01/27/2024] [Indexed: 02/22/2024]
Abstract
Environmental enrichment (EE) has been shown to produce beneficial effects in addiction disorders; however, due to its configurational complexity, the underlying mechanisms are not yet fully elucidated. Recent evidence suggests that EE, acting as a metaplastic agent, may affect glutamatergic mechanisms underlying appetitive memory and, in turn, modulate reward-seeking behaviours: here, we have investigated such a possibility following a brief EE exposure. Adult male Sprague-Dawley rats were exposed to EE for 22 h and the expression of critical elements of the glutamate synapse was measured 2 h after the end of EE in the medial prefrontal cortex (mPFC), nucleus accumbens (NAc) and hippocampus (Hipp) brain areas, which are critical for reward and memory. We focused our investigation on the expression of NMDA and AMPA receptor subunits, their scaffolding proteins SAP102 and SAP97, vesicular and membrane glutamate transporters vGluT1 and GLT-1, and critical structural components such as proteins involved in morphology and function of glutamatergic synapses, PSD95 and Arc/Arg3.1. Our findings demonstrate that a brief EE exposure induces metaplastic changes in glutamatergic mPFC, NAc and Hipp. Such changes are area-specific and involve postsynaptic NMDA/AMPA receptor subunit composition, as well as changes in the expression of their main scaffolding proteins, thus influencing the retention of such receptors at synaptic sites. Our data indicate that brief EE exposure is sufficient to dynamically modulate the glutamatergic synapses in mPFC-NAc-Hipp circuits, which may modulate rewarding and memory processes.
Collapse
Affiliation(s)
- Nicholas Pintori
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
- Current Affiliation: Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Alessandro Piva
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Coralie Maggi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Cristiano Chiamulera
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Płoska A, Siekierzycka A, Cieślik P, Dobrucki LW, Kalinowski L, Wierońska JM. The Impact of LY487379 or CDPPB on eNOS Expression in the Mouse Brain and the Effect of Joint Administration of Compounds with NO • Releasers on MK-801- or Scopolamine-Driven Cognitive Dysfunction in Mice. Molecules 2024; 29:627. [PMID: 38338372 PMCID: PMC10856750 DOI: 10.3390/molecules29030627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The role of endothelial nitric oxide synthase (eNOS) in the regulation of a variety of biological processes is well established, and its dysfunction contributes to brain pathologies, including schizophrenia or Alzheimer's disease (AD). Positive allosteric modulators (PAMs) of metabotropic glutamate (mGlu) receptors were shown to be effective procognitive compounds, but little is known about their impact on eNOS expression and stability. Here, we investigated the influence of the acute and chronic administration of LY487379 or CDPPB (mGlu2 and mGlu5 PAMs), on eNOS expression in the mouse brain and the effect of the joint administration of the ligands with nitric oxide (NO) releasers, spermineNONOate or DETANONOate, in different combinations of doses, on MK-801- or scopolamine-induced amnesia in the novel object recognition (NOR) test. Our results indicate that both compounds provoked eNOS monomer formation, and CDPPB at a dose of 5 mg/kg exaggerated the effect of MK-801 or scopolamine. The coadministration of spermineNONOate or DETANONOate enhanced the antiamnesic effect of CDPPB or LY487379. The best activity was observed for ineffective or moderate dose combinations. The results indicate that treatment with mGluR2 and mGluR5 PAMs may be burdened with the risk of promoting eNOS uncoupling through the induction of dimer dissociation. Administration of the lowest possible doses of the compounds with NO• donors, which themselves have procognitive efficacy, may be proposed for the treatment of schizophrenia or AD.
Collapse
Affiliation(s)
- Agata Płoska
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland; (A.P.); (A.S.); (L.W.D.)
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland; (A.P.); (A.S.); (L.W.D.)
| | - Paulina Cieślik
- Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland;
| | - Lawrence W. Dobrucki
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland; (A.P.); (A.S.); (L.W.D.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland; (A.P.); (A.S.); (L.W.D.)
- BioTechMed Center, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Narutowicza Steet, 80-223 Gdansk, Poland
| | - Joanna M. Wierońska
- Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland;
| |
Collapse
|
6
|
Vizcarra EA, Ulu A, Landrith TA, Qiu X, Godzik A, Wilson EH. Group 1 metabotropic glutamate receptor expression defines a T cell memory population during chronic Toxoplasma infection that enhances IFN-gamma and perforin production in the CNS. Brain Behav Immun 2023; 114:131-143. [PMID: 37604212 DOI: 10.1016/j.bbi.2023.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
Within the brain, a pro-inflammatory response is essential to prevent clinical disease due to Toxoplasma gondii reactivation. Infection in the immunocompromised leads to lethal Toxoplasmic encephalitis while in the immunocompetent, there is persistent low-grade inflammation which is devoid of clinical symptoms. This signifies that there is a well-balanced and regulated inflammatory response to T. gondii in the brain. T cells are the dominant immune cells that prevent clinical disease, and this is mediated through the secretion of effector molecules such as perforins and IFN-γ. The presence of cognate antigen, the expression of survival cytokines, and the alteration of the epigenetic landscape drive the development of memory T cells. However, specific extrinsic signals that promote the formation and maintenance of memory T cells within tissue are poorly understood. During chronic infection, there is an increase in extracellular glutamate that, due to its function as an excitatory neurotransmitter, is normally tightly controlled in the CNS. Here we demonstrate that CD8+ T cells from the T. gondii-infected brain parenchyma are enriched for metabotropic glutamate receptors (mGluR's). Characterization studies determined that mGluR+ expression by CD8+ T cells defines a distinct memory population at the transcriptional and protein level. Finally, using receptor antagonists and agonists we demonstrate mGluR signaling is required for optimal CD8+ T cell production of the effector cytokine IFNγ. This work suggests that glutamate is an important environmental signal of inflammation that promotes T cell function. Understanding glutamate's influence on T cells in the brain can provide insights into the mechanisms that govern protective immunity against CNS-infiltrating pathogens and neuroinflammation.
Collapse
Affiliation(s)
- Edward A Vizcarra
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Tyler A Landrith
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Xinru Qiu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Adam Godzik
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
7
|
Nicoletti F, Di Menna L, Iacovelli L, Orlando R, Zuena AR, Conn PJ, Dogra S, Joffe ME. GPCR interactions involving metabotropic glutamate receptors and their relevance to the pathophysiology and treatment of CNS disorders. Neuropharmacology 2023; 235:109569. [PMID: 37142158 DOI: 10.1016/j.neuropharm.2023.109569] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Cellular responses to metabotropic glutamate (mGlu) receptor activation are shaped by mechanisms of receptor-receptor interaction. mGlu receptor subtypes form homodimers, intra- or inter-group heterodimers, and heteromeric complexes with other G protein-coupled receptors (GPCRs). In addition, mGlu receptors may functionally interact with other receptors through the βγ subunits released from G proteins in response to receptor activation or other mechanisms. Here, we discuss the interactions between (i) mGlu1 and GABAB receptors in cerebellar Purkinje cells; (ii) mGlu2 and 5-HT2Aserotonergic receptors in the prefrontal cortex; (iii) mGlu5 and A2A receptors or mGlu5 and D1 dopamine receptors in medium spiny projection neurons of the indirect and direct pathways of the basal ganglia motor circuit; (iv) mGlu5 and A2A receptors in relation to the pathophysiology of Alzheimer's disease; and (v) mGlu7 and A1 adenosine or α- or β1 adrenergic receptors. In addition, we describe in detail a novel form of non-heterodimeric interaction between mGlu3 and mGlu5 receptors, which appears to be critically involved in mechanisms of activity-dependent synaptic plasticity in the prefrontal cortex and hippocampus. Finally, we highlight the potential implication of these interactions in the pathophysiology and treatment of cerebellar disorders, schizophrenia, Alzheimer's disease, Parkinson's disease, l-DOPA-induced dyskinesias, stress-related disorders, and cognitive dysfunctions.
Collapse
Affiliation(s)
- Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| | | | - Luisa Iacovelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - P Jeffrey Conn
- Department of Pharmacology, Italy; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Shalini Dogra
- Department of Pharmacology, Italy; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Max E Joffe
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| |
Collapse
|
8
|
Matulewicz P, Ramos-Prats A, Gómez-Santacana X, Llebaria A, Ferraguti F. Control of Theta Oscillatory Activity Underlying Fear Expression by mGlu 5 Receptors. Cells 2022; 11:cells11223555. [PMID: 36428984 PMCID: PMC9688906 DOI: 10.3390/cells11223555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Metabotropic glutamate 5 receptors (mGlu5) are thought to play an important role in mediating emotional information processing. In particular, negative allosteric modulators (NAMs) of mGlu5 have received a lot of attention as potential novel treatments for several neuropsychiatric diseases, including anxiety-related disorders. The aim of this study was to assess the influence of pre- and post-training mGlu5 inactivation in cued fear conditioned mice on neuronal oscillatory activity during fear retrieval. For this study we used the recently developed mGlu5 NAM Alloswicth-1 administered systemically. Injection of Alloswicth-1 before, but not after, fear conditioning resulted in a significant decrease in freezing upon fear retrieval. Mice injected with Alloswicth-1 pre-training were also implanted with recording microelectrodes into both the medial prefrontal cortex (mPFC) and ventral hippocampus (vHPC). The recordings revealed a reduction in theta rhythmic activity (4-12 Hz) in both the mPFC and vHPC during fear retrieval. These results indicate that inhibition of mGlu5 signaling alters local oscillatory activity in principal components of the fear brain network underlying a reduced response to a predicted threat.
Collapse
Affiliation(s)
- Pawel Matulewicz
- Institute of Pharmacology, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Jana Bazynskiego 8, 80-309 Gdansk, Poland
- Correspondence:
| | - Arnau Ramos-Prats
- Institute of Pharmacology, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
| | - Xavier Gómez-Santacana
- Laboratory of Medicinal Chemistry & Synthesis (MCS), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Amadeu Llebaria
- Laboratory of Medicinal Chemistry & Synthesis (MCS), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Francesco Ferraguti
- Institute of Pharmacology, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
| |
Collapse
|
9
|
Teleuca AE, Alemà GS, Casolini P, Barberis I, Ciabattoni F, Orlando R, Di Menna L, Iacovelli L, Scioli MR, Nicoletti F, Zuena AR. Changes in mGlu5 Receptor Signaling Are Associated with Associative Learning and Memory Extinction in Mice. Life (Basel) 2022; 12:life12030463. [PMID: 35330215 PMCID: PMC8955168 DOI: 10.3390/life12030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Using an in vivo method for the assessment of polyphosphoinositide (PI) hydrolysis, we examine whether spatial learning and memory extinction cause changes in mGlu5 metabotropic glutamate receptor signaling in the hippocampus and prefrontal cortex. We use the following five groups of mice: (i) naive mice; (ii) control mice exposed to the same environment as learner mice; (iii) leaner mice, trained for four days in a water maze; (iv) mice in which memory extinction was induced by six trials without the platform; (v) mice that spontaneously lost memory. The mGlu5 receptor-mediated PI hydrolysis was significantly reduced in the dorsal hippocampus of learner mice as compared to naive and control mice. The mGlu5 receptor signaling was also reduced in the ventral hippocampus and prefrontal cortex of learner mice, but only with respect to naive mice. Memory extinction was associated with a large up-regulation of mGlu5 receptor-mediated PI hydrolysis in the three brain regions and with increases in mGlu5 receptor and phospholipase-Cβ protein levels in the ventral and dorsal hippocampus, respectively. These findings support a role for mGlu5 receptors in mechanisms underlying spatial learning and suggest that mGlu5 receptors are candidate drug targets for disorders in which cognitive functions are impaired or aversive memories are inappropriately retained.
Collapse
Affiliation(s)
- Ana Elena Teleuca
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (A.E.T.); (G.S.A.); (P.C.); (I.B.); (F.C.); (R.O.); (L.I.); (F.N.)
| | - Giovanni Sebastiano Alemà
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (A.E.T.); (G.S.A.); (P.C.); (I.B.); (F.C.); (R.O.); (L.I.); (F.N.)
| | - Paola Casolini
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (A.E.T.); (G.S.A.); (P.C.); (I.B.); (F.C.); (R.O.); (L.I.); (F.N.)
| | - Ilaria Barberis
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (A.E.T.); (G.S.A.); (P.C.); (I.B.); (F.C.); (R.O.); (L.I.); (F.N.)
| | - Francesco Ciabattoni
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (A.E.T.); (G.S.A.); (P.C.); (I.B.); (F.C.); (R.O.); (L.I.); (F.N.)
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (A.E.T.); (G.S.A.); (P.C.); (I.B.); (F.C.); (R.O.); (L.I.); (F.N.)
- IRCCS Neuromed, 86077 Pozzilli, Italy; (L.D.M.); (M.R.S.)
| | - Luisa Di Menna
- IRCCS Neuromed, 86077 Pozzilli, Italy; (L.D.M.); (M.R.S.)
| | - Luisa Iacovelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (A.E.T.); (G.S.A.); (P.C.); (I.B.); (F.C.); (R.O.); (L.I.); (F.N.)
| | | | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (A.E.T.); (G.S.A.); (P.C.); (I.B.); (F.C.); (R.O.); (L.I.); (F.N.)
- IRCCS Neuromed, 86077 Pozzilli, Italy; (L.D.M.); (M.R.S.)
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (A.E.T.); (G.S.A.); (P.C.); (I.B.); (F.C.); (R.O.); (L.I.); (F.N.)
- Correspondence: ; Tel./Fax: +39-06-49912513
| |
Collapse
|
10
|
Joushi S, Taherizadeh Z, Esmaeilpour K, Sheibani V. Environmental enrichment and intranasal oxytocin administration reverse maternal separation-induced impairments of prosocial choice behavior. Pharmacol Biochem Behav 2021; 213:173318. [PMID: 34974063 DOI: 10.1016/j.pbb.2021.173318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022]
Abstract
Adverse early life experiences influence behavioral and physiological functions and increase vulnerability to neuropsychiatric disorders. Maternal separation (MS) is an established animal model that reproduces the features of chronic stress or adverse experiences during early life. Previous studies have been shown that MS may lead to impairments of social behaviors. Here, we investigated the effects of MS on mutual reward preferences in a double T-maze prosocial choice task. Since enriched environment (EE) and intranasal oxytocin (OT) administration have beneficial effects on cognition and social behaviors, in the present study we tested whether these treatments, alone or in combination, would affect prosocial behavior of rats which underwent MS during infancy. Rat pups underwent MS paradigm for 180 min/day from postnatal day (PND) 1-21. From PND 22-34, rats were exposed to an EE and/or received intranasal OT (2 μg/μl, 7 days). Hence, the 8 groups consisted of control (CTRL), MS, CTRL+EE, CTRL+OT and the saline groups. Assessment of prosocial choice behavior was started in adolescence. MS impaired prosocial choice behavior and reduced mutual reward preferences. Getting exposed to EE and intranasal OT administration could overcome MS-induced deficits and promoted mutual reward preferences of MS rats. Combination of short-term EE and OT strengthened prosocial behavior. Obtained results showed that EE and OT may be considered as profitable therapeutic approaches for promoting some aspects of social behavior.
Collapse
Affiliation(s)
- Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Taherizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada.
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
11
|
Joushi S, Esmaeilpour K, Masoumi-Ardakani Y, Esmaeili-Mahani S, Sheibani V. Effects of short environmental enrichment on early-life adversity induced cognitive alternations in adolescent rats. J Neurosci Res 2021; 99:3373-3391. [PMID: 34676587 DOI: 10.1002/jnr.24974] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/14/2021] [Accepted: 09/17/2021] [Indexed: 01/06/2023]
Abstract
Early-life experiences, including parental care, affect cognitive performance later in life. Being exposed to early-life maternal separation (MS) increases susceptibility to stress-related psychopathology. Previous studies suggest that MS could induce learning and memory impairments. Since enriched environment (EE) provides more opportunities for exploration and social interaction, in the present study we evaluated the effects of a short EE paradigm with a duration of 13 days on cognitive abilities of maternally separated rats (MS; 180 min/day, postnatal day (PND) 1-21) during adolescence in four experimental groups: Control, Control+EE, MS, and MS+EE. Plasma corticosterone (CORT) and brain-derived neurotrophic factor (BDNF) levels were also measured in experimental animals. We also studied the induction of long-term potentiation (LTP) in the slices of hippocampal CA1 area. The behavioral and electrophysiological assessments were started at PND 35. MS caused higher basal CORT levels in plasma and impaired spatial learning, memory, and social interaction. LTP induction was also impaired in MS rats and plasma BDNF levels were reduced in these animals. MS also induced more anxiety-like behavior. Short EE reduced plasma CORT levels had the potential to improve locomotor activity and anxiety-like behavior in MS+EE rats and reversed MS-induced impairments of spatial learning, memory, and social behavior. LTP induction and plasma BDNF levels were also enhanced in MS+EE rats. We concluded that short EE might be considered as a therapeutic strategy for promoting cognition.
Collapse
Affiliation(s)
- Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaser Masoumi-Ardakani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Grigoryan GA. Molecular-Cellular Mechanisms of Plastic Restructuring Produced by an Enriched Environment. Effects on Learning and Memory. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Rico-Barrio I, Peñasco S, Lekunberri L, Serrano M, Egaña-Huguet J, Mimenza A, Soria-Gomez E, Ramos A, Buceta I, Gerrikagoitia I, Mendizabal-Zubiaga J, Elezgarai I, Puente N, Grandes P. Environmental Enrichment Rescues Endocannabinoid-Dependent Synaptic Plasticity Lost in Young Adult Male Mice after Ethanol Exposure during Adolescence. Biomedicines 2021; 9:825. [PMID: 34356889 PMCID: PMC8301393 DOI: 10.3390/biomedicines9070825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Binge drinking (BD) is a serious health concern in adolescents as high ethanol (EtOH) consumption can have cognitive sequelae later in life. Remarkably, an enriched environment (EE) in adulthood significantly recovers memory in mice after adolescent BD, and the endocannabinoid, 2-arachydonoyl-glycerol (2-AG), rescues synaptic plasticity and memory impaired in adult rodents upon adolescent EtOH intake. However, the mechanisms by which EE improves memory are unknown. We investigated this in adolescent male C57BL/6J mice exposed to a drinking in the dark (DID) procedure four days per week for a duration of 4 weeks. After DID, the mice were nurtured under an EE for 2 weeks and were subjected to the Barnes Maze Test performed the last 5 days of withdrawal. The EE rescued memory and restored the EtOH-disrupted endocannabinoid (eCB)-dependent excitatory long-term depression at the dentate medial perforant path synapses (MPP-LTD). This recovery was dependent on both the cannabinoid CB1 receptor and group I metabotropic glutamate receptors (mGluRs) and required 2-AG. Also, the EE had a positive effect on mice exposed to water through the transient receptor potential vanilloid 1 (TRPV1) and anandamide (AEA)-dependent MPP long-term potentiation (MPP-LTP). Taken together, EE positively impacts different forms of excitatory synaptic plasticity in water- and EtOH-exposed brains.
Collapse
Affiliation(s)
- Irantzu Rico-Barrio
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Sara Peñasco
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Leire Lekunberri
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Maitane Serrano
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Jon Egaña-Huguet
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Amaia Mimenza
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Edgar Soria-Gomez
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Almudena Ramos
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Ianire Buceta
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Juan Mendizabal-Zubiaga
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
14
|
Cooper DD, Frenguelli BG. The influence of sensory experience on the glutamatergic synapse. Neuropharmacology 2021; 193:108620. [PMID: 34048870 DOI: 10.1016/j.neuropharm.2021.108620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022]
Abstract
The ability of glutamatergic synaptic strength to change in response to prevailing neuronal activity is believed to underlie the capacity of animals, including humans, to learn from experience. This learning better equips animals to safely navigate challenging and potentially harmful environments, while reinforcing behaviours that are conducive to survival. Early descriptions of the influence of experience on behaviour were provided by Donald Hebb who showed that an enriched environment improved performance of rats in a variety of behavioural tasks, challenging the widely-held view at the time that psychological development and intelligence were largely predetermined through genetic inheritance. Subsequent studies in a variety of species provided detailed cellular and molecular insights into the neurobiological adaptations associated with enrichment and its counterparts, isolation and deprivation. Here we review those experience-dependent changes that occur at the glutamatergic synapse, and which likely underlie the enhanced cognition associated with enrichment. We focus on the importance of signalling initiated by the release of BDNF and a prime downstream effector, MSK1, in orchestrating the many structural and functional neuronal adaptations associated with enrichment. In particular we discuss the MSK1-dependent expansion of the dynamic range of the glutamatergic synapse, which may allow enhanced information storage or processing, and the establishment of a genomic homeostasis that may both stabilise the enriched brain, and may make it better able to respond to novel experiences.
Collapse
Affiliation(s)
- Daniel D Cooper
- School of Life Sciences, University of Warwick, Coventry, UK
| | | |
Collapse
|
15
|
Cox SML, Tippler M, Jaworska N, Smart K, Castellanos-Ryan N, Durand F, Allard D, Benkelfat C, Parent S, Dagher A, Vitaro F, Boivin M, Pihl RO, Côté S, Tremblay RE, Séguin JR, Leyton M. mGlu5 receptor availability in youth at risk for addictions: effects of vulnerability traits and cannabis use. Neuropsychopharmacology 2020; 45:1817-1825. [PMID: 32413893 PMCID: PMC7608187 DOI: 10.1038/s41386-020-0708-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022]
Abstract
The excitatory neurotransmitter glutamate has been implicated in experience-dependent neuroplasticity and drug-seeking behaviors. Type 5 metabotropic glutamate (mGlu5) receptors might be particularly important. They are critically involved in synaptic plasticity and their availability has been reported to be lower in people with alcohol, tobacco, and cocaine use disorders. Since these reductions could reflect effects of drug use or pre-existing traits, we used positron emission tomography to measure mGlu5 receptor availability in young adults at elevated risk for addictions. Fifty-nine participants (age 18.5 ± 0.6) were recruited from a longitudinal study that has followed them since birth. Based on externalizing traits that predict future substance use problems, half were at low risk, half were at high risk. Cannabis use histories varied markedly and participants were divided into three subgroups: zero, low, and high use. Compared to low risk volunteers, those at elevated risk had lower [11C]ABP688 binding potential (BPND) values in the striatum, amygdala, insula, and orbitofrontal cortex (OFC). Cannabis use by risk group interactions were observed in the striatum and OFC. In these regions, low [11C]ABP688 BPND values were only seen in the high risk group that used high quantities of cannabis. When these high risk, high cannabis use individuals were compared to all other participants, [11C]ABP688 BPND values were lower in the striatum, OFC, and insula. Together, these results provide evidence that mGlu5 receptor availability is low in youth at elevated risk for addictions, particularly those who frequently use cannabis.
Collapse
Affiliation(s)
- Sylvia M L Cox
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Maria Tippler
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Natalia Jaworska
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Institute of Mental Health Research, Affiliated with the University of Ottawa, Ottawa, ON, Canada
| | - Kelly Smart
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Yale PET Center, Yale University, New Haven, CT, USA
| | - Natalie Castellanos-Ryan
- School of Psychoeducation, Université de Montréal, Montreal, QC, Canada
- CHU Ste-Justine Research Center, Montreal, QC, Canada
| | - France Durand
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Dominique Allard
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Chawki Benkelfat
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sophie Parent
- School of Psychoeducation, Université de Montréal, Montreal, QC, Canada
| | - Alain Dagher
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Frank Vitaro
- School of Psychoeducation, Université de Montréal, Montreal, QC, Canada
- CHU Ste-Justine Research Center, Montreal, QC, Canada
| | - Michel Boivin
- Department of Psychology, Université Laval, Quebec, QC, Canada
| | - Robert O Pihl
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Sylvana Côté
- CHU Ste-Justine Research Center, Montreal, QC, Canada
- Department of Social and Preventative Medicine, Université de Montréal, Montreal, QC, Canada
| | - Richard E Tremblay
- CHU Ste-Justine Research Center, Montreal, QC, Canada
- Department of Pediatrics and Psychology, Université de Montréal, Montreal, QC, Canada
- School of Public Health, University College Dublin, Belfield, Dublin, Ireland
| | - Jean R Séguin
- CHU Ste-Justine Research Center, Montreal, QC, Canada
- Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
- Department of Psychology, McGill University, Montreal, QC, Canada.
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
16
|
Althobaiti YS, Almalki AH. Effects of environmental enrichment on reinstatement of methamphetamine-induced conditioned place preference. Behav Brain Res 2020; 379:112372. [PMID: 31759048 DOI: 10.1016/j.bbr.2019.112372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The influence of environmental enrichment (EE) on reinstatement to methamphetamine (METH) seeking in rat model was investigated. METHODS Wistar rats were divided to receive saline (1 ml/kg) or METH (1 mg/kg, i.p.) for 8 days during the conditioning training in the conditioned place preference (CPP) paradigm, which is one of the most popular models to study the motivational effects of drugs and non-drug treatments in experimental animals. Rats were then kept in either isolated (IE) or enriched environment (EE) for 30 days during the extinction training. Animals were finally examined for reinstatement provoked by i.p. injections of METH. RESULTS Saline injections during the conditioning phase did not change CPP during reinstatement in animals of IE or EE control groups. METH injections reinstated place preference in the IE animal group. Interestingly, EE significantly blocked this reinstatement effects of METH. CONCLUSION These results show the important role of social interactions and positive environment conditions in preventing reinstatement to drug use.
Collapse
Affiliation(s)
- Yusuf S Althobaiti
- Taif University, College of Pharmacy, Department of Pharmacology and Toxicology, Taif, Saudi Arabia; Taif University, College of Pharmacy, Addiction and Neuroscience Research Unit, Taif, Saudi Arabia.
| | - Atiah H Almalki
- Taif University, College of Pharmacy, Addiction and Neuroscience Research Unit, Taif, Saudi Arabia; Taif University, College of Pharmacy, Department of Pharmaceutical chemistry, Taif, Saudi Arabia
| |
Collapse
|
17
|
Singhal G, Morgan J, Jawahar MC, Corrigan F, Jaehne EJ, Toben C, Breen J, Pederson SM, Manavis J, Hannan AJ, Baune BT. Effects of aging on the motor, cognitive and affective behaviors, neuroimmune responses and hippocampal gene expression. Behav Brain Res 2020; 383:112501. [PMID: 31987935 DOI: 10.1016/j.bbr.2020.112501] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022]
Abstract
The known effects of aging on the brain and behavior include impaired cognition, increases in anxiety and depressive-like behaviors, and reduced locomotor activity. Environmental exposures and interventions also influence brain functions during aging. We investigated the effects of normal aging under controlled environmental conditions and in the absence of external interventions on locomotor activity, cognition, anxiety and depressive-like behaviors, immune function and hippocampal gene expression in C57BL/6 mice. Healthy mice at 4, 9, and 14 months of age underwent behavioral testing using an established behavioral battery, followed by cellular and molecular analysis using flow cytometry, immunohistochemistry, and quantitative PCR. We found that 14-month-old mice showed significantly reduced baseline locomotion, increased anxiety, and impaired spatial memory compared to younger counterparts. However, no significant differences were observed for depressive-like behavior in the forced-swim test. Microglia numbers in the dentate gyrus, as well as CD8+ memory T cells increased towards late middle age. Aging processes exerted a significant effect on the expression of 43 genes of interest in the hippocampus. We conclude that aging is associated with specific changes in locomotor activity, cognition, anxiety-like behaviors, neuroimmune responses and hippocampal gene expression.
Collapse
Affiliation(s)
- Gaurav Singhal
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia.
| | - Julie Morgan
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia.
| | - Magdalene C Jawahar
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia.
| | - Frances Corrigan
- Division of Health Sciences, The University of South Australia, Adelaide, SA, Australia.
| | - Emily J Jaehne
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia; School of Psychology and Public Health, LIMS2, Room 204, La Trobe University, Bundoora, Melbourne, Vic, Australia.
| | - Catherine Toben
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia.
| | - James Breen
- Robinson Research Institute, The University of Adelaide, SA, Australia; Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.
| | - Stephen M Pederson
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.
| | - Jim Manavis
- Centre for Neurological Diseases, School of Medicine, Faculty of Health, The University of Adelaide, Adelaide, SA, Australia.
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Bernhard T Baune
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia; Department of Psychiatry, University of Münster, Münster, Germany.
| |
Collapse
|
18
|
Short-term environmental enrichment, and not physical exercise, alleviate cognitive decline and anxiety from middle age onwards without affecting hippocampal gene expression. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:1143-1169. [DOI: 10.3758/s13415-019-00743-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Huang X, Wang M, Zhang Q, Chen X, Wu J. The role of glutamate receptors in attention-deficit/hyperactivity disorder: From physiology to disease. Am J Med Genet B Neuropsychiatr Genet 2019; 180:272-286. [PMID: 30953404 DOI: 10.1002/ajmg.b.32726] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is the most common psychiatric disorder in children and adolescents, which is characterized by behavioral problems such as attention deficit, hyperactivity, and impulsivity. As the receptors of the major excitatory neurotransmitter in the mammalian central nervous system (CNS), glutamate receptors (GluRs) are strongly linked to normal brain functioning and pathological processes. Extensive investigations have been made about the structure, function, and regulation of GluR family, describing evidences that support the disruption of these mechanisms in mental disorders, including ADHD. In this review, we briefly described the family and function of GluRs in the CNS, and discussed what is recently known about the role of GluRs in ADHD, that including GluR genes, animal models, and the treatment, which would help us further elucidate the etiology of ADHD.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinzhen Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Xiang Z, Lv X, Maksymetz J, Stansley BJ, Ghoshal A, Gogliotti RG, Niswender CM, Lindsley CW, Conn PJ. mGlu 5 Positive Allosteric Modulators Facilitate Long-Term Potentiation via Disinhibition Mediated by mGlu 5-Endocannabinoid Signaling. ACS Pharmacol Transl Sci 2019; 2:198-209. [PMID: 31259318 PMCID: PMC6591772 DOI: 10.1021/acsptsci.9b00017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 11/29/2022]
Abstract
Metabotropic glutamate (mGlu) receptor type 5 (mGlu5) positive allosteric modulators (PAMs) enhance hippocampal long-term potentiation (LTP) and have cognition-enhancing effects in animal models. These effects were initially thought to be mediated by potentiation of mGlu5 modulation of N-methyl-d-aspartate receptor (NMDAR) currents. However, a biased mGlu5 PAM that potentiates Gαq-dependent mGlu5 signaling, but not mGlu5 modulation of NMDAR currents, retains cognition-enhancing effects in animal models, suggesting that potentiation of NMDAR currents is not required for these in vivo effects of mGlu5 PAMs. However, it is not clear whether the potentiation of NMDAR currents is critical for the ability of mGlu5 PAMs to enhance hippocampal LTP. We now report the characterization of effects of two structurally distinct mGlu5 PAMs, VU-29 and VU0092273, on NMDAR currents and hippocampal LTP. As with other mGlu5 PAMs that do not display observable bias for potentiation of NMDAR currents, VU0092273 enhanced both mGlu5 modulation of NMDAR currents and induction of LTP at the hippocampal Schaffer collateral (SC)-CA1 synapse. In contrast, VU-29 did not potentiate mGlu5 modulation of NMDAR currents but induced robust potentiation of hippocampal LTP. Interestingly, both VU-29 and VU0092273 suppressed evoked inhibitory postsynaptic currents (eIPSCs) in CA1 pyramidal cells, and this effect was blocked by the cannabinoid receptor type 1 (CB1) antagonist AM251. Furthermore, AM251 blocked the ability of both mGlu5 PAMs to enhance LTP. Finally, both PAMs failed to enhance LTP in mice with the restricted genetic deletion of mGlu5 in CA1 pyramidal cells. Taken together with previous findings, these results suggest that enhancement of LTP by mGlu5 PAMs does not depend on mGlu5 modulation of NMDAR currents but is mediated by a previously established mechanism in which mGlu5 in CA1 pyramidal cells induces endocannabinoid release and CB1-dependent disinhibition.
Collapse
Affiliation(s)
- Zixiu Xiang
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Xiaohui Lv
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - James Maksymetz
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Branden J Stansley
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Ayan Ghoshal
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Rocco G Gogliotti
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
21
|
Murueta-Goyena A, Morera-Herreras T, Miguelez C, Gutiérrez-Ceballos A, Ugedo L, Lafuente JV, Bengoetxea H. Effects of adult enriched environment on cognition, hippocampal-prefrontal plasticity and NMDAR subunit expression in MK-801-induced schizophrenia model. Eur Neuropsychopharmacol 2019; 29:590-600. [PMID: 30926324 DOI: 10.1016/j.euroneuro.2019.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 11/30/2022]
Abstract
Schizophrenia is a mental disorder characterized by psychosis, negative symptoms and cognitive impairment. Cognitive deficits are enduring and represent the most disabling symptom but are currently poorly treated. N-methyl D-aspartate receptor (NMDAR) hypofunction hypothesis has been notably successful in explaining the pathophysiological findings and symptomatology of schizophrenia. Thereby, NMDAR blockade in rodents represents a useful tool to identify new therapeutic approaches. In this regard, enriched environment (EE) could play an essential role. Using a multilevel approach of behavior, electrophysiology and protein analysis, we showed that a short-term exposure to EE in adulthood ameliorated spatial learning and object-place associative memory impairment observed in postnatally MK-801-treated Long Evans rats. Moreover, EE in adult life restored long-term potentiation (LTP) in hippocampal-medial prefrontal pathway abolished by MK-801 treatment. EE in adulthood also induced a set of modifications in the expression of proteins related to glutamatergic neurotransmission. Taken together, these findings shed new light on the neurobiological effects of EE to reverse the actions of MK-801 and offer a preclinical testing of a therapeutic strategy that may be remarkably effective for managing cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Ane Murueta-Goyena
- Deparment of Neuroscience, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Bizkaia, Spain; Neurodegenerative Diseases group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain.
| | - Teresa Morera-Herreras
- Deparment of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Cristina Miguelez
- Deparment of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| | | | - Luisa Ugedo
- Deparment of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - José Vicente Lafuente
- Deparment of Neuroscience, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Bizkaia, Spain; Nanoneurosurgery Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain; Faculty of Health Science, Universidad Autónoma de Chile, Santiago de Chile, Chile
| | - Harkaitz Bengoetxea
- Deparment of Neuroscience, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Bizkaia, Spain
| |
Collapse
|
22
|
Lim J, Kim E, Noh HJ, Kang S, Phillips BU, Kim DG, Bussey TJ, Saksida L, Heath CJ, Kim CH. Assessment of mGluR5 KO mice under conditions of low stress using a rodent touchscreen apparatus reveals impaired behavioural flexibility driven by perseverative responses. Mol Brain 2019; 12:37. [PMID: 30971312 PMCID: PMC6458840 DOI: 10.1186/s13041-019-0441-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic and pharmacological manipulations targeting metabotropic glutamate receptor 5 (mGluR5) affect performance in behavioural paradigms that depend on cognitive flexibility. Many of these studies involved exposing mice to highly stressful conditions including electric foot shocks or water immersion and forced swimming. Because mGluR5 is also implicated in resilience and stress responses, however, apparent impairments in inhibitory learning may have been an artifact of manipulation-induced changes in affective state. To address this, we present here a characterization of cognitive flexibility in mGluR5 knockout (KO) mice conducted with a rodent touchscreen cognitive assessment apparatus in which the animals experience significantly less stress. Our results indicate a significant reversal learning impairment relative to wild-type (WT) controls in the two-choice Visual Discrimination-Reversal (VDR) paradigm. Upon further analysis, we found that this deficit is primarily driven by a prolonged period of perseveration in the early phase of reversal. We also observed a similar perseveration phenotype in the KO mice in the Extinction (EXT) paradigm. In addition, mGluR5 KO mice show higher breakpoints in the touchscreen Progressive Ratio (PR) and altered decision making in the Effort-related Choice (ERC) tasks. Interestingly, this impairment in PR is an additional manifestation of an increased propensity to perseverate on the emission of relatively simplistic behavioural outputs. Together, these findings suggest that under conditions of low stress, mGluR5 KO mice exhibit a pronounced perseverative phenotype that blunts cognitive flexibility.
Collapse
Affiliation(s)
- Jisoo Lim
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioural Science in Medicine, BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyun Jong Noh
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Shinwon Kang
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Benjamin U Phillips
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | - Dong Goo Kim
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Timothy J Bussey
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,Molecular Medicine Research Laboratories, Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Brain and Mind Institute, Western University, London, ON, Canada
| | - Lisa Saksida
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,Molecular Medicine Research Laboratories, Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Brain and Mind Institute, Western University, London, ON, Canada
| | - Christopher J Heath
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | - Chul Hoon Kim
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
23
|
Llorens-Martín M. Exercising New Neurons to Vanquish Alzheimer Disease. Brain Plast 2018; 4:111-126. [PMID: 30564550 PMCID: PMC6296267 DOI: 10.3233/bpl-180065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer disease (AD) is the most common type of dementia in individuals over 65 years of age. The neuropathological hallmarks of the condition are Tau neurofibrillary tangles and Amyloid-β senile plaques. Moreover, certain susceptible regions of the brain experience a generalized lack of neural plasticity and marked synaptic alterations during the progression of this as yet incurable disease. One of these regions, the hippocampus, is characterized by the continuous addition of new neurons throughout life. This phenomenon, named adult hippocampal neurogenesis (AHN), provides a potentially endless source of new synaptic elements that increase the complexity and plasticity of the hippocampal circuitry. Numerous lines of evidence show that physical activity and environmental enrichment (EE) are among the most potent positive regulators of AHN. Given that neural plasticity is markedly decreased in many neurodegenerative diseases, the therapeutic potential of making certain lifestyle changes, such as increasing physical activity, is being recognised in several non-pharmacologic strategies seeking to slow down or prevent the progression of these diseases. This review article summarizes current evidence supporting the putative therapeutic potential of EE and physical exercise to increase AHN and hippocampal plasticity both under physiological and pathological circumstances, with a special emphasis on neurodegenerative diseases and AD.
Collapse
Affiliation(s)
- María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSIC-UAM, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases CIBERNED, Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
24
|
Novati A, Hentrich T, Wassouf Z, Weber JJ, Yu-Taeger L, Déglon N, Nguyen HP, Schulze-Hentrich JM. Environment-dependent striatal gene expression in the BACHD rat model for Huntington disease. Sci Rep 2018; 8:5803. [PMID: 29643462 PMCID: PMC5895842 DOI: 10.1038/s41598-018-24243-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene which results in progressive neurodegeneration in the striatum, cortex, and eventually most brain areas. Despite being a monogenic disorder, environmental factors influence HD characteristics. Both human and mouse studies suggest that mutant HTT (mHTT) leads to gene expression changes that harbor potential to be modulated by the environment. Yet, the underlying mechanisms integrating environmental cues into the gene regulatory program have remained largely unclear. To better understand gene-environment interactions in the context of mHTT, we employed RNA-seq to examine effects of maternal separation (MS) and environmental enrichment (EE) on striatal gene expression during development of BACHD rats. We integrated our results with striatal consensus modules defined on HTT-CAG length and age-dependent co-expression gene networks to relate the environmental factors with disease progression. While mHTT was the main determinant of expression changes, both MS and EE were capable of modulating these disturbances, resulting in distinctive and in several cases opposing effects of MS and EE on consensus modules. This bivalent response to maternal separation and environmental enrichment may aid in explaining their distinct effects observed on disease phenotypes in animal models of HD and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Arianna Novati
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Zinah Wassouf
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Jonasz J Weber
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Libo Yu-Taeger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nicole Déglon
- Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany. .,Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany.
| | | |
Collapse
|
25
|
Ohline SM, Abraham WC. Environmental enrichment effects on synaptic and cellular physiology of hippocampal neurons. Neuropharmacology 2018; 145:3-12. [PMID: 29634984 DOI: 10.1016/j.neuropharm.2018.04.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022]
Abstract
Exposure of rodents to an enriched environment (EE) has been shown to reliably increase performance on hippocampus-dependent learning and memory tasks, compared to conspecifics living in standard housing conditions. Here we review the EE-related functional changes in synaptic and cellular properties for neurons in the dentate gyrus and area CA1, as assessed through in vivo and ex vivo electrophysiological approaches. There is a growing consensus of findings regarding the pattern of effects seen. Most prominently, there are changes in cellular excitability and synaptic plasticity in CA1, particularly with short-term and/or periodic exposure to EE. Such changes are much less evident after longer term continuous exposure to EE. In the dentate gyrus, increases in synaptic transmission as well as cell excitability become evident after short-term EE exposure, while the induction of long-term potentiation (LTP) in the dentate is remarkably insensitive, even though it is reliably enhanced by voluntary running. Recent evidence has added a new dimension to the understanding of EE effects on hippocampal electrophysiology by revealing an increased sparsity of place cell representations after long periods of EE treatment. It is possible that such connectivity change is one of the key factors contributing to the enhancement of hippocampus-dependent spatial learning over the long-term, even if there are no obvious changes in other markers such as LTP. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
Collapse
Affiliation(s)
- S M Ohline
- Department of Psychology, Brain Health Research Centre and Brain Research New Zealand, University of Otago, New Zealand
| | - W C Abraham
- Department of Psychology, Brain Health Research Centre and Brain Research New Zealand, University of Otago, New Zealand.
| |
Collapse
|
26
|
Bonfiglio T, Olivero G, Vergassola M, Di Cesare Mannelli L, Pacini A, Iannuzzi F, Summa M, Bertorelli R, Feligioni M, Ghelardini C, Pittaluga A. Environmental training is beneficial to clinical symptoms and cortical presynaptic defects in mice suffering from experimental autoimmune encephalomyelitis. Neuropharmacology 2018; 145:75-86. [PMID: 29402503 DOI: 10.1016/j.neuropharm.2018.01.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 01/08/2023]
Abstract
The effect of "prophylactic" environmental stimulation on clinical symptoms and presynaptic defects in mice suffering from the experimental autoimmune encephalomyelitis (EAE) at the acute stage of disease (21 ± 1 days post immunization, d.p.i.) was investigated. In EAE mice raised in an enriched environment (EE), the clinical score was reduced when compared to EAE mice raised in standard environment (SE).Concomitantly, gain of weight and increased spontaneous motor activity and curiosity were observed, suggesting increased well-being in mice. Impaired glutamate exocytosis and cyclic adenosine monophosphate (cAMP) production in cortical terminals of SE-EAE mice were evident at 21 ± 1 d.p.i.. Differently, the 12 mM KCl-evoked glutamate exocytosis from cortical synaptosomes of EE-EAE mice was comparable to that observed in SE and EE-control mice, but significantly higher than that in SE-EAE mice. Similarly, the 12 mM KCl-evoked cAMP production in EE-EAE mice cortical synaptosomes recovered to the level observed in SE and EE-control mice. MUNC-18 and SNAP25 contents, but not Syntaxin-1a and Synaptotagmin 1 levels, were increased in cortical synaptosomes from EE-EAE mice when compared to SE-EAE mice. Circulating IL-1β was increased in the spinal cord, but not in the cortex, of SE-EAE mice, and it did not recover in EE-EAE mice. Inflammatory infiltrates were reduced in the cortex but not in the spinal cord of EE-EAE mice. Demyelination was observed in the spinal cord; EE significantly diminished it. We conclude that "prophylactic" EE is beneficial to synaptic derangements and preserves glutamate transmission in the cortex of EAE mice. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
Collapse
Affiliation(s)
- T Bonfiglio
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - G Olivero
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - M Vergassola
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - L Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Italy
| | - A Pacini
- Department of Experimental and Clinical Medicine, DMSC, Section of Anatomy and Histology, University of Florence, Italy
| | - F Iannuzzi
- EBRI-European Brain Research Institute, Rome, Italy
| | - M Summa
- D3. PharmaChemistry Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - R Bertorelli
- D3. PharmaChemistry Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - M Feligioni
- EBRI-European Brain Research Institute, Rome, Italy; Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - C Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Italy
| | - A Pittaluga
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132, Genoa, Italy.
| |
Collapse
|
27
|
Recording Field Potentials and Synaptic Plasticity From Freely Behaving Rodents. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00001-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Cortese GP, Olin A, O'Riordan K, Hullinger R, Burger C. Environmental enrichment improves hippocampal function in aged rats by enhancing learning and memory, LTP, and mGluR5-Homer1c activity. Neurobiol Aging 2017; 63:1-11. [PMID: 29207276 DOI: 10.1016/j.neurobiolaging.2017.11.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/20/2023]
Abstract
Previous studies from our laboratory have shown that environmental enrichment (EE) in young rats results in improved learning ability and enhanced metabotropic glutamate receptor-dependent long-term potentiation (mGluR-dependent LTP) resulting from sustained activation of p70S6 kinase. Here, we investigated whether 1-month EE is sufficient to improve hippocampus-dependent learning and memory and enhance hippocampal LTP in 23-24 month-old Fischer 344 male rats. Aged rats were housed in environmentally enriched, socially enriched, or standard housing conditions. We find that aged rats exposed to 1-month of EE demonstrate enhanced learning and memory relative to standard housed controls when tested in the Morris water maze and novel object recognition behavioral tasks. Furthermore, we find that environmentally enriched rats perform significantly better than socially enriched or standard housed rats in the radial-arm water maze and display enhanced mGluR5-dependent hippocampal LTP. Enhanced hippocampal function results from activity-dependent increases in the levels of mGluR5, Homer1c, and phospho-p70S6 kinase. These findings demonstrate that a short exposure of EE to aged rats can have significant effects on hippocampal function.
Collapse
Affiliation(s)
- Giuseppe P Cortese
- Department of Neurology, Medical Sciences Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew Olin
- College of Letters and Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Kenneth O'Riordan
- Department of Pharmacology & Therapeutics, Trinity College, Dublin, Ireland
| | - Rikki Hullinger
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Corinna Burger
- Department of Neurology, Medical Sciences Center, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
29
|
|