1
|
Seaman RW, Galindo DG, Stinson BT, Sulima A, Rice KC, Javors MA, Ginsburg BC, Collins GT. Cardiovascular and locomotor effects of binary mixtures of common 'bath salts' constituents: Studies with methylone, methylenedioxypyrovalerone and caffeine in rats. Br J Pharmacol 2025; 182:1836-1855. [PMID: 39843219 DOI: 10.1111/bph.17444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND AND PURPOSE The use of 'bath salts' drug preparations has been associated with high rates of toxicity and death. Preparations often contain mixtures of drugs, including multiple synthetic cathinones or synthetic cathinones and caffeine. Little is known about the interactions of 'bath salts' constituents and adverse effects often reported by users. EXPERIMENTAL APPROACH This study used adult male Sprague-Dawley rats to characterise the cardiovascular effects, locomotor effects and pharmacokinetics of methylone, methylenedioxypyrovalerone (MDPV) and caffeine, administered alone and as binary mixtures. Dose-addition analyses were used to determine the effect levels of a strictly additive interaction for dose pairs. KEY RESULTS Methylone, MDPV and caffeine increased heart rate (HR) and locomotion, with methylone producing the largest increase in HR, MDPV producing the largest increase in locomotor activity and caffeine being the least effective in stimulating HR and locomotor activity. MDPV and caffeine increased mean arterial pressure (MAP), with caffeine being more effective than MDPV. The nature of the interactions between methylone and MDPV tended towards sub-additivity for all endpoints, whereas interactions between MDPV or methylone and caffeine tended to be additive or sub-additive for cardiovascular endpoints, and additive or supra-additive for increases in locomotion. No pharmacokinetic interactions were observed between individual constituents, but methylone appeared to display nonlinear pharmacokinetics at the largest dose evaluated. CONCLUSION AND IMPLICATIONS These findings demonstrate that 'bath salts' preparations can impact both cardiovascular and locomotor effects and suggest that interactions among constituent drugs could contribute to the 'bath salts' toxidrome reported by human users.
Collapse
Affiliation(s)
- Robert W Seaman
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - David G Galindo
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Benjamin T Stinson
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland, USA
| | - Martin A Javors
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Brett C Ginsburg
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Gregory T Collins
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
2
|
Bassi M, Bilel S, Tirri M, Corli G, Di Rosa F, Gregori A, Alkilany AM, Rachid O, Roda E, De Luca F, Papa P, Buscaglia E, Zauli G, Locatelli CA, Marti M. The synthetic cathinones MDPHP and MDPV: Comparison of the acute effects in mice, in silico ADMET profiles and clinical reports. Neurotoxicology 2024; 103:230-255. [PMID: 38955288 DOI: 10.1016/j.neuro.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The 3,4-methylenedioxy-alpha-pyrrolidinohexanophenone (MDPHP) is a synthetic cathinone closely related to 3,4-methylenedioxypyrovalerone (MDPV), one of the most common synthetic cathinones present in the "bath salts". MDPHP has recently gained attention due to increasing seizures and involvement in human intoxications which occurred in Europe and Italy in the last years, but currently there is a lack of information about its pharmaco-toxicological effects. With the aim at filling this gap, the present study is endeavoured to (i) evaluate the effects of acute administration of MDPHP (0.01-20 mg/kg; i.p.) on behaviour, cardiorespiratory and cardiovascular parameters in CD-1 male mice, comparing them to those observed after administration of MDPV; (ii) predict the ADMET profile of the two analogues using the Plus ADMET Predictor®; (iii) present clinical data related to MDPHP and MDPV-induced intoxications recorded between 2011 and 2023 by the Pavia Poison Control Centre (PCC) - National Toxicology Information Centre (Istituti Clinici Scientifici Maugeri, IRCCS Pavia, Italy). Our results substantiated that MDPHP and MDPV similarly affect sensorimotor and behavioural responses in mice, importantly increased locomotion and induced aggressive behaviour, and, at higher dosage, increased heart rate and blood pressure. These findings are in line with those observed in humans, revealing severe toxidromes typically characterized by Central Nervous System (CNS) alterations (behavioural/neuropsychiatric symptoms), including psychomotor agitation and aggressiveness, cardiovascular and respiratory disorders (e.g. tachycardia, hypertension, dyspnoea), and other peripheral symptoms (e.g. hyperthermia, acidosis, rhabdomyolysis).
Collapse
Affiliation(s)
- Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Fabiana Di Rosa
- Department of Scientific Investigation (RIS), Carabinieri, Rome 00191, Italy
| | - Adolfo Gregori
- Department of Scientific Investigation (RIS), Carabinieri, Rome 00191, Italy
| | - Alaaldin M Alkilany
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Qatar
| | - Ousama Rachid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Qatar
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Pietro Papa
- Laboratory of Analytical Toxicology-Clinical Chemistry, IRCCS Fondazione Policlinico S. Matteo, Pavia, Italy
| | - Eleonora Buscaglia
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy; Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, Ferrara, Italy.
| |
Collapse
|
3
|
Seaman RW, Galindo DG, Stinson BT, Sulima A, Rice KC, Javors MA, Ginsburg BC, Collins GT. Cardiovascular and Locomotor Effects of Binary Mixtures of Common "Bath Salts" Constituents: Studies with Methylone, MDPV, and Caffeine in Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578069. [PMID: 38352520 PMCID: PMC10862873 DOI: 10.1101/2024.01.31.578069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Background and Purpose The use of "Bath Salts" drug preparations has been associated with high rates of toxicity and death. Preparations often contain mixtures of drugs including multiple synthetic cathinones or synthetic cathinones and caffeine; however, little is known about whether interactions among "Bath Salts" constituents contribute to the adverse effects often reported in users. Experimental Approach This study used adult male Sprague-Dawley rats to characterize the cardiovascular effects, locomotor effects, and pharmacokinetics of methylone, MDPV, and caffeine, administered alone and as binary mixtures. Dose-addition analyses were used to determine the effect levels predicted for a strictly additive interaction for each dose pair. Key Results Methylone, MDPV, and caffeine increased heart rate and locomotion, with methylone producing the largest increase in heart rate, MDPV producing the largest increase in locomotor activity, and caffeine being the least effective in stimulating heart rate and locomotor activity. MDPV and caffeine increased mean arterial pressure, with caffeine being more effective than MDPV. The nature of the interactions between methylone and MDPV tended toward sub-additivity for all endpoints, whereas interactions between MDPV or methylone and caffeine tended to be additive or sub-additive for cardiovascular endpoints, and additive or supra-additive for increases in locomotion. No pharmacokinetic interactions were observed between individual constituents, but methylone displayed non-linear pharmacokinetics at the largest dose evaluated. Conclusion and Implications These findings demonstrate that the composition of "Bath Salts" preparations can impact both cardiovascular and locomotor effects and suggest that such interactions among constituent drugs could contribute to the "Bath Salts" toxidrome reported by human users.
Collapse
Affiliation(s)
- Robert W Seaman
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio
| | - David G Galindo
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio
| | - Benjamin T Stinson
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, MD, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, MD, USA
| | - Martin A Javors
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio
| | - Brett C Ginsburg
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio
| | - Gregory T Collins
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio
- South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
4
|
Gannon BM, Fitzgerald LR, Godwin CO, Hughes-Meredith HD, Rice KC, Fantegrossi WE. Effects of ambient temperature on locomotor activity and place conditioning elicited by abused psychostimulants in mice: Role of 3,4-methylenedioxy moiety. Drug Alcohol Depend 2023; 250:110917. [PMID: 37579623 PMCID: PMC10481935 DOI: 10.1016/j.drugalcdep.2023.110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Humans often administer psychostimulants in party or music festival settings characterized by warm ambient temperatures, which may impact drug effects; however, preclinical studies rarely investigate drug effects at multiple ambient temperatures. Work with 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxypyrovalerone (MDPV) suggests that the presence of a 3,4-methylenedioxy ring moiety may influence ambient temperature-dependent effects. METHODS Locomotor activity and conditioned place preference dose-response curves were generated at 20±2°C for two amphetamine analogues (MDMA and methamphetamine [METH]) and two cathinone analogues (MDPV and α-pyrrolidinopentiophenone [αPVP]) in mice. Effects were then redetermined at 29±2°C for each drug and assay. RESULTS All four drugs elicited dose-dependent locomotor stimulation at the cool ambient temperature. At the warm ambient temperature, MDMA and MDPV produced sensitization to stereotypy, whereas METH and αPVP produced sensitization to locomotor activity. Regarding place conditioning, the warm ambient environment potentiated place preference elicited by doses of METH and αPVP that were sub-threshold in the cool ambient environment, but attenuated the effects of analogous doses of MDMA and MDPV. CONCLUSIONS These studies suggest that warmer ambient temperatures may potentiate typical stimulant effects for the drugs lacking the 3,4-methylenedioxy ring, but may potentiate the behaviorally toxic/adverse effects for the drugs containing a 3,4-methylenedioxy ring. Thus, preclinical abuse liability studies conducted at standard laboratory temperatures may not fully capture the effects of psychostimulants and highlight the need to model the environments in which drugs are typically used by humans.
Collapse
Affiliation(s)
- Brenda M Gannon
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lauren R Fitzgerald
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Christopher O Godwin
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Heidi D Hughes-Meredith
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse, and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
5
|
MDPV "high-responder" rats also self-administer more oxycodone than their "low-responder" counterparts under a fixed ratio schedule of reinforcement. Psychopharmacology (Berl) 2021; 238:1183-1192. [PMID: 33484299 DOI: 10.1007/s00213-021-05764-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE Oxycodone is one of the most commonly prescribed and most frequently abused opioid analgesics, yet little is known regarding individual vulnerabilities to oxycodone abuse. The synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV) has been shown to produce a "high-responder" phenotype characterized by increased drug intake and responding during periods of signaled drug unavailability (e.g., during post-infusion timeouts) in ~ 40% of male Sprague-Dawley rats. This phenotype also transfers to other psychostimulants (e.g., cocaine and methamphetamine), but it is unknown whether this phenotype transfers to other (non-stimulant) drugs of abuse. OBJECTIVES The present study aimed to (1) reestablish the "high-responder" phenotype in male Sprague-Dawley rats (n = 11) that acquired self-administration of MDPV (0.032 mg/kg/inf) on a fixed ratio 1 (FR1) schedule of reinforcement and (2) compare full dose-response curves for MDPV and oxycodone self-administration under an FR5 schedule of reinforcement. RESULTS MDPV was ~ 3-fold more potent at maintaining peak levels of behavior and resulted in greater overall drug intake than oxycodone. High levels of timeout responding were noted in a subset of rats that acquired MDPV self-administration ("high-responders", n = 5), and the FR5 dose-response curve for MDPV was shifted upward for these rats relative to their "low-responder" (n = 6) counterparts. "High-responders" also self-administered more infusions of oxycodone under an FR5 schedule of reinforcement than "low-responders"; however, this was not coupled with increased levels of timeout responding. CONCLUSIONS The present data suggest that a subset of individuals with a history of using synthetic cathinones may be particularly vulnerable to the abuse of oxycodone.
Collapse
|
6
|
Acute MDPV Binge Paradigm on Mice Emotional Behavior and Glial Signature. Pharmaceuticals (Basel) 2021; 14:ph14030271. [PMID: 33809599 PMCID: PMC8002122 DOI: 10.3390/ph14030271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022] Open
Abstract
3,4-Methylenedioxypyrovalerone (MDPV), a widely available synthetic cathinone, is a popular substitute for classical controlled drugs of abuse, such as methamphetamine (METH). Although MDPV poses public health risks, its neuropharmacological profile remains poorly explored. This study aimed to provide evidence on that direction. Accordingly, C57BL/6J mice were exposed to a binge MDPV or METH regimen (four intraperitoneal injections every 2 h, 10 mg/kg). Locomotor, exploratory, and emotional behavior, in addition to striatal neurotoxicity and glial signature, were assessed within 18–24 h, a known time-window encompassing classical amphetamine dopaminergic neurotoxicity. MDPV resulted in unchanged locomotor activity (open field test) and emotional behavior (elevated plus maze, splash test, tail suspension test). Additionally, striatal TH (METH neurotoxicity hallmark), Iba-1 (microglia), GFAP (astrocyte), RAGE, and TLR2/4/7 (immune modulators) protein densities remained unchanged after MDPV-exposure. Expectedly, and in sheer contrast with MDPV, METH resulted in decrease general locomotor activity paralleled by a significant striatal TH depletion, astrogliosis, and microglia arborization alterations (Sholl analysis). This comparative study newly highlights that binge MDPV-exposure comes without evident behavioral, neurochemical, and glial changes at a time-point where METH-induced striatal neurotoxicity is clearly evident. Nevertheless, neuropharmacological MDPV signature needs further profiling at different time-points, regimens, and brain regions.
Collapse
|
7
|
Berquist MD, Leth-Petersen S, Kristensen JL, Fantegrossi WE. In vivo effects of 3,4-methylenedioxymethamphetamine (MDMA) and its deuterated form in rodents: Drug discrimination and thermoregulation. Drug Alcohol Depend 2020; 208:107850. [PMID: 31954950 DOI: 10.1016/j.drugalcdep.2020.107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Recent clinical studies support the use of 3,4-methylenedioxymethamphetamine (MDMA) as an adjunct treatment for posttraumatic stress disorder (PTSD). Despite these promising findings, MDMA administration in controlled settings can increase blood pressure, heart rate, and body temperature. Previous studies indicate thatO-demethylated metabolites of MDMA contribute to its adverse effects. As such, limiting the conversion of MDMA to reactive metabolites may mitigate some of its adverse effects and potentially improve its safety profile for therapeutic use. METHODS We compared the interoceptive and hyperthermic effects of a deuterium-substituted form of MDMA (d2-MDMA) to MDMA using rodent drug discrimination and biotelemetry procedures, respectively. RESULTS Compared to MDMA, d2-MDMA produced full substitution for a 1.5 mg/kg MDMA training stimulus with equal potency and effectiveness in the drug discrimination experiment. In addition, d2-MDMA produced increases in body temperature that were shorter-lasting and of lower magnitude compared to equivalent doses of MDMA. Last, d2-MDMA and MDMA were equally effective in reversing the hypothermic effects of the selective 5-HT2A/2C antagonist ketanserin. CONCLUSION These findings indicate that deuterium substitution of hydrogen at the methylenedioxy ring moiety does not impact MDMA's interoceptive effects, and compared to MDMA, d2-MDMA has less potential for producing hyperthermic effects and likely has similar pharmacodynamic properties. Given that d2-MDMA produces less adverse effects than MDMA, but retains similar desirable effects that are thought to relate to the effective treatment of PTSD, additional investigations into its effects on cardiovascular functioning and pharmacokinetic properties are warranted.
Collapse
Affiliation(s)
- Michael D Berquist
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham #611, Little Rock, AR, 72205, USA
| | - Sebastian Leth-Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - Jesper Langgaard Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham #611, Little Rock, AR, 72205, USA.
| |
Collapse
|
8
|
Synthetic psychoactive cathinones: hypothermia and reduced lethality compared to methamphetamine and methylenedioxymethamphetamine. Pharmacol Biochem Behav 2020; 191:172871. [PMID: 32061662 DOI: 10.1016/j.pbb.2020.172871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/16/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
RATIONALE Synthetic psychoactive cathinones (SPCs) are drugs with psychostimulant and entactogenic properties like methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA). Despite clinical reports of human overdose, it remains to be determined if SPCs have greater propensity for adverse effects than MA or MDMA. OBJECTIVES To determine whether the SPCs cathinone (CAT), methcathinone (MCAT), mephedrone (MMC), and methylenedioxypyrovalerone (MDPV) have lower LD50 values than MA or MDMA. METHODS Male and female C57Bl/6J mice received single injections of one of 6 doses of a test drug (0-160 mg/kg IP). Temperature and behavioral observations were taken every 20 min for 2 h followed by euthanasia of surviving mice. Organs were weighed and evaluated for histopathological changes. RESULTS LD50 values for MA and MDMA, 84.5 and 100.9 mg/kg respectively, were similar to previous observations. The LD50 for MMC was 118.8 mg/kg, but limited lethality was observed for other SPCs (CAT, MCAT, MDPV), so LD50 values could not be calculated. For all drugs, death was associated with seizure, when it was observed. Rather than hyperthermia, dose-dependent hypothermia was observed for MMC, MDPV, CAT, and MCAT. Contrary to initial expectations, none of the SPCs studied here had LD50 values lower than MA or MDMA. CONCLUSIONS These data indicate that, under the conditions studied here: (1) SPCs exhibit less lethality than MA and MDMA; (2) SPCs impair thermoregulation; (3) effects of SPCs on temperature appear to be independent of effects on lethality.
Collapse
|
9
|
Repeated administration of synthetic cathinone 3,4-methylenedioxypyrovalerone persistently increases impulsive choice in rats. Behav Pharmacol 2019; 30:555-565. [DOI: 10.1097/fbp.0000000000000492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Dopaminergic Effects of Major Bath Salt Constituents 3,4-Methylenedioxypyrovalerone (MDPV), Mephedrone, and Methylone Are Enhanced Following Co-exposure. Neurotox Res 2019; 36:132-143. [PMID: 30879275 DOI: 10.1007/s12640-019-00020-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/13/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022]
Abstract
Designer drug mixtures popularized as "bath salts" often contain the synthetic cathinones 3,4 methylenedioxypyrovalerone (MDPV), mephedrone, and methylone in various combinations. However, most preclinical investigations have only assessed the effects of individual bath salt constituents, and little is known about whether co-exposure to MDPV, mephedrone, and methylone produces significant neuropharmacological interactions. This study evaluated and compared how MDPV, mephedrone, and methylone influence discrete brain tissue dopamine (DA) levels and motor stimulant responses in mice when administered alone and as a ternary mixture. Male adolescent Swiss-Webster mice received intraperitoneal injections of saline or 1 or 10 mg/kg doses of MDPV, mephedrone, or methylone, or a cocktail of all three cathinones at doses of 1, 3.3, or 10 mg/kg each. The effect of each treatment on DA and DA metabolite levels in mesolimbic and nigrostriatal brain tissue was quantified 15 min after a single exposure using HPLC-ECD. Additionally, locomotor activity was recorded in mice after acute (day 1) and chronic intermittent (day 7) dosing. MDPV, mephedrone, and methylone produced dose-related increases in mesolimbic and nigrostriatal DA levels that were significantly enhanced following their co-administration. In addition, mice treated with the cathinone cocktail displayed decreased locomotor activity on day 1 that was exacerbated by day 7 and not observed with any of the drugs alone. Our findings demonstrate a significant enhanced effect of MDPV, mephedrone, and methylone on both DA, and these effects on DA result in significant alterations in locomotor activity.
Collapse
|
11
|
Dissociation between hypothermia and neurotoxicity caused by mephedrone and methcathinone in TPH2 knockout mice. Psychopharmacology (Berl) 2019; 236:1097-1106. [PMID: 30074064 DOI: 10.1007/s00213-018-4991-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 01/01/2023]
Abstract
RATIONALE Mephedrone is a commonly abused constituent of "bath salts" and has many pharmacological effects in common with methamphetamine. Despite their structural similarity, mephedrone differs significantly from methamphetamine in its effects on core body temperature and dopamine nerve endings. The reasons for these differences remain unclear. OBJECTIVES Mephedrone elicits a transient hypothermia which may provide intrinsic neuroprotection against methamphetamine-like toxicity to dopamine nerve endings. Furthermore, evidence in the literature suggests that this hypothermia is mediated by serotonin. By utilizing transgenic mice devoid of brain serotonin, we determined the contribution of this neurotransmitter to changes in core body temperature as well as its possible role in protecting against neurotoxicity. The effects of methcathinone and 4-methyl-methamphetamine, two structural analogs of mephedrone and methamphetamine, were also evaluated in these mice. RESULTS The hypothermia induced by mephedrone and methcathinone in wild-type mice was not observed in mice lacking brain serotonin. Despite preventing drug-induced hypothermia, the lack of serotonin did not alter the neurotoxic profiles of the test drugs. CONCLUSIONS Serotonin is a key mediator of pharmacological hypothermia induced by mephedrone and methcathinone, but these body temperature effects do not contribute to dopamine nerve ending damage observed in mice following treatment with mephedrone, methcathinone or 4-methyl-methamphetamine. Thus, the key component of methamphetamine neurotoxicity lacking in mephedrone remains to be elucidated.
Collapse
|
12
|
Self-administration of the synthetic cathinone MDPV enhances reward function via a nicotinic receptor dependent mechanism. Neuropharmacology 2018; 137:286-296. [PMID: 29778945 DOI: 10.1016/j.neuropharm.2018.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 01/28/2023]
Abstract
Methylenedioxypyrovalerone (MDPV) is an addictive synthetic drug with severe side effects. Previous studies have shown that MDPV has positive reinforcing properties. However, little is known about the effect of MDPV self-administration on the state of the brain reward system and the neuronal mechanisms by which MDPV mediates its effects. The goal of the present studies was to determine the effect of MDPV self-administration on reward function and the role of cholinergic neurotransmission in the reinforcing effects of MDPV. To study the effect of MDPV self-administration on the brain reward system, rats were prepared with intravenous catheters and intracranial self-stimulation electrodes (ICSS). For 10 days, the reward thresholds were assessed immediately before (23 h post prior session) and after 1 h of MDPV self-administration. The reward thresholds were decreased immediately after MDPV self-administration, which is indicative of a potentiation of brain reward function. The reward thresholds 23 h after MDPV intake gradually increased over time, which is indicative of anhedonia. Pretreatment with the nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine decreased the self-administration of MDPV and completely prevented the decrease in reward thresholds. A control study with palatable chocolate pellets showed that responding for a natural reinforcer does not affect the state of the brain reward system. Furthermore, mecamylamine did not affect responding for food pellets. In conclusion, the self-administration of MDPV potentiates reward function and nAChR blockade prevents the reward enhancing effects of MDPV self-administration. Preventing the MDPV-induced increase in cholinergic neurotransmission might be a safe approach to diminish MDPV abuse.
Collapse
|
13
|
|
14
|
Horsley RR, Lhotkova E, Hajkova K, Feriancikova B, Himl M, Kuchar M, Páleníček T. Behavioural, Pharmacokinetic, Metabolic, and Hyperthermic Profile of 3,4-Methylenedioxypyrovalerone (MDPV) in the Wistar Rat. Front Psychiatry 2018; 9:144. [PMID: 29740356 PMCID: PMC5928397 DOI: 10.3389/fpsyt.2018.00144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/03/2018] [Indexed: 01/24/2023] Open
Abstract
3,4-methylenedioxypyrovalerone (MDPV) is a potent pyrovalerone cathinone that is substituted for amphetamines by recreational users. We report a comprehensive and detailed description of the effects of subcutaneous MDPV (1-4 mg/kg) on pharmacokinetics, biodistribution and metabolism, acute effects on thermoregulation under isolated and aggregated conditions, locomotion (open field) and sensory gating (prepulse inhibition, PPI). All studies used male Wistar rats. Pharmacokinetics after single dose of 2 mg/kg MDPV was measured over 6 h in serum, brain and lungs. The biotransformation study recorded 24 h urinary levels of MDPV and its metabolites after 4 mg/kg. The effect of 2 mg/kg and 4 mg/kg on body temperature (°C) was measured over 12 h in group- vs. individually-housed rats. In the open field, locomotion (cm) and its spatial distribution were assessed. In PPI, acoustic startle response (ASR), habituation, and PPI were measured (AVG amplitudes). In behavioural experiments, 1, 2, or 4 mg/kg MDPV was administered 15 or 60 min prior to testing. Thermoregulation and behavioural data were analysed using factorial analysis of variance (ANOVA). Peak concentrations of MDPV in sera, lung and brain tissue were reached in under 30 min. While negligible levels of metabolites were detected in tissues, the major metabolites in urine were demethylenyl-MDPV and demethylenyl-methyl-MDPV at levels three-four times higher than the parent drug. We also established a MDPV brain/serum ratio ~2 lasting for ~120 min, consistent with our behavioural observations of locomotor activation and disrupted spatial distribution of behaviour as well as moderate increases in body temperature (exacerbated in group-housed animals). Finally, 4 mg/kg induced stereotypy in the open field and transiently disrupted PPI. Our findings, along with previous research suggest that MDPV is rapidly absorbed, readily crosses the blood-brain barrier and is excreted primarily as metabolites. MDPV acts as a typical stimulant with modest hyperthermic and psychomimetic properties, consistent with a primarily dopaminergic mechanism of action. Since no specific signs of acute toxicity were observed, even at the highest doses used, clinical care and harm-reduction guidance should be in line with that available for other stimulants and cathinones.
Collapse
Affiliation(s)
- Rachel R Horsley
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Eva Lhotkova
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Katerina Hajkova
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia.,Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Czechia
| | - Barbara Feriancikova
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
| | - Michal Himl
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Czechia
| | - Martin Kuchar
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
| | - Tomas Páleníček
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| |
Collapse
|