1
|
Shen CL, Hassan T, Presto P, Payberah D, Devega R, Wakefield S, Dunn DM, Neugebauer V. Novel Insights into Dietary Bioactive Compounds and Major Depressive Disorders: Evidence from Animal Studies and Future Perspectives. J Nutr 2025:S0022-3166(25)00190-7. [PMID: 40274236 DOI: 10.1016/j.tjnut.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Clinical depression, including major depressive disorder (MDD), is a chronic mental illness characterized by persistent sadness and indifference. Depression is associated with neuroinflammation, oxidative stress, and neuronal apoptosis in the brain, resulting in microglial overactivation, decreased neuronal and glial proliferation, monoamine depletion, structural abnormalities, and aberrant biochemical activity via the hypothalamic-pituitary-adrenal axis. Recent studies have exhibited the role of dietary bioactive compounds in the mitigation of MDD progression. Here, in this narrative review, we reported the effects of commonly consumed bioactive compounds (curcumin, saffron, garlic, resveratrol, omega-3 fatty acids, ginger, blueberry, tea, and creatine) on MDD and MDD-related neuroinflammation and oxidative stress. The evidence reviewed here is almost exclusively from animal studies and strongly suggests that these commonly consumed bioactive compounds have anti-MDD effects as shown in antidepression-like behaviors, such as increased immobility, sucrose preference, and social interaction. On the basis of the literature/studies reviewed, the proposed molecular mechanisms include 1) the reduction of neuroinflammation activation and oxidative stress, 2) the enhancement of anti-inflammatory and antioxidant properties, 3) the reduction of monoamine oxidase-A production, and 4) the elevation of brain-derived neurotropic factor and neurogenesis. In the future, dietary bioactive compounds on clinical randomized controlled trials are warranted to confirm the findings of preclinical efficacies using bioactive compounds in individuals with MDD.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| | - Taha Hassan
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Peyton Presto
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Psychiatry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Daniel Payberah
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Rodan Devega
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Sarah Wakefield
- Department of Psychiatry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Dale M Dunn
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
2
|
Ejiohuo O, Bajia D, Pawlak J, Szczepankiewicz A. In silico identification of novel ligands targeting stress-related human FKBP5 protein in mental disorders. PLoS One 2025; 20:e0320017. [PMID: 40096182 PMCID: PMC11913304 DOI: 10.1371/journal.pone.0320017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
FK506-binding protein 51 (FKBP51 or FKBP5) serves as a crucial stress modulator implicated in mental disorders, presenting a potential target for intervention. Inhibitors like SAFit2, rapamycin, and tacrolimus exhibit promising interactions with this protein. Despite these advances, challenges persist in diversifying FKBP5 ligands, prompting further exploration of interaction partners. Hence, this study aims to identify other potential ligands. Employing molecular docking, we generated complexes with various ligands (rapamycin, tacrolimus, SAFit2-Selective antagonist of FKBP51 by induced fit, ascomycin, pimecrolimus, rosavin, salidroside, curcumin, apigenin, uvaricin, ruscogenin, neoruscogenin, pumicalagin, castalagin, and grandinin). We identified the top 3 best ligands, of which ruscogenin and neoruscogenin had notable abilities to cross the blood-brain barrier and have high gastrointestinal absorption, like curcumin. Toxicity predictions show ruscogenin and neoruscogenin to be the least toxic based on oral toxicity classification (Class VI). Tyrosine (Tyr113) formed consistent interactions with all ligands in the complex, reinforcing their potential and involvement in stress modulation. Molecular dynamic (MD) simulation validated strong interactions between our three key ligands and FKBP5 protein and provided an understanding of the stability of the complex. The binding free energy (ΔG) of the best ligands (based on pharmacological properties) from MD simulation analysis is -31.78 kcal/mol for neoruscogenin, -30.41 kcal/mol for ruscogenin, and -27.6 kcal/mol for curcumin. These molecules, therefore, can serve as therapeutic molecules or biomarkers for research in stress-impacted mental disorders. While offering therapeutic implications for mental disorders by attenuating stress impact, it is crucial to emphasize that these ligands' transition to clinical applications necessitates extensive experimental research, including clinical trials, to unravel the intricate molecular and neural pathways involved in these interactions.
Collapse
Affiliation(s)
- Ovinuchi Ejiohuo
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | - Donald Bajia
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
- Department of Pediatric Oncology, Hematology, and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
3
|
Chen J, Wei Y, Li N, Pi C, Zhao W, Zhong Y, Li W, Shen H, Yang Y, Zheng W, Jiang J, Liu Z, Liu K, Zhao L. Preliminary Investigation Into the Antidepressant Effects of a Novel Curcumin Analogue (CACN136) In Vitro and In Vivo. Mol Neurobiol 2025; 62:2124-2147. [PMID: 39080204 DOI: 10.1007/s12035-024-04363-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/09/2024] [Indexed: 01/28/2025]
Abstract
The aim of this study was to develop a novel antidepressant with high activity. Based on the findings of molecular docking, eight novel curcumin analogues were evaluated in vitro to check for antidepressant efficacy. Among them, CACN136 had the strongest antidepressant effect. Firstly, CACN136 had a stronger 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) radical ion scavenging ability (IC50: 17.500 ± 0.267 μg/mL) compared to ascorbic acid (IC50: 38.858 ± 0.263 μg/mL) and curcumin (27.189 ± 0.192 μg/mL). Secondly, only CACN136 demonstrated clear protective effects on cells damaged by glutamate and oxidative stress at all concentrations. Finally, only CACN136 showed ASP + inhibition and was more effective than fluoxetine hydrochloride (FLU) at low concentrations. To further confirm the antidepressant effect of CACN136 in vivo, the CUMS model was established. Following 28 days of oral administration of CUMS mice, CACN136 increased the central area residence time in the open-field test, significantly increased the sucrose preference rate in the sucrose preference test (P < 0.001) and significantly reduced the immobility period in the tail suspension test (P < 0.0001), all of which were more effective than those of FLU. Subsequent research indicated that the antidepressant properties of CACN136 were linked to a decrease in the metabolism of 5-HT and the modulation of oxidative stress levels in vivo. In particular, the activation of the Keap1-Nrf2/BDNF-TrkB signaling pathway by CACN136 resulted in elevated levels of antioxidant enzymes, enhancing the antioxidant capability in mice subjected to CUMS. In conclusion, CACN136 has the potential to treat depression and could be an effective antidepressant.
Collapse
Affiliation(s)
- Jinglin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Nong Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
| | - Yueting Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Wen Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Hongping Shen
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
| | - Wenwu Zheng
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Jiang
- Department of Thyroid Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Zerong Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, 646000, Sichuan, China.
| | - Kezhi Liu
- Department of Psychiatry, Fundamental and Clinical Research On Mental Disorders Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
| |
Collapse
|
4
|
Liu C, Du J, Yang J, Li J, Zhou T, Yu J, Wang X, Lin J, Liang Y, Shi R, Luo R, Shen X, Wang Y, Zhang L, Shu Z. Research on the mechanism of buyang huanwu decoction in the amelioration of age-associated memory impairment based on the "co-occurrence network regulation of intestinal microecology-host metabolism-immune function". JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118819. [PMID: 39303964 DOI: 10.1016/j.jep.2024.118819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Brain aging can promote neuronal damage, contributing to aging-related diseases like memory dysfunction. Buyang Huanwu Decoction (BYHWD), a traditional Chinese medicine formula known for tonifying qi and activating blood circulation, shows neuroprotective properties. Despite this, the specific mechanism by which BYHWD improves age-associated memory impairment (AAMI) has not been explored in existing literature. AIM OF THE STUDY This study aimed to investigate the mechanism of BYHWD in the improvement of AAMI based on the "co-occurrence network regulation of intestinal microecology-host metabolism-immune function". MATERIALS AND METHODS Firstly, D-galactose was performed to induce a rat model of AAMI. Learning and memory deficits was assessed by the Morris water maze test. H&E and Nissl staining were used to observe the pathological changes in neurons in the hippocampus of rats. Meanwhile, the levels of pro-inflammatory cytokines and the activation of antioxidant enzymes in rat serum were measured using ELISA. Finally, an integrated pharmacological approach was applied to explore the potential mechanism of BYHWD in improving AAMI. RESULTS Our results indicated that BYHWD significantly mitigated the pathological structure of the hippocampus, reversed the levels of IL-6, TNF-α, GSH, and CAT in the serum, and improved learning and memory in aging rats. Transcriptomics combined with network pharmacology showed that energy metabolism and the inflammatory response were the key biological pathways for BYHWD to ameliorate AAMI. Integrative analysis of the microbiome and metabolomics revealed that BYHWD has the potential to restore the balance of abundance between probiotics and harmful bacteria, and ameliorate the reprogramming of energy metabolism caused by aging in the brain. The co-occurrence network analysis demonstrated that a strong correlation between the treatment of AAMI and the stability of intestinal microecology, host metabolism, and immune network. CONCLUSION The findings of this study collectively support the notion that BYHWD has a superior therapeutic effect in an AAMI rat model. The mechanism involves regulating the "intestinal microecology-metabolism-immune function co-occurrence network" system to restore the composition of gut microbiota and metabolites. This further improves the metabolic phenotype of brain tissue and maintains the homeostasis of central nervous system's immunity, leading to an improvement in AAMI. Consequently, this study offers a unique perspective on the prevention and treatment of AAMI. And, BYHWD is also considered to be a promising preclinical treatment for improving AAMI.
Collapse
Affiliation(s)
- Caiyan Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jieyong Du
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Ji Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianhua Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tong Zhou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiaming Yu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiazi Lin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yefang Liang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ruixiang Shi
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Rongfeng Luo
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xuejuan Shen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Yi Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| | - Zunpeng Shu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China.
| |
Collapse
|
5
|
Antonijevic M, Dallemagne P, Rochais C. Indirect influence on the BDNF/TrkB receptor signaling pathway via GPCRs, an emerging strategy in the treatment of neurodegenerative disorders. Med Res Rev 2025; 45:274-310. [PMID: 39180386 DOI: 10.1002/med.22075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2022] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
Neuronal survival depends on neurotrophins and their receptors. There are two types of neurotrophin receptors: a nonenzymatic, trans-membrane protein of the tumor necrosis factor receptor (TNFR) family-p75 receptor and the tyrosine kinase receptors (TrkR) A, B, and C. Activation of the TrkBR by brain-derived neurotrophic factor (BDNF) or neurotrophin 4/5 (NT-4/5) promotes neuronal survival, differentiation, and synaptic function. It is shown that in the pathogenesis of several neurodegenerative conditions (Alzheimer's disease, Parkinson's disease, Huntington's disease) the BDNF/TrkBR signaling pathway is impaired. Since it is known that GPCRs and TrkR are regulating several cell functions by interacting with each other and generating a cross-communication in this review we have focused on the interaction between different GPCRs and their ligands on BDNF/TrkBR signaling pathway.
Collapse
|
6
|
Baghcheghi Y, Razazpour F, Mirzaee F, Dalfardi M, Pourfridoni M, Hedayati-Moghadam M. Exploring the molecular mechanisms of curcumin in modulating memory impairment in neurodegenerative disorders. Mol Biol Rep 2024; 52:45. [PMID: 39653966 DOI: 10.1007/s11033-024-10115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Memory impairment is a critical challenge in neurodegenerative disorders, particularly in Alzheimer's disease, Parkinson's disease, and age-related cognitive decline. This research explores the molecular mechanisms by which curcumin, a polyphenolic compound derived from Curcuma longa, exerts neuroprotective effects that may ameliorate cognitive deficits associated with these conditions. RESULTS AND CONCLUSION Evidence from both preclinical studies and emerging clinical trials indicates that curcumin enhances neuronal signaling and synaptic plasticity, primarily through the modulation of pathways such as NF-κB and PI3K/Akt. Specifically, curcumin has been shown to reduce neuroinflammation and oxidative stress, thereby promoting synaptic integrity and function. For instance, studies demonstrate that curcumin treatment increases the density of dendritic spines in the hippocampus, which correlates with improved spatial learning and memory performance in animal models. Despite promising findings, significant gaps remain in our understanding of curcumin's efficacy in humans. Most existing research is derived from animal studies, with limited large-scale clinical trials to substantiate its therapeutic potential. Furthermore, challenges such as curcumin's low bioavailability and inconsistencies in dosing complicate its clinical application. This review underscores the need for future research focused on enhancing curcumin's bioavailability, establishing optimal dosages, and conducting comprehensive human trials to validate its effectiveness. By addressing these issues, we aim to clarify curcumin's role as a potential therapeutic agent for memory impairment in neurodegenerative disorders, paving the way for innovative treatment strategies.
Collapse
Affiliation(s)
- Yousef Baghcheghi
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fateme Razazpour
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Faezeh Mirzaee
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mohammad Dalfardi
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mohammad Pourfridoni
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdiyeh Hedayati-Moghadam
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran.
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, 7861755765, Iran.
| |
Collapse
|
7
|
Mohammadzadeh R, Fathi M, Pourseif MM, Omidi Y, Farhang S, Barzegar Jalali M, Valizadeh H, Nakhlband A, Adibkia K. Curcumin and nano-curcumin applications in psychiatric disorders. Phytother Res 2024. [PMID: 38965868 DOI: 10.1002/ptr.8265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 07/06/2024]
Abstract
Psychiatric disorders cause long-lasting disabilities across different age groups. While various medications are available for mental disorders, some patients do not fully benefit from them or experience treatment resistance. The pathogenesis of psychiatric disorders involves multiple mechanisms, including an increase in the inflammatory response. Targeting inflammatory mechanisms has shown promise as a therapeutic approach for these disorders. Curcumin, known for its anti-inflammatory properties and potential neuroprotective effects, has been the subject of studies investigating its potential as a treatment option for psychiatric disorders. This review comprehensively examines the potential therapeutic role of curcumin and its nanoformulations in psychiatric conditions, including major depressive disorder (MDD), bipolar disorder, schizophrenia, and anxiety disorders. There is lack of robust clinical trials across all the studied psychiatric disorders, particularly bipolar disorder and schizophrenia. More studies have focused on MDD. Studies on depression indicate that curcumin may be effective as an antidepressant agent, either alone or as an adjunct therapy. However, inconsistencies exist among study findings, highlighting the need for further research with improved blinding, optimized dosages, and treatment durations. Limited evidence supports the use of curcumin for bipolar disorder, making its therapeutic application challenging. Well-designed clinical trials are warranted to explore its potential therapeutic benefits. Exploring various formulations and delivery strategies, such as utilizing liposomes and nanoparticles, presents intriguing avenues for future research. More extensive clinical trials are needed to assess the efficacy of curcumin as a standalone or adjunctive treatment for psychiatric disorders, focusing on optimal dosages, formulations, and treatment durations.
Collapse
Affiliation(s)
- R Mohammadzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Fathi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Y Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - S Farhang
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Barzegar Jalali
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Valizadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A Nakhlband
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - K Adibkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Radbakhsh S, Butler AE, Moallem SA, Sahebkar A. The Effects of Curcumin on Brain-Derived Neurotrophic Factor Expression in Neurodegenerative Disorders. Curr Med Chem 2024; 31:5937-5952. [PMID: 37278037 DOI: 10.2174/0929867330666230602145817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
Brain-Derived Neurotrophic Factor (BDNF) is a crucial molecule implicated in plastic modifications related to learning and memory. The expression of BDNF is highly regulated, which can lead to significant variability in BDNF levels in healthy subjects. Changes in BDNF expression might be associated with neuropsychiatric diseases, particularly in structures important for memory processes, including the hippocampus and parahippocampal areas. Curcumin is a natural polyphenolic compound that has great potential for the prevention and treatment of age-related disorders by regulating and activating the expression of neural protective proteins such as BDNF. This review discusses and analyzes the available scientific literature on the effects of curcumin on BDNF production and function in both in vitro and in vivo models of disease.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Oberman K, van Leeuwen BL, Nabben M, Villafranca JE, Schoemaker RG. J147 affects cognition and anxiety after surgery in Zucker rats. Physiol Behav 2024; 273:114413. [PMID: 37989448 DOI: 10.1016/j.physbeh.2023.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/15/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Vulnerable patients are at risk for neuroinflammation-mediated post-operative complications, including depression (POD) and cognitive dysfunction (POCD). Zucker rats, expressing multiple risk factors for post-operative complications in humans, may provide a clinically relevant model to study pathophysiology and explore potential interventions. J147, a newly developed anti-dementia drug, was shown to prevent POCD in young healthy rats, and improved early post-surgical recovery in Zucker rats. Aim of the present study was to investigate POCD and the therapeutic potential of J147 in male Zucker rats. Risk factors in the Zucker rat strain were evaluated by comparison with lean littermates. Zucker rats were subjected to major abdominal surgery. Acute J147 treatment was provided by a single iv injection (10 mg/kg) at the start of surgery, while chronic J147 treatment was provided in the food (aimed at 30 mg/kg/day), starting one week before surgery and up to end of protocol. Effects on behavior were assessed, and plasma, urine and brain tissue were collected and processed for immunohistochemistry and molecular analyses. Indeed, Zucker rats displayed increased risk factors for POCD, including obesity, high plasma triglycerides, low grade systemic inflammation, impaired spatial learning and decreased neurogenesis. Surgery in Zucker rats reduced exploration and increased anxiety in the Open Field test, impaired short-term spatial memory, induced a shift in circadian rhythm and increased plasma neutrophil gelatinase-associated lipocalin (NGAL), microglia activity in the CA1 and blood brain barrier leakage. Chronic, but not acute J147 treatment reduced anxiety in the Open Field test and protected against the spatial memory decline. Moreover, chronic J147 increased glucose sensitivity. Acute J147 treatment improved long-term spatial memory and reversed the circadian rhythm shift. No anti-inflammatory effects were seen for J147. Although Zucker rats displayed risk factors, surgery did not induce extensive POCD. However, increased anxiety may indicate POD. Treatment with J147 showed positive effects on behavioral and metabolic parameters, but did not affect (neuro)inflammation. The mixed effect of acute and chronic treatment may suggest a combination for optimal treatment.
Collapse
Affiliation(s)
- K Oberman
- Department of Molecular Neurobiology, GELIFES, University of Groningen, the Netherlands.
| | - B L van Leeuwen
- Department of Surgery, University Medical Center Groningen, the Netherlands
| | - M Nabben
- Departments of Genetics & Cell Biology and Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J E Villafranca
- Abrexa Pharmaceuticals Inc., San Diego, United States of America
| | - R G Schoemaker
- Department of Molecular Neurobiology, GELIFES, University of Groningen, the Netherlands; University Medical Center Groningen, the Netherlands
| |
Collapse
|
10
|
Qiu F, Zeng C, Liu Y, Pan H, Ke C. J147 ameliorates sepsis-induced depressive-like behaviors in mice by attenuating neuroinflammation through regulating the TLR4/NF-κB signaling pathway. J Mol Histol 2023; 54:725-738. [PMID: 37676534 PMCID: PMC10635911 DOI: 10.1007/s10735-023-10147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023]
Abstract
Neuroinflammation is associated with the pathophysiology of depression. The molecular mechanism of depressive-like behavior caused by sepsis-associated encephalopathy (SAE) is incompletely understood. J147 (an analog of curcumin) has been reported to improve memory and has neuroprotective activity, but its biological function in the depressive-like behavior observed in SAE is not known. We investigated the effects of J147 on lipopolysaccharide (LPS)-induced neuroinflammatory, depressive-like behaviors, and the toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signal pathway in the mouse hippocampus and microglia (BV2 cells). The forced-swimming test (FST) and tail-suspension test (TST) were undertaken for assessment of depressive-like behaviors. Expression of the proinflammatory genes interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α were measured using RT-qPCR and ELISA. Microglia activation was detected using immunofluorescence staining. The TLR4/NF-κB signaling pathway was studied using western blotting and immunofluorescence staining. J147 pretreatment markedly downregulated expression of IL-6, IL-1β, and TNF-α, and the mean fluorescence intensity of ionized calcium-binding adapter protein-1 in microglia. J147 restrained LPS-induced nuclear translocation of nuclear factor-kappa B (NF-κB), inhibitor of nuclear factor kappa B (IκB) degradation, and TLR4 activation in microglia. J147 administration inhibited bodyweight loss, mortality, microglia activation, and depressive-like behaviors in LPS-treated mice. In conclusion, J147 ameliorated the sepsis-induced depressive-like behaviors induced by neuroinflammation through attenuating the TLR4/NF-κB signaling pathway in microglia.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518025, Guangdong, China.
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China.
| |
Collapse
|
11
|
Piao J, Wang Y, Zhang T, Zhao J, Lv Q, Ruan M, Yu Q, Li B. Antidepressant-like Effects of Representative Types of Food and Their Possible Mechanisms. Molecules 2023; 28:6992. [PMID: 37836833 PMCID: PMC10574116 DOI: 10.3390/molecules28196992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Depression is a mental disorder characterized by low mood, lack of motivation, negative cognitive outlook, and sleep problems. Suicide may occur in severe cases, although suicidal thoughts are not seen in all cases. Globally, an estimated 350 million individuals grapple with depression, as reported by the World Health Organization. At present, drug and psychological treatments are the main treatments, but they produce insufficient responses in many patients and fail to work at all in many others. Consequently, treating depression has long been an important topic in society. Given the escalating prevalence of depression, a comprehensive strategy for managing its symptoms and impacts has garnered significant attention. In this context, nutritional psychiatry emerges as a promising avenue. Extensive research has underscored the potential benefits of a well-rounded diet rich in fruits, vegetables, fish, and meat in alleviating depressive symptoms. However, the intricate mechanisms linking dietary interventions to brain function alterations remain largely unexplored. This review delves into the intricate relationship between dietary patterns and depression, while exploring the plausible mechanisms underlying the impact of dietary interventions on depression management. As we endeavor to unveil the pathways through which nutrition influences mental well-being, a holistic perspective that encompasses multidisciplinary strategies gains prominence, potentially reshaping how we approach and address depression.
Collapse
Affiliation(s)
- Jingjing Piao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Yingwei Wang
- Changchun Zhuoyi Biological Co., Ltd., Changchun 130616, China;
| | - Tianqi Zhang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Jiayu Zhao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Qianyu Lv
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Mengyu Ruan
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Qin Yu
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun 130041, China
| |
Collapse
|
12
|
Qiu F, Wang Y, Du Y, Zeng C, Liu Y, Pan H, Ke C. Current evidence for J147 as a potential therapeutic agent in nervous system disease: a narrative review. BMC Neurol 2023; 23:317. [PMID: 37674139 PMCID: PMC10481599 DOI: 10.1186/s12883-023-03358-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Curcumin has anti-inflammatory, antioxidant, and anticancer effects and is used to treat diseases such as dermatological diseases, infection, stress, depression, and anxiety. J147, an analogue of curcumin, is designed and synthesized with better stability and bioavailability. Accumulating evidence demonstrates the potential role of J147 in the prevention and treatment of Alzheimer's disease, diabetic neuropathy, ischemic stroke, depression, anxiety, and fatty liver disease. In this narrative review, we summarized the background and biochemical properties of J147 and discussed the role and mechanism of J147 in different diseases. Overall, the mechanical attributes of J147 connote it as a potential target for the prevention and treatment of neurological diseases.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yanmei Wang
- Department of critical care medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yunbo Du
- Department of critical care medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518025, Guangdong, China.
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China.
| |
Collapse
|
13
|
Chen K, Lu X, Xu D, Guo Y, Ao Y, Wang H. Prenatal exposure to corn oil, CMC-Na or DMSO affects physical development and multi-organ functions in fetal mice. Reprod Toxicol 2023; 118:108366. [PMID: 36958465 DOI: 10.1016/j.reprotox.2023.108366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Corn oil, sodium carboxymethyl cellulose (CMC-Na), and dimethyl sulfoxide (DMSO) are widely used as solvents or suspensions in animal experiments, but the effects of prenatal exposure to them on fetal development have not been reported. In this study, Kunming mice were given a conventional dose of corn oil (9.2g/kg·d), CMC-Na (0.05g/kg·d) or DMSO (0.088g/kg·d) during gestation days 10-18, and the pregnancy outcome, fetal physical development, serum phenotype, and multi-organ function changes were observed. The results showed that corn oil decreased serum triglyceride level in males but increased their serum testosterone and CORT levels, and affected female placenta and female/male multi-organ functions (mainly bone, liver, kidney). CMC-Na increased female/male body lengths and tail lengths, decreased serum glucose and total cholesterol levels in males as well as increased their serum LDL-C/HDL-C ratio and testosterone level, decreased female serum bile acid level, and affected male/female placenta and multi-organ functions (mainly bone, liver, hippocampus). DMSO decreased male body weight and serum glucose level, decreased male/female serum bile acid levels, and affected male/female placenta and multi-organs functions (mainly bone, hippocampus, adrenal gland). In conclusion, prenatal exposure to a conventional dose of corn oil, CMC-Na or DMSO could affect fetal physical development and multi-organ functions, and has the characteristics of "multi-pathway, multi-organ and multi-target". This study provides the experimental basis for the rational selection of solvents or suspensions in pharmacology and toxicology studies. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Kaiqi Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Dan Xu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Ying Ao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
14
|
Ji M, Zhang Z, Gao F, Yang S, Wang J, Wang X, Zhu G. Curculigoside rescues hippocampal synaptic deficits elicited by PTSD through activating cAMP-PKA signaling. Phytother Res 2023; 37:759-773. [PMID: 36200803 DOI: 10.1002/ptr.7658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/26/2022] [Accepted: 08/12/2022] [Indexed: 02/17/2023]
Abstract
Chronic traumatic stress results in various psychiatric disorders, especially posttraumatic stress disorder (PTSD). Previous study demonstrated that curculigoside (CUR) a component of Rhizoma Curculiginis prevented fear extinction and stress-induced depression-like behaviors. However, its effects on PTSD and the mechanisms are still not completely clear. In this study, we observed typical PTSD-like phenotypes, synaptic deficit, and reduction of BDNF/TrkB signaling pathway in mice receiving modified single prolonged stress and electrical stimulation (SPS&S). By contrast, systemic administration of CUR blocked PTSD-like phenotypes and synaptic deficits, including reduction of BDNF/TrkB signaling pathway, GluA1 and Arc expression. Importantly, CUR reversed the impairment of PKA signaling pathway elicited by PTSD. We further confirmed that the effects of CUR on synaptic function were through PKA signaling pathway, as H-89, an inhibitor of PKA blocked the effect of CUR on behavioral changes and BDNF/TrkB signaling pathway. Thereafter, we verified that CUR on synaptic function were through PKA pathway using direct intracerebral injection of CUR and H-89. Direct intracerebral injection of CUR activated PKA/CREB/BDNF/TrkB, which was blocked by H-89. Additionally, the docking results showed high binding energies of CUR with A2AR, AC, PRKACA, and PRKAR1A, which might indicate that CUR functions through regulating PKA signaling pathway. In conclusion, CUR prevented the behavioral changes and hippocampal synaptic deficits elicited by PTSD through activating cAMP-PKA signaling.
Collapse
Affiliation(s)
- Manman Ji
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Zhengrong Zhang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Feng Gao
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Shaojie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Juan Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
15
|
Nacre extract from pearl oyster suppresses LPS-induced depression and anxiety. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
16
|
Joshi P, Bisht A, Joshi S, Semwal D, Nema NK, Dwivedi J, Sharma S. Ameliorating potential of curcumin and its analogue in central nervous system disorders and related conditions: A review of molecular pathways. Phytother Res 2022; 36:3143-3180. [PMID: 35790042 DOI: 10.1002/ptr.7522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Curcumin, isolated from turmeric (Curcuma longa L.) is one of the broadly studied phytomolecule owing to its strong antioxidant and anti-inflammatory potential and has been considered a promising therapeutic candidate in a wide range of disorders. Considering, its low bioavailability, different curcumin analogs have been developed to afford desired pharmacokinetic profile and therapeutic outcome in varied pathological states. Several preclinical and clinical studies have indicated that curcumin ameliorates mitochondrial dysfunction, inflammation, oxidative stress apoptosis-mediated neural cell degeneration and could effectively be utilized in the treatment of different neurodegenerative diseases. Hence, in this review, we have summarized key findings of experimental and clinical studies conducted on curcumin and its analogues with special emphasis on molecular pathways, viz. NF-kB, Nrf2-ARE, glial activation, apoptosis, angiogenesis, SOCS/JAK/STAT, PI3K/Akt, ERK1/2 /MyD88 /p38 MAPK, JNK, iNOS/NO, and MMP pathways involved in imparting ameliorative effects in the therapy of neurodegenerative disorders and associated conditions.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.,R & D, Patanjali Ayurved Ltd, Patanjali Food and Herbal Park, Haridwar, Uttarakhand, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Sushil Joshi
- R & D, Patanjali Ayurved Ltd, Patanjali Food and Herbal Park, Haridwar, Uttarakhand, India
| | - Deepak Semwal
- Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Neelesh Kumar Nema
- Paramount Kumkum Private Limited, Prestige Meridian-1, Bangalore, Karnataka, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| |
Collapse
|
17
|
Faucher P, Dries A, Mousset PY, Leboyer M, Dore J, Beracochea D. Synergistic effects of Lacticaseibacillus rhamnosus GG, glutamine, and curcumin on chronic unpredictable mild stress-induced depression in a mouse model. Benef Microbes 2022; 13:253-264. [PMID: 35786408 DOI: 10.3920/bm2021.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The microbiota-gut-brain axis is important in anxiety-depressive disorders. These conditions are associated with dysbiosis of the intestinal microbiota, intestinal hyperpermeability and an increase in circulating markers of inflammation and oxidative stress. They are also associated with a deregulation of the glutamine-glutamate-γ-aminobutyric acid cycle, with impairment of the excitatory/inhibitory balance in the brain. Our aim was to examine the impact of chronic treatment with the probiotic organism Lacticaseibacillus rhamnosus GG, alone or in combination with glutamine and curcumin, in a validated model of anxiety-depressive disorder in mice. Six-month-old mice (n=144) were exposed to chronic unpredictable mild stress (CUMS) stimulation for 3 weeks and emotional disturbances were assessed using two tests assessing anxiety (elevated plus maze test) and depressive-like behaviour (tail suspension test). After discontinuation of CUMS, mice were force-fed once-daily with curcumin, glutamine and probiotic alone or in combination for 21 consecutive days. Emotional reactivity was assessed in two separate behavioural tests: open field test and forced swim test. The outcomes of the interventions were compared with those induced by acute intraperitoneal administration of clomipramine, one of the major tricyclic antidepressants used in humans. Two independent sets of experiment were performed in this study, in order to evaluate the effects of two different formulations based on the utilisation of the probiotic L. rhamnosus GG in its live or inactivated form. CUMS led to an impairment of the emotional state of 6-month-old mice. However, chronic treatment with a combination of glutamine, curcumin and L. rhamnosus GG rescued the anxiety and depressive-like phenotype with an efficiency similar to clomipramine. A synergistic effect of the three compounds was observed, suggesting that simultaneous action on different targets is a relevant approach for the management of anxiety-depressive disorders.
Collapse
Affiliation(s)
- P Faucher
- GYNOV, 11 rue du Commandant Arnoult, 33000 Bordeaux, France
| | - A Dries
- GYNOV, 11 rue du Commandant Arnoult, 33000 Bordeaux, France
| | - P Y Mousset
- GYNOV, 11 rue du Commandant Arnoult, 33000 Bordeaux, France
| | - M Leboyer
- INSERM U955, Fondation FondaMental, Université Paris Est, 94010 Créteil, France
| | - J Dore
- MGP MetaGénoPolis, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - D Beracochea
- INCIA, Université de Bordeaux, UMR CNRS 5287, 33615 Pessac, France
| |
Collapse
|
18
|
Gao F, Yang S, Wang J, Zhu G. cAMP-PKA cascade: An outdated topic for depression? Biomed Pharmacother 2022; 150:113030. [PMID: 35486973 DOI: 10.1016/j.biopha.2022.113030] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022] Open
Abstract
Depression is a common neuropsychiatric disorder characterized by persistent depressed mood and causes serious socioeconomic burden worldwide. Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, deficiency of monoamine transmitters, neuroinflammation and abnormalities of the gut flora are strongly associated with the onset of depression. The cyclic AMP (cAMP)/protein kinase A (PKA) cascade, a major cross-species cellular signaling pathway, is supposed as important player and regulator of depression onset by controlling synaptic plasticity, cytokinesis, transcriptional regulation and HPA axis. In the central nervous system, the cAMP-PKA cascade can dynamically shape neural circuits by enhancing synaptic plasticity, and affect K+ channels by phosphorylating Kir4.1, thereby regulating neuronal excitation. The reduction of cAMP-PKA cascade affects neuronal excitation as well as synaptic plasticity, ultimately leading to pathological outcome of depression, while activation of cAMP-PKA cascade would provide a rapid antidepressant effect. In this review, we proposed to reconsider the function of cAMP-PKA cascade, especially in the rapid antidepressant effect. Local activation or indirect activation of PKA through adjusting anchor proteins would provide new idea for acute treatment of depression.
Collapse
Affiliation(s)
- Feng Gao
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shaojie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Juan Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
19
|
An Update on the Exploratory Use of Curcumin in Neuropsychiatric Disorders. Antioxidants (Basel) 2022; 11:antiox11020353. [PMID: 35204235 PMCID: PMC8868558 DOI: 10.3390/antiox11020353] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/08/2023] Open
Abstract
Curcumin is a polyphenol extracted from the rhizome of the turmeric plant. Beyond its common use as a culinary spice in Eastern Asia, curcumin has been proposed as a therapeutic compound due to its antioxidant, anti-inflammatory and neuroprotective properties. Thus, its efficacy has been evaluated in various inflammatory-based psychiatric disorders, such as schizophrenia, depression, or autism. Our aim is to review those preclinical and clinical studies carried out in psychiatric disorders whose therapeutic approach has involved the use of curcumin and, therefore, to discern the possible positive effect of curcumin in these disorders. Preclinical studies and completed clinical trials of curcumin for psychiatric disorders published from January 2005 to October 2021 were identified through searching relevant databases until 31st October 2021. Sixty-five preclinical studies and 15 clinical trials and open-label studies were selected. Results showed a bias toward studies in depression and, to a lesser extent, schizophrenia. In all disorders, the results were positive in reducing psychiatric deficits. Despite the considerable number of beneficial outcomes reported, the small number of trials and the heterogeneity of protocols make it difficult to draw solid conclusions about the real potency of curcumin in psychiatric disorders.
Collapse
|
20
|
Abstract
Curcumin is the major biologically active polyphenolic constituent in the turmeric plant (Curcuma longa) that has been shown to have antioxidant, anti-inflammatory, neuroprotective, anticancer, antimicrobial, and cardioprotective effects. Interest in curcumin as a treatment for mental health conditions has increased and there is an expanding body of preclinical and clinical research examining its antidepressant and anxiolytic effects. In this narrative review, human trials investigating the effects of curcumin for the treatment of depression or depressive symptoms are summarised. Using findings from in vitro, animal, and human trials, possible biological mechanisms associated with the antidepressant effects of curcumin are also explored. To increase the understanding of curcumin for the treatment of depression, directions for future research are proposed.
Collapse
Affiliation(s)
- Adrian L Lopresti
- Clinical Research Australia, 38 Arnisdale Rd, Duncraig, Perth, WA, 6023, Australia.
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia.
| |
Collapse
|
21
|
Holanda VAD, Oliveira MC, da Silva Junior ED, Gavioli EC. Tamsulosin facilitates depressive-like behaviors in mice: Involvement of endogenous glucocorticoids. Brain Res Bull 2021; 178:29-36. [PMID: 34798218 DOI: 10.1016/j.brainresbull.2021.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/04/2023]
Abstract
The benign prostatic hyperplasia (BPH) is the main source of lower urinary tract symptoms. The BPH is a common age-dependent disease and tamsulosin is an α1-adrenoceptor blocker widely prescribed for BPH. Beyond the common adverse effects of tamsulosin, increased diagnosis of dementia after prescription was observed. Importantly, a clinical study suggested that tamsulosin may exert antidepressant effects in BPH patients. Considering the expression of α1-adrenoceptors in the brain, this study aimed to investigate the effects of tamsulosin in the forced swimming and open field tests in mice. For this, tamsulosin (0.001-1 mg/kg) was orally administered subacutely (1, 5 and 23 hr) and acutely (60 min) before tests. Mifepristone (10 mg/kg), a glucocorticoid receptor antagonist, and aminoglutethimide (10 mg/kg), a streoidogenesis inhibitor, were intraperitoneally injected before tamsulosin to investigate the role of the hypothalamic-pituitary-adrenal axis in the mediation of tamsulosin-induced effects. Subacute and acute administrations of tamsulosin increased the immobility time in the first exposition to an inescapable stressful situation. In the re-exposition to the swim task, controls displayed a natural increase in the immobility time, and the treatment with tamsulosin further increased this behavioral parameter. Tamsuslosin did not affect spontaneous locomotion neither in naïve nor in stressed mice. Our findings also showed that mifepristone and aminoglutethimide prevented the tamsulosin-induced increase in the immobility time in the first and second swimming sessions, respectively. In conclusion, tamsulosin may contribute to increased susceptibility to depressive-like behaviors, by facilitating the acquisition of a passive stress-copying strategy. These effects seem to be dependent on endogenous glucocorticoids.
Collapse
Affiliation(s)
- Victor A D Holanda
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador salgado Filho, 3000, Campus Universitário - Lagoa Nova, Natal 59078-900, Brazil
| | - Matheus C Oliveira
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador salgado Filho, 3000, Campus Universitário - Lagoa Nova, Natal 59078-900, Brazil
| | - Edilson D da Silva Junior
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador salgado Filho, 3000, Campus Universitário - Lagoa Nova, Natal 59078-900, Brazil
| | - Elaine C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador salgado Filho, 3000, Campus Universitário - Lagoa Nova, Natal 59078-900, Brazil.
| |
Collapse
|
22
|
Bai Y, Zhang Y, Li S, Zhang W, Wang X, He B, Ju W. Integrated Network Pharmacology Analysis and Experimental Validation to Investigate the Mechanism of Zhi-Zi-Hou-Po Decoction in Depression. Front Pharmacol 2021; 12:711303. [PMID: 34690756 PMCID: PMC8531485 DOI: 10.3389/fphar.2021.711303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022] Open
Abstract
Zhi-Zi-Hou-Po Decoction (ZZHPD) is a well-known traditional Chinese medicine (TCM) that has been widely used in depression. However, the antidepressant mechanism of ZZHPD has not yet been fully elucidated. The purpose of this study was to explore the pharmacological mechanisms of ZZHPD acting on depression by combining ultra flow liquid chromatography with quadrupole time-of-flight mass spectrometry (UFLC-Q-TOF/MS) and network pharmacology strategy. The chemical components of ZZHPD were identified using UFLC-Q-TOF/MS, while the potential drug targets and depression-related targets were collected from databases on the basis of the identified compounds of ZZHPD. Protein-protein interaction (PPI) network, gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were used to unravel potential antidepressant mechanisms. The predicted antidepressant targets from the pharmacology-based analysis were further verified in vivo. As a result, a total of 31 chemical compounds were identified by UFLC-Q-TOF/MS; 514 promising drug targets were mined by using the Swiss Target Prediction; and 527 depression-related target genes were pinpointed by the GeneCards and OMIM databases. STRING database and Cytoscape's topological analysis revealed 80 potential targets related to the antidepressant mechanism of ZZHPD. The KEGG pathway analysis revealed that the antidepressant targets of ZZHPD were mainly involved in dopaminergic synapse, serotonin synapse, cAMP, and mTOR signaling pathways. Furthermore, based on the animal model of depression induced by chronic corticosterone, the regulatory effects of ZZHPD on the expression of MAOA, MAOB, DRD2, CREBBP, AKT1, MAPK1, HTR1A, and GRIN2B mRNA levels as well as the cAMP signaling pathway and monoaminergic metabolism were experimentally verified in rats. Our study revealed that ZZHPD is expounded to target various genes and pathways to perform its antidepressant effect.
Collapse
Affiliation(s)
- Yongtao Bai
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Phase I Clinical Research Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yingchun Zhang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Shuolei Li
- Phase I Clinical Research Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xinhui Wang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Baoxia He
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Phase I Clinical Research Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wenzheng Ju
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
23
|
Therapeutic Potential of Curcumin in Reversing the Depression and Associated Pseudodementia via Modulating Stress Hormone, Hippocampal Neurotransmitters, and BDNF Levels in Rats. Neurochem Res 2021; 46:3273-3285. [PMID: 34409523 DOI: 10.1007/s11064-021-03430-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 01/07/2023]
Abstract
Depressive state adversely affects the memory functions, especially in the geriatric population. The initial stage of memory deficits associated with depression is particularly called as pseudodementia. It is the starting point of memory disturbance before dementia. The purpose of this research was to study depression and its consequent pseudodementia. For this purpose 24 male albino Wistar rats were divided into four groups. Depression was induced by 14 days of chronic restraint stress (CRS) daily for 4 h. After developing a depression model, pattern separation test was conducted to monitor pseudodementia in rats. Morris water maze test (MWM) was also performed to observe spatial memory. It was observed that model animals displayed impaired pattern separation and spatial memory. Treatment was started after the development of pseudodementia in rats. Curcumin at a dose of 200 mg/kg was given to model rats for one week along with the stress procedure. Following the treatment with curcumin, rats were again subjected to the aforementioned behavioral tests before decapitation. Corticosterone levels, brain derived neurotrophic factor (BDNF) and neurochemical analysis were conducted. Model rats showed depressogenic behavior and impaired memory performance. In addition to this, high corticosterone levels and decreased hippocampal BDNF, 5-HT, dopamine (DA), and acetylcholine (ACh) levels were also observed in depressed animals. These behavioral biochemical and neurochemical changes were effectively restored following treatment with curcumin. Hence, it is suggested from this study that pseudodementia can be reversed unlike true dementia by controlling the factors such as depression which induce memory impairment.
Collapse
|
24
|
Pan X, Chen L, Xu W, Bao S, Wang J, Cui X, Gao S, Liu K, Avasthi S, Zhang M, Chen R. Activation of monoaminergic system contributes to the antidepressant- and anxiolytic-like effects of J147. Behav Brain Res 2021; 411:113374. [PMID: 34023306 DOI: 10.1016/j.bbr.2021.113374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022]
Abstract
Major depressive disorder (MDD) is a severe mental disorder, which is closely related to the deficiency of monoamine neurotransmitters. Our previous study suggested that acute treatment with J147, a novel curcumin derivative, produced antidepressant-like effects in mouse model of depression by regulation of 5-HT receptor subtypes. However, it is still unknown whether the antidepressant-like effects of J147 are involved in activation of central monoaminergic system. In this study, a series of classical behavior tests were employed to assess the involvement of monoaminergic system in antidepressant- and anxiolytic-like effects after sub-acute treatment of mice with J147 for 3 days. The results suggested that J147 at 10 mg/kg significantly reduced the immobility time in both the tail suspension and forced swimming tests, but didn't show effects in the sucrose preference test. Similarly, sub-acute treatment of J147 did not induce amelioration in novelty suppressed feeding test. J147 increased duration and crossing time in the central area, but did not show significant change in rearing counts in the open field test. In neurochemical assays, studies suggested that serotonin and noradrenaline levels were significantly increased in the frontal cortex and hippocampus after treatment of J147 by the high-performance liquid chromatography (HPLC) with an electrochemical detector. Moreover, J147-induced significant inhibition of monoamine oxidase A activity. These findings suggest that the antidepressant- and anxiolytic-like effects of J147 might be related to the monoaminergic system by the evidence that high dose of J147 inhibits monoamine oxidase (MAO)-A activity and increases synaptic monoamines in the mouse brain.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Clinical Pharmacy and Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ling Chen
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Xu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Shihui Bao
- Department of Clinical Pharmacy and Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Wang
- Department of Clinical Pharmacy and Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Cui
- Department of Clinical Pharmacy and Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shichao Gao
- Department of Pharmaceutical Science, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Kaiping Liu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Shivani Avasthi
- Department of Pharmaceutical Science, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Meixi Zhang
- Pingyang Hospital of Traditional Chinese Medicine, Pingyang, China.
| | - Ruijie Chen
- Department of Clinical Pharmacy and Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
25
|
Matias JN, Achete G, Campanari GSDS, Guiguer ÉL, Araújo AC, Buglio DS, Barbalho SM. A systematic review of the antidepressant effects of curcumin: Beyond monoamines theory. Aust N Z J Psychiatry 2021; 55:451-462. [PMID: 33673739 DOI: 10.1177/0004867421998795] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Depression is a severe, chronic, and recurring mental health disorder, which prevalence and morbimortality have increased in recent years. Several theories are proposed to elucidate the mechanisms of depression, such as the involvement of inflammation and the release of cytokines. Alternative treatments have been developed to improve outcomes of the commonly used drugs, and the use of Curcuma longa stands out. Its primary compound is named curcumin that exhibits antioxidant and anti-inflammatory effects. AIMS Several studies have shown that curcumin may play antidepressant actions and, therefore, this study aimed to perform a systematic review of the antidepressant effects of curcumin to evaluate the impact of this compound in the treatment of this condition. METHODS This systematic review has included studies available in MEDLINE-PubMed, EMBASE, and Cochrane databases, and the final selection included 10 randomized clinical trials. CONCLUSION Curcumin improves depressant and anxiety behavior in humans. It can increase monoamines and brain-derived neurotrophic factor levels and may inhibit the production of pro-inflammatory cytokines and neuronal apoptosis in the brain. Systemically, curcumin enhanced insulin sensitivity, reduced cortisol levels, and reversed metabolic abnormalities. Studies with larger samples and standardized dose and formulation are required to demonstrate the benefits of curcumin in depression treatment since there are many variations in this compound's use.
Collapse
Affiliation(s)
- Julia Novaes Matias
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília, UNIMAR, São Paulo, Brazil
| | - Gabriela Achete
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília, UNIMAR, São Paulo, Brazil
| | | | - Élen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília, UNIMAR, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília, UNIMAR, São Paulo, Brazil
| | - Daiene Santos Buglio
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília, UNIMAR, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília, UNIMAR, São Paulo, Brazil
| |
Collapse
|
26
|
Yu Z, Bai R, Zhou J, Huang H, Zhao W, Huo X, Yang Y, Luan Z, Zhang B, Sun C, Ma X. Uncarialins J—M from
Uncaria rhynchophylla
and Their Anti‐depression Mechanism in Unpredictable Chronic Mild
Stress‐Induced
Mice
via
Activating
5‐HT
1A
Receptor. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhen‐Long Yu
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Rong Bai
- Department of Pharmacy, Shanghai East Hospital, Tongji University Shanghai 200120 China
| | - Jun‐Jun Zhou
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Hui‐Lian Huang
- Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang Jiangxi 330103 China
| | - Wen‐Yu Zhao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Xiao‐Kui Huo
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Ya‐Hui Yang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Zhi‐Lin Luan
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Bao‐Jing Zhang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Cheng‐Peng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Xiao‐Chi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| |
Collapse
|
27
|
Chen L, Yao Z, Qu S, Zhang J, Zhang J, Zhang Z, Huang Y, Zhong Z. Electroacupuncture improves synaptic plasticity by regulating the 5-HT1A receptor in hippocampus of rats with chronic unpredictable mild stress. J Int Med Res 2021; 48:300060520918419. [PMID: 32363965 PMCID: PMC7221223 DOI: 10.1177/0300060520918419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objectives To investigate the antidepressant effects of electroacupuncture (EA) on
chronic unpredictable mild stress (CUMS) in rats, as well as the effects of
EA on hippocampal neurons, synaptic morphology, and 5-hydroxytryptamine (HT)
receptor expression. Methods Forty adult male Wistar rats were randomly divided into normal control, CUMS,
EA, and paroxetine groups. CUMS modeling was performed for 21 days, followed
by 14 days of intervention: rats in the EA group underwent stimulation of
GV20 and GV29 acupuncture points for 30 minutes daily; rats in the
paroxetine group were administered paroxetine daily. Behavioral tests,
transmission electron microscopy, western blotting, and real-time
quantitative polymerase chain reaction were used to evaluate the effects of
the intervention. Results EA treatment reversed the behavioral changes observed in rats due to CUMS
modeling; it also improved the pathological changes in organelles and
synaptic structures of hippocampal neurons, and upregulated the protein and
mRNA expression levels of 5-HT1A receptor. There were no significant
differences in 5-HT1B receptor protein and mRNA expression levels among the
groups. Conclusions EA treatment can alleviate depression-like symptoms in CUMS rats. The
underlying mechanism may include promoting the expression of 5-HT1A receptor
mRNA and protein, thereby improving synaptic plasticity in the
hippocampus.
Collapse
Affiliation(s)
- Lixing Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zengyu Yao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shanshan Qu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jialing Zhang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong
| | - Jiping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhinan Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zheng Zhong
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Liang JH, Wang C, Huo XK, Tian XG, Zhao WY, Wang X, Sun CP, Ma XC. The genus Uncaria: A review on phytochemical metabolites and biological aspects. Fitoterapia 2020; 147:104772. [PMID: 33152463 DOI: 10.1016/j.fitote.2020.104772] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/03/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
The genus Uncaira (Rubiaceae) comprises of 34 species, many of which are usually used as traditional Chinese medicines (TCMs) to treat hypertension, fever, headache, gastrointestinal illness, and fungal infection. Over the past twenty years, Uncaira species have been paid the considerable attentions in phytochemical and biological aspects, and about 100 new secondary metabolites, including alkaloids, triterpenes, and flavonoids, have been elucidated. This review aims to present a comprehensive and up-to date overview of the biological source, structures and their biosynthetic pathways, as well as the pharmacological of the compounds reported in the genus Uncaria for the past two decades. It would provide an insight into the emerging pharmacological applications of the genus Uncaria.
Collapse
Affiliation(s)
- Jia-Hao Liang
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China
| | - Chao Wang
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China
| | - Xiao-Kui Huo
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China
| | - Xiang-Ge Tian
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China
| | - Wen-Yu Zhao
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China
| | - Xun Wang
- Department of Neurosurgery, The Third People's Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Cheng-Peng Sun
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China.
| | - Xiao-Chi Ma
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China.
| |
Collapse
|
29
|
Korczak M, Kurowski P, Leśniak A, Grönbladh A, Filipowska A, Bujalska-Zadrożny M. GABA B receptor intracellular signaling: novel pathways for depressive disorder treatment? Eur J Pharmacol 2020; 885:173531. [PMID: 32871173 DOI: 10.1016/j.ejphar.2020.173531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Affecting over 320 million people around the world, depression has become a formidable challenge for modern medicine. In addition, an increasing number of studies cast doubt on the monoamine theory of depressive disorder and, worryingly, antidepressant medications only significantly benefit patients with severe depression. Thus, it is not surprising that researchers have shown an increased interest in new theories attempting to explain the pathogenesis of this disease. One example is the excitatory/inhibitory transmission imbalance theory. These abnormalities involve glutamate and γ-aminobutyric acid (GABA) signaling. Studies on GABAB receptors and their antagonists are particularly promising for the treatment of depressive disorders. In this paper, intracellular pathways controlled by GABAB receptors and their links to depression are described, including the impact of ketamine on GABAergic synaptic transmission.
Collapse
Affiliation(s)
- Maciej Korczak
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Kurowski
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland.
| | - Anna Leśniak
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland
| | - Alfhild Grönbladh
- The Beijer Laboratory, Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, The Uppsala University, Uppsala, Sweden
| | - Anna Filipowska
- Department of Biosensors and Processing of Biomedical Signals, The Silesian University of Technology, Zabrze, Poland
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
30
|
Li J, Chen L, Li G, Chen X, Hu S, Zheng L, Luria V, Lv J, Sun Y, Xu Y, Yu Y. Sub-Acute Treatment of Curcumin Derivative J147 Ameliorates Depression-Like Behavior Through 5-HT 1A-Mediated cAMP Signaling. Front Neurosci 2020; 14:701. [PMID: 32733195 PMCID: PMC7360862 DOI: 10.3389/fnins.2020.00701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background Major depressive disorder (MDD) is a severe mental disorder related to the deficiency of monoamine neurotransmitters, particularly to abnormalities of 5-HT (5-hydroxytryptamine, serotonin) and its receptors. Our previous study suggested that acute treatment with a novel curcumin derivative J147 exhibited antidepressant-like effects by increasing brain derived neurotrophic factor (BDNF) level in the hippocampus of mice. The present study expanded upon our previous findings and investigated the antidepressant-like effects of sub-acute treatment of J147 for 3 days in male ICR mice and its possible relevancy to 5-HT1A and 5-HT1B receptors and downstream cAMP-BDNF signaling. Methods J147 at doses of 1, 3, and 9 mg/kg (via gavage) was administered for 3 days, and the anti-immobility time in the forced swimming and tail suspension tests (FST and TST) was recorded. The radioligand binding assay was used to determine the affinity of J147 to 5-HT1A and 5-HT1B receptor. Moreover, 5-HT1A or 5-HT1B agonist or its antagonist was used to determine which 5-HT receptor subtype is involved in the antidepressant-like effects of J147. The downstream signaling molecules such as cAMP, PKA, pCREB, and BDNF were also measured to determine the mechanism of action. Results The results demonstrated that sub-acute treatment of J147 remarkably decreased the immobility time in both the FST and TST in a dose-dependent manner. J147 displayed high affinity in vitro to 5-HT1A receptor prepared from mice cortical tissue and was less potent at 5-HT1B receptor. These effects of J147 were blocked by pretreatment with a 5-HT1A antagonist NAD-299 and enhanced by a 5-HT1A agonist 8-OH-DPAT. However, 5-HT1B receptor antagonist NAS-181 did not appreciably alter the effects of J147 on depression-like behaviors. Moreover, pretreatment with NAD-299 blocked J147-induced increases in cAMP, PKA, pCREB, and BDNF expression in the hippocampus, while 8-OH-DPAT enhanced the effects of J147 on these proteins’ expression. Conclusion The results suggest that J147 induces rapid antidepressant-like effects during a 3-day treatment period without inducing drug tolerance. These effects might be mediated by 5-HT1A-dependent cAMP/PKA/pCREB/BDNF signaling.
Collapse
Affiliation(s)
- Jianxin Li
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Ling Chen
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gaowen Li
- Ningbo College of Health Sciences, Ningbo, China.,Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Xiaojuan Chen
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Sisi Hu
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Liang Zheng
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Victor Luria
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Jinpeng Lv
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States.,College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Yindi Sun
- Department of Traditional Medical Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Yingcong Yu
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| |
Collapse
|
31
|
Hu W, Wu J, Ye T, Chen Z, Tao J, Tong L, Ma K, Wen J, Wang H, Huang C. Farnesoid X Receptor-Mediated Cytoplasmic Translocation of CRTC2 Disrupts CREB-BDNF Signaling in Hippocampal CA1 and Leads to the Development of Depression-Like Behaviors in Mice. Int J Neuropsychopharmacol 2020; 23:673-686. [PMID: 32453814 PMCID: PMC7727490 DOI: 10.1093/ijnp/pyaa039] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We recently identified neuronal expression of farnesoid X receptor (FXR), a bile acid receptor known to impair autophagy by inhibiting cyclic adenosine monophosphate response element-binding protein (CREB), a protein whose underfunctioning is linked to neuroplasticity and depression. In this study, we hypothesize that FXR may mediate depression via a CREB-dependent mechanism. METHODS Depression was induced in male C57BL6/J mice via chronic unpredictable stress (CUS). Subjects underwent behavioral testing to identify depression-like behaviors. A variety of molecular biology techniques, including viral-mediated gene transfer, Western blot, co-immunoprecipitation, and immunofluorescence, were used to correlate depression-like behaviors with underlying molecular and physiological events. RESULTS Overexpression of FXR, whose levels were upregulated by CUS in hippocampal CA1, induced or aggravated depression-like behaviors in stress-naïve and CUS-exposed mice, while FXR short hairpin RNA (shRNA) ameliorated such symptoms in CUS-exposed mice. The behavioral effects of FXR were found to be associated with changes in CREB-brain-derived neurotrophic factor (BDNF) signaling, as FXR overexpression aggravated CUS-induced reduction in BDNF levels while the use of FXR shRNA or disruption of FXR-CREB signaling reversed the CUS-induced reduction in the phosphorylated CREB and BDNF levels. Molecular analysis revealed that FXR shRNA prevented CUS-induced cytoplasmic translocation of CREB-regulated transcription coactivator 2 (CRTC2); CRTC2 overexpression and CRTC2 shRNA abrogated the regulatory effect of FXR overexpression or FXR shRNA on CUS-induced depression-like behaviors. CONCLUSIONS In stress conditions, increased FXR in the CA1 inhibits CREB by targeting CREB and driving the cytoplasmic translocation of CRTC2. Uncoupling of the FXR-CREB complex may be a novel strategy for depression treatment.
Collapse
Affiliation(s)
- Wenfeng Hu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People’s Hospital, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jinhua Tao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Lijuan Tong
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Kai Ma
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China,Probiotics Australia, Ormeau, Queensland, Australia
| | - Jie Wen
- Beijing Allwegene Health, Beijing, China
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China,Correspondence: Chao Huang, PhD, Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China ()
| |
Collapse
|
32
|
Ramaholimihaso T, Bouazzaoui F, Kaladjian A. Curcumin in Depression: Potential Mechanisms of Action and Current Evidence-A Narrative Review. Front Psychiatry 2020; 11:572533. [PMID: 33329109 PMCID: PMC7728608 DOI: 10.3389/fpsyt.2020.572533] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent and debilitating disorders. Current available treatments are somehow limited, so alternative therapeutic approaches targeting different biological pathways are being investigated to improve treatment outcomes. Curcumin is the main active component in the spice turmeric that has been used for centuries in Ayurvedic medicine to treat a variety of conditions, including anxiety and depressive disorders. In the past decades, curcumin has drawn researchers' attention and displays a broad range of properties that seem relevant to depression pathophysiology. In this review, we break down the potential mechanisms of action of curcumin with emphasis on the diverse systems that can be disrupted in MDD. Curcumin has displayed, in a number of studies, a potency in modulating neurotransmitter concentrations, inflammatory pathways, excitotoxicity, neuroplasticity, hypothalamic-pituitary-adrenal disturbances, insulin resistance, oxidative and nitrosative stress, and endocannabinoid system, all of which can be involved in MDD pathophysiology. To date, a handful of clinical trials have been published and suggest a benefit of curcumin in MDD. With evidence that is progressively growing, curcumin appears as a promising alternative option in the management of MDD.
Collapse
|
33
|
Menneson S, Ménicot S, Malbert CH, Meurice P, Serrand Y, Noirot V, Etienne P, Coquery N, Val-Laillet D. Neuromodulatory and possible anxiolytic-like effects of a spice functional food ingredient in a pig model of psychosocial chronic stress. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
34
|
Wang L, Zhang Y, Du X, Ding T, Gong W, Liu F. Review of antidepressants in clinic and active ingredients of traditional Chinese medicine targeting 5-HT1A receptors. Biomed Pharmacother 2019; 120:109408. [DOI: 10.1016/j.biopha.2019.109408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
|
35
|
Li Y, Zu Y, Li X, Zhao S, Ou F, Li L, Zhang X, Wang W, He T, Liang Y, Sun X, Tang M. Acute corticosterone treatment elicits antidepressant-like actions on the hippocampal 5-HT and the immobility phenotype. Brain Res 2019; 1714:166-173. [DOI: 10.1016/j.brainres.2019.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/09/2019] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
|
36
|
Tokgöz G, Demir Özkay Ü, Osmaniye D, Turan Yücel N, Can ÖD, Kaplancıklı ZA. Synthesis of Novel Benzazole Derivatives and Evaluation of Their Antidepressant-Like Activities with Possible Underlying Mechanisms. Molecules 2018; 23:molecules23112881. [PMID: 30400609 PMCID: PMC6278502 DOI: 10.3390/molecules23112881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/09/2023] Open
Abstract
Novel benzazole derivative compounds 4a–4h were obtained by the reaction of corresponding 2-(benzazol-2-ylthio)acetohydrazide and appropriate 4-substituted benzaldehydes. The chemical structures of the synthesized compounds were elucidated by FT-IR, 1H-NMR, 13C-NMR and LCMS spectroscopic methods. Antidepressant-like effects of the compounds were evaluated by tail suspension test (TST) and modified forced swimming tests (MFST). Moreover, locomotor activities of the animals were assessed by an activity cage apparatus. In the series, compounds 4a, 4b, 4e and 4f (at 50 mg/kg) significantly decreased the immobility time of mice in both of the TST and MFST. The same compounds prolonged the swimming time of animals in MFST without any change in the climbing duration. These data indicated that compounds 4a, 4b, 4e and 4f possess significant antidepressant-like activities. Moreover, pre-treatments with p-chloro-phenylalanine methyl ester (an inhibitor of serotonin synthesis), NAN-190 (a 5-HT1A antagonist), ketanserin (a 5-HT2A/2C antagonist), and ondansetron (a 5-HT3 antagonist) reversed the exhibited pharmacological effects. Results of the mechanistic studies suggested the involvement of serotonergic system and contributions of 5-HT1A, 5-HT2A/2C and 5-HT3 receptors to the antidepressant-like effects of compounds 4a, 4b, 4e and 4f. Furthermore, unchanged locomotor activity of mice following the administrations of these four derivatives confirmed that the presented antidepressant-like effects are specific.
Collapse
Affiliation(s)
- Gamze Tokgöz
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Ümide Demir Özkay
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Nazlı Turan Yücel
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Özgür Devrim Can
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| |
Collapse
|
37
|
Antidepressant-like effect of salidroside and curcumin on the immunoreactivity of rats subjected to a chronic mild stress model. Food Chem Toxicol 2018; 121:604-611. [DOI: 10.1016/j.fct.2018.09.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022]
|
38
|
Lv J, Cao L, Zhang R, Bai F, Wei P. A curcumin derivative J147 ameliorates diabetic peripheral neuropathy in streptozotocin (STZ)-induced DPN rat models through negative regulation AMPK on TRPA1. Acta Cir Bras 2018; 33:533-541. [PMID: 30020315 DOI: 10.1590/s0102-865020180060000008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/12/2018] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To investigate the specific molecular mechanisms and effects of curcumin derivative J147 on diabetic peripheral neuropathy (DPN). METHODS We constructed streptozotocin (STZ)-induced DPN rat models to detected mechanical withdrawal threshold (MWT) in vivo using Von Frey filaments. In vitro, we measured cell viability and apoptosis, adenosine 5'-monophosphate-activated protein kinase (AMPK) and transient receptor potential A1 (TRPA1) expression using MTT, flow cytometry, qRT-PCR and western blot. Then, TRPA1 expression level and calcium reaction level were assessed in agonist AICAR treated RSC96cells. RESULTS The results showed that J147reduced MWT in vivo, increased the mRNA and protein level of AMPK, reduced TRPA1 expression and calcium reaction level in AITCR treated RSC96 cells, and had no obvious effect on cell viability and apoptosis. Besides, AMPK negative regulated TRPA1 expression in RSC96 cells. CONCLUSIONS J147 could ameliorate DPN via negative regulation AMPK on TRPA1 in vivo and in vitro. A curcumin derivative J147might be a new therapeutic potential for the treatment of DPN.
Collapse
Affiliation(s)
- Juan Lv
- MD, Physician, Department of Traditional Chinese Medicine, Shanxi University, China. Acquisition, analysis and interpretation of data; manuscript preparation
| | - Lanxiu Cao
- MD, Physician, Department of Prescription, Basic Medical College, Shanxi University of Traditional Chinese Medicine, China. Conception and design of the study, manuscript preparation, final approval
| | - Rui Zhang
- MD, Physician, Department of Diabetes, Second Affiliated Hospital, Shanxi University of Traditional Chinese Medicine, China. Technical procedures and acquisition of data
| | - Fu Bai
- MD, Physician, Department of Traditional Chinese Medicine, Shanxi University, China. Technical procedures
| | - Pengfei Wei
- MD, Physician, Department of Radiotherapy, First Affiliated Hospital, Shanxi University of Traditional Chinese Medicine, China. Technical procedures
| |
Collapse
|