1
|
Li M, Wang SZ, Zhao YB, Tang X, Xu L, Wang H, Zhou QX. Rac1 in parvalbumin neurons of the medial prefrontal cortex governs rapid forgetting of social memory. Mol Psychiatry 2025:10.1038/s41380-025-02963-9. [PMID: 40158067 DOI: 10.1038/s41380-025-02963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 02/19/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Social memory can undergo rapid forgetting at first according to the Ebbinghaus forgetting curve, for which the underlying mechanism remains entirely unknown. Here, we reported that rapid forgetting of social memory did not occur as indicated by social preference on stranger 2 (S2) over stranger 1 (S1) mouse, tested shortly after social interaction with S1. However, rapid forgetting of both social and object memories occurred as indicated by no social or object preference, respectively, when the constitutive active (CA) variant of Rac1 was knocked-in parvalbumin (PV) but not somatostatin (SST) neurons of the brain. Furthermore, rapid forgetting of only social memory occurred if this CA variant was knocked-in PV but not SST neurons of the medial prefrontal cortex (mPFC). By contrast, rapid forgetting of social memory was prevented by the dominant negative (DN) variant of Rac1 knocked-in PV neurons of the mPFC. Moreover, fiber photometry revealed that PV but not SST neurons of the mPFC generated dual calcium peaks to delineate each social interaction event. Thus, PV-specific Rac1 activity of the mPFC is both necessary and sufficient for controlling social behavior via rapid forgetting of social memory, providing a novel understanding of social behaviors under health and disease conditions.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Department of Traditional Chinese Medicine, Songjiang Research Institute, Shanghai Kay Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Shi-Zhe Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Ya-Bo Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xun Tang
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hongsheng Wang
- Department of Traditional Chinese Medicine, Songjiang Research Institute, Shanghai Kay Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Qi-Xin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
2
|
Ma Y, Kyuchukova D, Jiao F, Batsikadze G, Nitsche MA, Yavari F. The impact of temporal distribution on fear extinction learning. Int J Clin Health Psychol 2025; 25:100536. [PMID: 39877888 PMCID: PMC11770545 DOI: 10.1016/j.ijchp.2024.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025] Open
Abstract
Fear extinction is the foundation of exposure therapy for anxiety and phobias. However, the stability of extinction memory diminishes over time, coinciding with fear recovery. To augment long-term extinction retention, the temporal distribution of extinction learning sessions is critical. This study investigated the effects of massed and spaced training (with short and long intervals) on extinction retention compared to a classic protocol. 120 healthy participants were recruited and randomly divided to massed training, spaced training with 20-minutes or 3-hours intervals, and a control group. The control group completed half the number of extinction trials compared to the other groups. The fear conditioning/extinction paradigm consisted of three consecutive days of fear acquisition, extinction, and recall, followed by a second recall one week later. Skin conductance response (SCR) and self-rating questionnaires (ratings of valence, arousal, and fear) were recorded and analyzed using mixed model ANOVAs. The results revealed that during the extinction phase, both massed and spaced protocols showed significantly lower SCRs compared to the control group, with massed training resulting in the largest effects. In the second recall, only the massed extinction group showed no significant difference in SCRs between threat and safety cues. The self-report assessments indicated that the massed extinction group showed furthermore lower arousal than the control group in the first recall. These results suggest that both massed and spaced training promote fear extinction learning, but only massed training improves long-term extinction retention. This study highlights the impact of the temporal distribution and trial number of extinction learning on extinction retention, offering insights for future research on improving fear extinction efficacy.
Collapse
Affiliation(s)
- Yuanbo Ma
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Dzheylyan Kyuchukova
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Germany
| | - Fujia Jiao
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, Essen 45147, Germany
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, Bielefeld, Germany
- German Center for Mental Health (DZPG), Bochum, Germany
| | - Fatemeh Yavari
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
3
|
Chen R, Wang Z, Lin Q, Hou X, Jiang Y, Le Q, Liu X, Ma L, Wang F. Destabilization of fear memory by Rac1-driven engram-microglia communication in hippocampus. Brain Behav Immun 2024; 119:621-636. [PMID: 38670239 DOI: 10.1016/j.bbi.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
Rac1 is a key regulator of the cytoskeleton and neuronal plasticity, and is known to play a critical role in psychological and cognitive brain disorders. To elucidate the engram specific Rac1 signaling in fear memory, a doxycycline (Dox)-dependent robust activity marking (RAM) system was used to label dorsal dentate gyrus (DG) engram cells in mice during contextual fear conditioning. Rac1 mRNA and protein levels in DG engram cells were peaked at 24 h (day 1) after fear conditioning and were more abundant in the fear engram cells than in the non-engram cells. Optogenetic activation of Rac1 in a temporal manner in DG engram cells before memory retrieval decreased the freezing level in the fear context. Optogenetic activation of Rac1 increased autophagy protein 7 (ATG7) expression in the DG engram cells and activated DG microglia. Microglia-specific transcriptomics and fluorescence in situ hybridization revealed that overexpression of ATG7 in the fear engram cells upregulated the mRNA of Toll-like receptor TLR2/4 in DG microglia. Knockdown of microglial TLR2/4 rescued fear memory destabilization induced by ATG7 overexpression or Rac1 activation in DG engram cells. These results indicate that Rac1-driven communications between engram cells and microglia contributes to contextual fear memory destabilization, and is mediated by ATG7 and TLR2/4, and suggest a novel mechanistic framework for the cytoskeletal regulator in fear memory interference.
Collapse
Affiliation(s)
- Ruyan Chen
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Zhilin Wang
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Qing Lin
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Xutian Hou
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Yan Jiang
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Qiumin Le
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Xing Liu
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Lan Ma
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Feifei Wang
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China.
| |
Collapse
|
4
|
Dalto JF, Medina JH. Time-dependent inhibition of Rac1 in the VTA enhances long-term aversive memory: implications in active forgetting mechanisms. Sci Rep 2023; 13:13507. [PMID: 37598223 PMCID: PMC10439914 DOI: 10.1038/s41598-023-40434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
The fate of memories depends mainly on two opposing forces: the mechanisms required for the storage and maintenance of memory and the mechanisms underlying forgetting, being the latter much less understood. Here, we show the effect of inhibiting the small Rho GTPase Rac1 on the fate of inhibitory avoidance memory in male rats. The immediate post-training micro-infusion of the specific Rac1 inhibitor NSC23766 (150 ng/0.5 µl/ side) into the ventral tegmental area (VTA) enhanced long-term memory at 1, 7, and 14 days after a single training. Additionally, an opposed effect occurred when the inhibitor was infused at 12 h after training while no effect was observed immediately after testing animals at 1 day. Control experiments ruled out the possibility that post-training memory enhancement was due to facilitation of memory formation since no effect was found when animals were tested at 1 h after acquisition and no memory enhancement was observed after the formation of a weak memory. Immediate post-training micro-infusion of Rac1 inhibitor into the dorsal hippocampus, or the amygdala did not affect memory. Our findings support the idea of a Rac1-dependent time-specific active forgetting mechanism in the VTA controlling the strength of a long-term aversive memory.
Collapse
Affiliation(s)
- Juliana F Dalto
- Instituto de Biología Celular y Neurociencias "Prof. Eduardo de Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155, 3rd Floor, C1121ABG, Buenos Aires, Argentina
| | - Jorge H Medina
- Instituto de Biología Celular y Neurociencias "Prof. Eduardo de Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155, 3rd Floor, C1121ABG, Buenos Aires, Argentina.
- Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Sierra RO, Pedraza LK, Barcsai L, Pejin A, Li Q, Kozák G, Takeuchi Y, Nagy AJ, Lőrincz ML, Devinsky O, Buzsáki G, Berényi A. Closed-loop brain stimulation augments fear extinction in male rats. Nat Commun 2023; 14:3972. [PMID: 37407557 DOI: 10.1038/s41467-023-39546-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023] Open
Abstract
Dysregulated fear reactions can result from maladaptive processing of trauma-related memories. In post-traumatic stress disorder (PTSD) and other psychiatric disorders, dysfunctional extinction learning prevents discretization of trauma-related memory engrams and generalizes fear responses. Although PTSD may be viewed as a memory-based disorder, no approved treatments target pathological fear memory processing. Hippocampal sharp wave-ripples (SWRs) and concurrent neocortical oscillations are scaffolds to consolidate contextual memory, but their role during fear processing remains poorly understood. Here, we show that closed-loop, SWR triggered neuromodulation of the medial forebrain bundle (MFB) can enhance fear extinction consolidation in male rats. The modified fear memories became resistant to induced recall (i.e., 'renewal' and 'reinstatement') and did not reemerge spontaneously. These effects were mediated by D2 receptor signaling-induced synaptic remodeling in the basolateral amygdala. Our results demonstrate that SWR-triggered closed-loop stimulation of the MFB reward system enhances extinction of fearful memories and reducing fear expression across different contexts and preventing excessive and persistent fear responses. These findings highlight the potential of neuromodulation to augment extinction learning and provide a new avenue to develop treatments for anxiety disorders.
Collapse
Affiliation(s)
- Rodrigo Ordoñez Sierra
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
| | - Lizeth Katherine Pedraza
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
| | - Lívia Barcsai
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
- HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged, 6720, Hungary
- Neunos Inc, Boston, MA, 02108, USA
| | - Andrea Pejin
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
- HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged, 6720, Hungary
- Neunos Inc, Boston, MA, 02108, USA
| | - Qun Li
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
| | - Gábor Kozák
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
| | - Yuichi Takeuchi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
- Department of Biopharmaceutical Sciences and Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Anett J Nagy
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
- HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged, 6720, Hungary
- Neunos Inc, Boston, MA, 02108, USA
| | - Magor L Lőrincz
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, Szeged, 6726, Hungary
- Neuroscience Division, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - György Buzsáki
- Neuroscience Institute, New York University, New York, NY, 10016, USA
- Center for Neural Science, New York University, New York, NY, 10016, USA
| | - Antal Berényi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary.
- HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged, 6720, Hungary.
- Neunos Inc, Boston, MA, 02108, USA.
- Neuroscience Institute, New York University, New York, NY, 10016, USA.
| |
Collapse
|
6
|
Wang W, Wang Z, Cao J, Dong Y, Chen Y. Roles of Rac1-Dependent Intrinsic Forgetting in Memory-Related Brain Disorders: Demon or Angel. Int J Mol Sci 2023; 24:10736. [PMID: 37445914 DOI: 10.3390/ijms241310736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Animals are required to handle daily massive amounts of information in an ever-changing environment, and the resulting memories and experiences determine their survival and development, which is critical for adaptive evolution. However, intrinsic forgetting, which actively deletes irrelevant information, is equally important for memory acquisition and consolidation. Recently, it has been shown that Rac1 activity plays a key role in intrinsic forgetting, maintaining the balance of the brain's memory management system in a controlled manner. In addition, dysfunctions of Rac1-dependent intrinsic forgetting may contribute to memory deficits in neurological and neurodegenerative diseases. Here, these new findings will provide insights into the neurobiology of memory and forgetting, pathological mechanisms and potential therapies for brain disorders that alter intrinsic forgetting mechanisms.
Collapse
Affiliation(s)
- Wei Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zixu Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Cao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yulan Dong
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yaoxing Chen
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
7
|
Bai H, Huang H, Zhao N, Gu H, Li Y, Zou W, Wu T, Huang X. Small G protein RAC-2 regulates forgetting via the JNK-1 signalling pathway in Caenorhabditis elegans. Eur J Neurosci 2022; 56:6162-6173. [PMID: 36321581 DOI: 10.1111/ejn.15855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022]
Abstract
Although forgetting was once regarded as a passive decline in memory and an occasional source of embarrassment, recent research suggests that it is an active biological process of removing outdated or irrelevant memories via activation of specific genes and signal transduction pathways. Rho family G proteins are known to have a role in synaptic plasticity mediated by the actin cytoskeleton. However, the current study reveals that another Rho guanosine triphosphate enzyme (GTPase), RAC-2, facilitates the occurrence of forgetting in Caenorhabditis elegans independent of actin dynamics. Functioning downstream of RAC-2 in the same signalling pathway, JNK-1 and its phosphorylated protein are required to positively regulate forgetting. The pan-neuronal rescue of RAC-2 or JNK-1, instead of AWC neuron-specific expression, reverses the delayed forgetting caused by the rac-2 mutation, which indicates that the involvement of RAC-2/JNK-1 in more than AWCs must be required. In summary, our work elucidates the action of the Rho GTPase RAC-2 and downstream JNK-1 as a potential novel pathway in forgetting in C. elegans.
Collapse
Affiliation(s)
- Hua Bai
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China.,College of Public Health, Kunming Medical University, Kunming, China
| | - Hui Huang
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| | - Ninghui Zhao
- Neurosurgery of the Second Hospital affiliated with Kunming Medical University, Kunming, China
| | - Huan Gu
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| | - Yixin Li
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| | - Wei Zou
- College of Public Health, Kunming Medical University, Kunming, China
| | - Tingting Wu
- Neurosurgery of the Second Hospital affiliated with Kunming Medical University, Kunming, China
| | - Xiaowei Huang
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| |
Collapse
|
8
|
Jiang L, Liu C, Zhao B, Ma C, Yin Y, Zhou Q, Xu L, Mao R. Time of Day-Dependent Alteration of Hippocampal Rac1 Activation Regulates Contextual Fear Memory in Rats. Front Mol Neurosci 2022; 15:871679. [PMID: 35782392 PMCID: PMC9245039 DOI: 10.3389/fnmol.2022.871679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/13/2022] [Indexed: 12/03/2022] Open
Abstract
Fear memory in species varies according to the time of the day. Although the underlying molecular mechanisms have been extensively explored, they remain largely unknown. Here, we report that hippocampal Rac1 activity undergoes a time of day-dependent alteration both in nocturnal rats and diurnal tree shrews and that training at the lower hippocampal Rac1 activation period during the night leads to better contextual fear memory in rats. Furthermore, day and night reversion by 24 h darkness/24 h light housing inverses the external clock time of hippocampal Rac1 activation, but the better contextual fear memory still coincides with the lower Rac1 activation in rats during the night. Interestingly, exogenous melatonin treatment promotes hippocampal Rac1 activity and impairs better contextual fear memory acquired at the lower Rac1 activation period during the night, and Rac1-specific inhibitor NSC23766 compromises the effect of melatonin. These results suggest that the time of day-dependent alteration of hippocampal Rac1 activation regulates contextual fear memory in rats by forgetting.
Collapse
Affiliation(s)
- Lizhu Jiang
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Clinical Psychology, The Third People’s Hospital of Yunnan Province, Kunming, China
- Department of Neuropsychopathy, Clinical Medical School, Dali University, Dali, China
| | - Chao Liu
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Baizhen Zhao
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Chen Ma
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yan Yin
- Department of Clinical Psychology, The Third People’s Hospital of Yunnan Province, Kunming, China
| | - Qixin Zhou
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Lin Xu
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- CAS Centre for Excellence in Brain Science and Intelligent Technology, Shanghai, China
- *Correspondence: Lin Xu,
| | - RongRong Mao
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming, China
- RongRong Mao,
| |
Collapse
|
9
|
Cui D, Jiang X, Chen M, Sheng H, Shao D, Yang L, Guo X, Wang Y, Lai B, Zheng P. Activation of Rac1 Has an Opposing Effect on Induction and Maintenance of Long-Term Potentiation in Hippocampus by Acting on Different Kinases. Front Mol Neurosci 2021; 14:720371. [PMID: 34531724 PMCID: PMC8438208 DOI: 10.3389/fnmol.2021.720371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/27/2021] [Indexed: 11/21/2022] Open
Abstract
Rac1 is a small GTPase of the Rho family. A previous study showed that the activation of Rac1 had an opposing effect on induction and maintenance of long-term potentiation (LTP) in the hippocampus. However, the molecular mechanism underlying this opposing effect remains to be addressed. In the present work, we find that the activation of Rac1 during the induction of LTP leads to an activation of PKCι/λ by phosphatidylinositol-3-kinase (PI3K), whereas the activation of Rac1 during the maintenance of LTP leads to the inhibition of PKMζ by LIM_kinase (LIMK) in the hippocampus. This result suggests that during different stages of LTP, the activation of Rac1 can modulate different signaling pathways, which leads to an opposing effect on the induction and maintenance of LTP in the hippocampus.
Collapse
Affiliation(s)
- Dongyang Cui
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaodong Jiang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ming Chen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huan Sheng
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Da Shao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xinli Guo
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yingqi Wang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bin Lai
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Pharmacology of Medical College of China Three Gorges University, Yichang, China
| |
Collapse
|
10
|
Olevska A, Spanagel R, Bernardi RE. Impaired contextual fear conditioning in RasGRF2 mutant mice is likely Ras-ERK-dependent. Neurobiol Learn Mem 2021; 181:107435. [PMID: 33831510 DOI: 10.1016/j.nlm.2021.107435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Ras/Raf/MEK/ERK (Ras-ERK) signaling has been shown to play an important role in fear acquisition. However, little information is known regarding the mechanisms that contribute to the regulation of this pathway in terms of the learning of conditioned fears. Ras Guanine Nucleotide Releasing Factor 2 (RasGRF2) is one of two guanine nucleotide exchange factors (GEF) that regulates the Ras-ERK signaling pathway in a Ca2+-dependent manner via control of the cycling of Ras isoforms between an inactive and active state. Here we sought to determine the role of RasGRF2 on contextual fear conditioning in RasGRF2 knockout (KO) and their wild type (WT) counterparts. Male KO and WT mice underwent a single session of contextual fear conditioning (12 min, 4 unsignaled shocks), followed by either daily 12-min retention trials or the molecular analysis of Ras activation and pERK1/2 activity. KO mice showed an impaired acquisition of contextual fear, as demonstrated by reduced freezing during fear conditioning and 24-hr retention tests relative to WT mice. Ras analysis following fear conditioning demonstrated a reduction in Ras activation in the hippocampus as well as a reduction in pERK1/2 in the CA1 region of the hippocampus in KO mice, suggesting that the decrease in fear conditioning in KO mice is at least in part due to the impairment of Ras-ERK signaling in the hippocampus during learning. These data indicate a role for RasGRF2 in contextual fear conditioning in mice that may be Ras-ERK-dependent.
Collapse
Affiliation(s)
- Anastasia Olevska
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Rick E Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.
| |
Collapse
|
11
|
Wang NY, Li JN, Liu WL, Huang Q, Li WX, Tan YH, Liu F, Song ZH, Wang MY, Xie N, Mao RR, Gan P, Ding YQ, Zhang Z, Shan BC, Chen LD, Zhou QX, Xu L. Ferulic Acid Ameliorates Alzheimer's Disease-like Pathology and Repairs Cognitive Decline by Preventing Capillary Hypofunction in APP/PS1 Mice. Neurotherapeutics 2021; 18:1064-1080. [PMID: 33786807 PMCID: PMC8423929 DOI: 10.1007/s13311-021-01024-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
Brain capillaries are crucial for cognitive functions by supplying oxygen and other nutrients to and removing metabolic wastes from the brain. Recent studies have demonstrated that constriction of brain capillaries is triggered by beta-amyloid (Aβ) oligomers via endothelin-1 (ET1)-mediated action on the ET1 receptor A (ETRA), potentially exacerbating Aβ plaque deposition, the primary pathophysiology of Alzheimer's disease (AD). However, direct evidence is still lacking whether changes in brain capillaries are causally involved in the pathophysiology of AD. Using APP/PS1 mouse model of AD (AD mice) relative to age-matched negative littermates, we identified that reductions of density and diameter of hippocampal capillaries occurred from 4 to 7 months old while Aβ plaque deposition and spatial memory deficit developed at 7 months old. Notably, the injection of ET1 into the hippocampus induced early Aβ plaque deposition at 5 months old in AD mice. Conversely, treatment of ferulic acid against the ETRA to counteract the ET1-mediated vasoconstriction for 30 days prevented reductions of density and diameter of hippocampal capillaries as well as ameliorated Aβ plaque deposition and spatial memory deficit at 7 months old in AD mice. Thus, these data suggest that reductions of density and diameter of hippocampal capillaries are crucial for initiating Aβ plaque deposition and spatial memory deficit at the early stages, implicating the development of new therapies for halting or curing memory decline in AD.
Collapse
Affiliation(s)
- Ni-Ya Wang
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Sciences, University of the Chinese Academy of Sciences, Kunming, 650223, China
| | - Jin-Nan Li
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Sciences, University of the Chinese Academy of Sciences, Kunming, 650223, China
| | - Wei-Lin Liu
- The Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Qi Huang
- Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Xing Li
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Sciences, University of the Chinese Academy of Sciences, Kunming, 650223, China
| | - Ya-Hong Tan
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Sciences, University of the Chinese Academy of Sciences, Kunming, 650223, China
| | - Fang Liu
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Sciences, University of the Chinese Academy of Sciences, Kunming, 650223, China
| | - Zi-Hua Song
- CAS Key Laboratory of Brain Function and Disease, Hefei National Laboratory for Physical Sciences At the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Meng-Yue Wang
- State Key Laboratory of Innovative Natural Drugs and Traditional Chinese Medicine Injections, Qingfeng Pharmaceutical Corporations, Ganzhou, 341000, China
| | - Ning Xie
- State Key Laboratory of Innovative Natural Drugs and Traditional Chinese Medicine Injections, Qingfeng Pharmaceutical Corporations, Ganzhou, 341000, China
| | - Rong-Rong Mao
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, China
- Kunming Medical University, Kunming, 650500, China
| | - Ping Gan
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, China
- Kunming Medical University, Kunming, 650500, China
| | - Yu-Qiang Ding
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Centre for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhi Zhang
- CAS Key Laboratory of Brain Function and Disease, Hefei National Laboratory for Physical Sciences At the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Bao-Ci Shan
- Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Li-Dian Chen
- The Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Qi-Xin Zhou
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, China.
- Kunming College of Life Sciences, University of the Chinese Academy of Sciences, Kunming, 650223, China.
| | - Lin Xu
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, China.
- Kunming College of Life Sciences, University of the Chinese Academy of Sciences, Kunming, 650223, China.
- Mental Health Institute, the Second Xiangya Hospital of Central South University, Changsha, 410008, China.
- CAS Centre for Excellence in Brain Science and Intelligent Technology, Shanghai, 200031, China.
| |
Collapse
|
12
|
Rong Z, Cheng B, Zhong L, Ye X, Li X, Jia L, Li Y, Shue F, Wang N, Cheng Y, Huang X, Liu CC, Fryer JD, Wang X, Zhang YW, Zheng H. Activation of FAK/Rac1/Cdc42-GTPase signaling ameliorates impaired microglial migration response to Aβ 42 in triggering receptor expressed on myeloid cells 2 loss-of-function murine models. FASEB J 2020; 34:10984-10997. [PMID: 32613609 DOI: 10.1096/fj.202000550rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
Abstract
Mutation of Triggering receptor expressed on myeloid cells 2 (TREM2) impairs the response of microglia to amyloid-β (Aβ) pathology in Alzheimer's disease (AD), although the mechanism governing TREM2-regulated microglia recruitment to Aβ plaques remains unresolved. Here, we confirm that TREM2 mutation attenuates microglial migration. Then, using Trem2-/- mice and an R47H variant mouse model for AD generated for this study, we show that TREM2 deficiency or the AD-associated R47H mutation results in inhibition of FAK and Rac1/Cdc42-GTPase signaling critical for cell migration. Intriguingly, treatment with CN04, a Rac1/Cdc42-GTPase activator, partially enhances microglial migration in response to oligomeric Aβ42 in Trem2-/- or R47H microglia both in vitro and in vivo. Our study shows that the dysfunction of microglial migration in the AD-associated TREM2 R47H variant is caused by FAK/Rac1/Cdc42 signaling disruption, and that activation of this signaling ameliorates impaired microglial migration response to Aβ42 , suggesting a therapeutic target for R47H-bearing patients with high risk of AD.
Collapse
Affiliation(s)
- Zhouyi Rong
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Baoying Cheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Li Zhong
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaowen Ye
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Jia
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yanfang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.,Shenzhen Research Institute, Xiamen University, Shenzhen, China
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Na Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yiyun Cheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaohua Huang
- Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Xin Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.,Shenzhen Research Institute, Xiamen University, Shenzhen, China.,Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Moreno A. Molecular mechanisms of forgetting. Eur J Neurosci 2020; 54:6912-6932. [DOI: 10.1111/ejn.14839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Andrea Moreno
- Danish Institute of Translational Neuroscience (DANDRITE) Aarhus University Aarhus C Denmark
| |
Collapse
|
14
|
Costa JF, Dines M, Lamprecht R. The Role of Rac GTPase in Dendritic Spine Morphogenesis and Memory. Front Synaptic Neurosci 2020; 12:12. [PMID: 32362820 PMCID: PMC7182350 DOI: 10.3389/fnsyn.2020.00012] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/04/2020] [Indexed: 11/21/2022] Open
Abstract
The ability to form memories in the brain is needed for daily functions, and its impairment is associated with human mental disorders. Evidence indicates that long-term memory (LTM)-related processes such as its consolidation, extinction and forgetting involve changes of synaptic efficacy produced by alterations in neural transmission and morphology. Modulation of the morphology and number of dendritic spines has been proposed to contribute to changes in neuronal transmission mediating such LTM-related processes. Rac GTPase activity is regulated by synaptic activation and it can affect spine morphology by controlling actin-regulatory proteins. Recent evidence shows that changes in Rac GTPase activity affect memory consolidation, extinction, erasure and forgetting and can affect spine morphology in brain areas that mediate these behaviors. Altered Rac GTPase activity is associated with abnormal spine morphology and brain disorders. By affecting Rac GTPase activity we can further understand the roles of spine morphogenesis in memory. Moreover, manipulation of Rac GTPase activity may serve as a therapeutic tool for the treatment of memory-related brain diseases.
Collapse
Affiliation(s)
| | | | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
15
|
Jiang L, Wang L, Yin Y, Huo M, Liu C, Zhou Q, Yu D, Xu L, Mao R. Spaced Training Enhances Contextual Fear Memory via Activating Hippocampal 5-HT2A Receptors. Front Mol Neurosci 2020; 12:317. [PMID: 32038159 PMCID: PMC6992649 DOI: 10.3389/fnmol.2019.00317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/11/2019] [Indexed: 11/20/2022] Open
Abstract
Spaced training is robustly superior to massed training, which is a well-documented phenomenon in humans and animals. However, the mechanisms underlying the spacing effect still remain unclear. We have reported previously that spacing training exerts memory-enhancing effects by inhibiting forgetting via decreasing hippocampal Rac1 activity. Here, using contextual fear conditioning in rat, we found that spaced but not massed training increased hippocampal 5-HT2A receptors' expression. Furthermore, hippocampal administration of 5-HT2A receptor antagonist MDL11939 before spaced training blocked the enhanced memory, while hippocampal administration of 5-HT2A receptor agonist TCB-2 before massed training promoted the memory. Moreover, MDL11939 activated hippocampal Rac1, while TCB-2 decreased hippocampal Rac1 activity in naïve rats. These results indicated the possibility of interaction between 5-HT2A receptors and Rac1, which was demonstrated by co-immunoprecipitation experiments. Our study first demonstrates that activation of hippocampal 5-HT2A is a mechanism underlying the spacing effect, and forgetting related molecular Rac1 is engaged in this process through interacting with 5-HT2A receptors, which suggest a promising strategy to modulate abnormal learning in cognitive disorders.
Collapse
Affiliation(s)
- Lizhu Jiang
- Department of Neuropsychopathy, Clinical Medical School, Dali University, Dali, China
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Department of Central Laboratory, The Third People’s Hospital of Yunnan Province, Kunming, China
| | - Liping Wang
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Yan Yin
- Department of Central Laboratory, The Third People’s Hospital of Yunnan Province, Kunming, China
| | - Mengke Huo
- Department of Neuropsychopathy, Clinical Medical School, Dali University, Dali, China
| | - Chao Liu
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Qixin Zhou
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Dafu Yu
- Department of Nuclear Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Lin Xu
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Rongrong Mao
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| |
Collapse
|
16
|
Morikawa M, Tanaka Y, Cho HS, Yoshihara M, Hirokawa N. The Molecular Motor KIF21B Mediates Synaptic Plasticity and Fear Extinction by Terminating Rac1 Activation. Cell Rep 2019; 23:3864-3877. [PMID: 29949770 DOI: 10.1016/j.celrep.2018.05.089] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/16/2018] [Accepted: 05/25/2018] [Indexed: 12/15/2022] Open
Abstract
Fear extinction is a component of cognitive flexibility that is relevant for important psychiatric diseases, but its molecular mechanism is still largely elusive. We established mice lacking the kinesin-4 motor KIF21B as a model for fear extinction defects. Postsynaptic NMDAR-dependent long-term depression (LTD) is specifically impaired in knockouts. NMDAR-mediated LTD-causing stimuli induce dynamic association of KIF21B with the Rac1GEF subunit engulfment and cell motility protein 1 (ELMO1), leading to ELMO1 translocation out of dendritic spines and its sequestration in endosomes. This process may essentially terminate transient activation of Rac1, shrink spines, facilitate AMPAR endocytosis, and reduce postsynaptic strength, thereby forming a mechanistic link to LTD expression. Antagonizing ELMO1/Dock Rac1GEF activity by the administration of 4-[3'-(2″-chlorophenyl)-2'-propen-1'-ylidene]-1-phenyl-3,5-pyrazolidinedione (CPYPP) significantly reverses the knockout phenotype. Therefore, we propose that KIF21B-mediated Rac1 inactivation is a key molecular event in NMDAR-dependent LTD expression underlying cognitive flexibility in fear extinction.
Collapse
Affiliation(s)
- Momo Morikawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hyun-Soo Cho
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaharu Yoshihara
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Center of Excellence in Genome Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
17
|
Zhao J, Ying L, Liu Y, Liu N, Tu G, Zhu M, Wu Y, Xiao B, Ye L, Li J, Guo F, Zhang L, Wang H, Zhang L. Different roles of Rac1 in the acquisition and extinction of methamphetamine-associated contextual memory in the nucleus accumbens. Am J Cancer Res 2019; 9:7051-7071. [PMID: 31660086 PMCID: PMC6815963 DOI: 10.7150/thno.34655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/30/2019] [Indexed: 02/03/2023] Open
Abstract
Rationale: Repeated methamphetamine (METH) exposure induces long-term cognitive deficits and pathological drug-associated memory that can be disrupted by manipulating memory reconsolidation and extinction. The nucleus accumbens (NAc) is the key region of the brain reward system and predominantly consists of two subtypes of medium spiny neurons (MSNs) based on the expression of D1 or D2 dopamine receptors (D1-MSNs or D2-MSNs). Spine structural plasticity in the NAc is critical for the acquisition, reconsolidation and extinction of drug-associated memory. However, the molecular mechanisms underlying METH-associated memory and spine remodelling in each type of MSNs in the NAc remain unknown. Here, we explored whether Rac1 in the NAc mediates METH-associated contextual memory and spine remodelling. Methods: Pharmacological and genetic manipulations of Rac1 were used to investigate its role during the acquisition, reconsolidation and extinction of METH-associated contextual memory. Recombinant adeno-associated viruses expressing mCherry under the control of the dopamine D1 receptor gene promoter (Drd1-mCherry) or dopamine D2 receptor gene promoter (Drd2-mCherry) were used to specifically label D1-MSNs or D2-MSNs. Results: Using viral-mediated gene transfer, we demonstrated that decreased Rac1 activity was required for the acquisition of METH-associated contextual memory and the METH-induced increase in thin spine density, whereas increased Rac1 signalling was important for the extinction of METH-associated contextual memory and the related elimination of thin spines. Moreover, the increase of dendritic spines was both found in D1-MSNs and D2-MSNs during the acquisition process, but extinction training selectively decreased the spine density in D1-MSNs. Interestingly, Rac1 was responsible for METH-induced spine plasticity in D1-MSNs but not in D2-MSNs. Additionally, we found that microinjection of a Rac1 inhibitor or activator into the NAc was not sufficient to disrupt reconsolidation, and the pharmacological activation of Rac1 in the NAc facilitated the extinction of METH-associated contextual memory. Regarding cognitive memory, decreased Rac1 activity improved the METH-induced impairment in object recognition memory. Conclusion: Our findings indicate that Rac1 plays opposing roles in the acquisition and extinction of METH-associated contextual memory and reveal the cell-specific role of Rac1 in METH-associated spine remodelling, suggesting that Rac1 is a potential therapeutic target for reducing relapse in METH addiction and remediating METH-induced recognition memory impairment.
Collapse
|
18
|
PSD-95-nNOS Coupling Regulates Contextual Fear Extinction in the Dorsal CA3. Sci Rep 2018; 8:12775. [PMID: 30143658 PMCID: PMC6109109 DOI: 10.1038/s41598-018-30899-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 04/17/2018] [Indexed: 12/16/2022] Open
Abstract
Fear extinction depends on N-methyl-D-aspartate glutamate receptors (NMDARs) and brain-derived neurotrophic factor (BDNF) activation in the limbic system. However, postsynaptic density-95 (PSD-95) and neuronal nitric oxide synthase (nNOS) coupling, the downstream signaling of NMDARs activation, obstructs the BDNF signaling transduction. Thus, we wondered distinct roles of NMDAR activation and PSD-95-nNOS coupling on fear extinction. To explore the mechanisms, we detected protein-protein interaction using coimmunoprecipitation and measured protein expression by western blot. Contextual fear extinction induced a shift from PSD-95-nNOS to PSD-95-TrkB association in the dorsal hippocampus and c-Fos expression in the dorsal CA3. Disrupting PSD-95-nNOS coupling in the dorsal CA3 up-regulated phosphorylation of extracellular signal-regulates kinase (ERK) and BDNF, enhanced the association of BDNF-TrkB signaling with PSD-95, and promoted contextual fear extinction. Conversely, blocking NMDARs in the dorsal CA3 down-regulated BDNF expression and hindered contextual fear extinction. NMDARs activation and PSD-95-nNOS coupling play different roles in modulating contextual fear extinction in the hippocampus. Because inhibitors of PSD-95-nNOS interaction produce antidepressant and anxiolytic effect without NMDAR-induced side effects, PSD-95-nNOS could be a valuable target for PTSD treatment.
Collapse
|
19
|
Periodical reactivation under the effect of caffeine attenuates fear memory expression in rats. Sci Rep 2018; 8:7260. [PMID: 29740084 PMCID: PMC5940846 DOI: 10.1038/s41598-018-25648-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/20/2018] [Indexed: 11/17/2022] Open
Abstract
In the last decade, several studies have shown that fear memories can be attenuated by interfering with reconsolidation. However, most of the pharmacological agents used in preclinical studies cannot be administered to humans. Caffeine is one of the world’s most popular psychoactive drugs and its effects on cognitive and mood states are well documented. Nevertheless, the influence of caffeine administration on fear memory processing is not as clear. We employed contextual fear conditioning in rats and acute caffeine administration under a standard memory reconsolidation protocol or periodical memory reactivation. Additionally, potential rewarding/aversion and anxiety effects induced by caffeine were evaluated by conditioning place preference or open field, respectively. Caffeine administration was able to attenuate weak fear memories in a standard memory reconsolidation protocol; however, periodical memory reactivation under caffeine effect was necessary to attenuate strong and remote memories. Moreover, caffeine promoted conditioned place preference and anxiolytic-like behavior, suggesting that caffeine weakens the initial learning during reactivation through counterconditioning mechanisms. Thus, our study shows that rewarding and anxiolytic effects of caffeine during fear reactivation can change the emotional valence of fear memory. It brings a new promising pharmacological approach based on drugs widely used such as caffeine to treat fear-related disorders.
Collapse
|
20
|
Liao Z, Tao Y, Guo X, Cheng D, Wang F, Liu X, Ma L. Fear Conditioning Downregulates Rac1 Activity in the Basolateral Amygdala Astrocytes to Facilitate the Formation of Fear Memory. Front Mol Neurosci 2017; 10:396. [PMID: 29230165 PMCID: PMC5712045 DOI: 10.3389/fnmol.2017.00396] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
Astrocytes are well known to scale synaptic structural and functional plasticity, while the role in learning and memory, such as conditioned fear memory, is poorly elucidated. Here, using pharmacological approach, we find that fluorocitrate (FC) significantly inhibits the acquisition of fear memory, suggesting that astrocyte activity is required for fear memory formation. We further demonstrate that fear conditioning downregulates astrocytic Rac1 activity in basolateral amygdala (BLA) in mice and promotes astrocyte structural plasticity. Ablation of astrocytic Rac1 in BLA promotes fear memory acquisition, while overexpression or constitutive activation of astrocytic Rac1 attenuates fear memory acquisition. Furthermore, temporal activation of Rac1 by photoactivatable Rac1 (Rac1-PA) induces structural alterations in astrocytes and in vivo activation of Rac1 in BLA astrocytes during fear conditioning attenuates the formation of fear memory. Taken together, our study demonstrates that fear conditioning-induced suppression of BLA astrocytic Rac1 activity, associated with astrocyte structural plasticity, is required for the formation of conditioned fear memory.
Collapse
Affiliation(s)
- Zhaohui Liao
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yezheng Tao
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xiaomu Guo
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Deqin Cheng
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Feifei Wang
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xing Liu
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lan Ma
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Lunardi P, Sachser RM, Sierra RO, Pedraza LK, Medina C, de la Fuente V, Romano A, Quillfeldt JA, de Oliveira Alvares L. Effects of Hippocampal LIMK Inhibition on Memory Acquisition, Consolidation, Retrieval, Reconsolidation, and Extinction. Mol Neurobiol 2017; 55:958-967. [DOI: 10.1007/s12035-016-0361-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/28/2016] [Indexed: 02/06/2023]
|
22
|
Zou T, Mao X, Yin J, Li X, Chen J, Zhu T, Li Q, Zhou H, Liu Z. Emerging roles of RAC1 in treating lung cancer patients. Clin Genet 2016; 91:520-528. [PMID: 27790713 DOI: 10.1111/cge.12908] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022]
Abstract
The Ras-related C3 botulinum toxin substrate 1 (RAC1), a member of the Rho family of small guanosine triphosphatases, is critical for many cellular activities, such as phagocytosis, adhesion, migration, motility, cell proliferation, and axonal growth. In addition, RAC1 plays an important role in cancer angiogenesis, invasion, and migration, and it has been reported to be related to most cancers, such as breast cancer, gastric cancer, testicular germ cell cancer, and lung cancer. Recently, the therapeutic target of RAC1 in cancer has been investigated. In addition, some investigations have shown that inhibition of RAC1 can reverse drug-resistance in non-small cell lung cancer. In this review, we summarize the recent advances in understanding the role of RAC1 in lung cancer and the underlying mechanisms and discuss its value in clinical therapy.
Collapse
Affiliation(s)
- T Zou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - X Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - J Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - X Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - J Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - T Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Q Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - H Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Z Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| |
Collapse
|