1
|
Percy AK, Ananth A, Neul JL. Rett Syndrome: The Emerging Landscape of Treatment Strategies. CNS Drugs 2024; 38:851-867. [PMID: 39251501 PMCID: PMC11486803 DOI: 10.1007/s40263-024-01106-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 09/11/2024]
Abstract
Rett syndrome (RTT) has enjoyed remarkable progress in achieving specific therapies. RTT, a unique neurodevelopmental disorder first described in 1966, progressed slowly until the landmark paper of Hagberg and colleagues in 1983. Thereafter, rapid advances were achieved including the development of specific diagnostic criteria and the active search for a genetic etiology, resulting 16 years later in identification of variants in the methyl-CpG-binding protein (MECP2) gene located at Xq28. Shortly thereafter, the NIH Office of Rare Diseases funded the RTT Natural History Study (NHS) in 2003, initiating the acquisition of natural history data on clinical features from a large population of individuals with RTT. This information was essential for advancement of clinical trials to provide specific therapies for this disorder. In the process, the International Rett Syndrome Association (IRSA) was formed (now the International Rett Syndrome Foundation-IRSF), which participated directly in encouraging and expanding enrollment in the NHS and, subsequently, in developing the SCOUT program to facilitate testing of potential therapeutic agents in a mouse model of RTT. The overall objective was to review clinical characteristics developed from the NHS and to discuss the status of specific therapies for this progressive neurodevelopmental disorder. The NHS study provided critical information on RTT: growth, anthropometrics, longevity, key comorbidities including epilepsy, breath abnormalities, gastroesophageal dysfunction, scoliosis and other orthopedic issues, puberty, behavior and anxiety, and progressive motor deterioration including the appearance of parkinsonian features. Phenotype-genotype correlations were noted including the role of X chromosome inactivation. Development of clinical severity and quality of life measures also proved critical for subsequent clinical trials. Further, development of biochemical and neurophysiologic biomarkers offered further endpoints for clinical trials. Initial clinical trials prior to the NHS were ineffective, but advances resulting from the NHS and other studies worldwide promoted significant interest from pharmaceutical firms resulting in several clinical trials. While some of these have been unrewarding such as sarizotan, others have been quite promising including the approval of trofinetide by the FDA in 2023 as the first agent available for specific treatment of RTT. Blarcamesine has been trialed in phase 3 trials, 14 agents have been studied in phase 2 trials, and 7 agents are being evaluated in preclinical/translational studies. A landmark study in 2007 by Guy et al. demonstrated that activation of a normal MECP2 gene in a null mouse model resulted in significant improvement. Gene replacement therapy has advanced through translational studies to two current phase 1/2 clinical trials (Taysha102 and Neurogene-401). Additional genetic therapies are also under study including gene editing, RNA editing, and X-chromosome reactivation. Taken together, progress in understanding and treating RTT over the past 40 years has been remarkable. This suggests that further advances can be expected.
Collapse
Affiliation(s)
- Alan K Percy
- University of Alabama at Birmingham, Lowder Bldg 416, Birmingham, AL, 35233, USA.
| | - Amitha Ananth
- University of Alabama at Birmingham, Lowder Bldg 416, Birmingham, AL, 35233, USA
| | - Jeffrey L Neul
- Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Basavarajappa BS, Subbanna S. Unveiling the Potential of Phytocannabinoids: Exploring Marijuana's Lesser-Known Constituents for Neurological Disorders. Biomolecules 2024; 14:1296. [PMID: 39456229 PMCID: PMC11506053 DOI: 10.3390/biom14101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Cannabis sativa is known for producing over 120 distinct phytocannabinoids, with Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) being the most prominent, primarily in their acidic forms. Beyond Δ9-THC and CBD, a wide array of lesser-known phytocannabinoids, along with terpenes, flavonoids, and alkaloids, demonstrate diverse pharmacological activities, interacting with the endocannabinoid system (eCB) and other biological pathways. These compounds, characterized by phenolic structures and hydroxyl groups, possess lipophilic properties, allowing them to cross the blood-brain barrier (BBB) effectively. Notably, their antioxidant, anti-inflammatory, and neuro-modulatory effects position them as promising agents in treating neurodegenerative disorders. While research has extensively examined the neuropsychiatric and neuroprotective effects of Δ9-THC, other minor phytocannabinoids remain underexplored. Due to the well-established neuroprotective potential of CBD, there is growing interest in the therapeutic benefits of non-psychotropic minor phytocannabinoids (NMPs) in brain disorders. This review highlights the emerging research on these lesser-known compounds and their neuroprotective potential. It offers insights into their therapeutic applications across various major neurological conditions.
Collapse
Affiliation(s)
- Balapal S. Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
| |
Collapse
|
3
|
Cosentino L, Urbinati C, Lanzillotta C, De Rasmo D, Valenti D, Pellas M, Quattrini MC, Piscitelli F, Kostrzewa M, Di Domenico F, Pietraforte D, Bisogno T, Signorile A, Vacca RA, De Filippis B. Pharmacological inhibition of the CB1 cannabinoid receptor restores abnormal brain mitochondrial CB1 receptor expression and rescues bioenergetic and cognitive defects in a female mouse model of Rett syndrome. Mol Autism 2024; 15:39. [PMID: 39300547 PMCID: PMC11414047 DOI: 10.1186/s13229-024-00617-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Defective mitochondria and aberrant brain mitochondrial bioenergetics are consistent features in syndromic intellectual disability disorders, such as Rett syndrome (RTT), a rare neurologic disorder that severely affects mainly females carrying mutations in the X-linked MECP2 gene. A pool of CB1 cannabinoid receptors (CB1R), the primary receptor subtype of the endocannabinoid system in the brain, is located on brain mitochondrial membranes (mtCB1R), where it can locally regulate energy production, synaptic transmission and memory abilities through the inhibition of the intra-mitochondrial protein kinase A (mtPKA). In the present study, we asked whether an overactive mtCB1R-mtPKA signaling might underlie the brain mitochondrial alterations in RTT and whether its modulation by systemic administration of the CB1R inverse agonist rimonabant might improve bioenergetics and cognitive defects in mice modeling RTT. METHODS Rimonabant (0.3 mg/kg/day, intraperitoneal injections) was administered daily to symptomatic female mice carrying a truncating mutation of the Mecp2 gene and its effects on brain mitochondria functionality, systemic oxidative status, and memory function were assessed. RESULTS mtCB1R is overexpressed in the RTT mouse brain. Subchronic treatment with rimonabant normalizes mtCB1R expression in RTT mouse brains, boosts mtPKA signaling, and restores the defective brain mitochondrial bioenergetics, abnormal peripheral redox homeostasis, and impaired cognitive abilities in RTT mice. LIMITATIONS The lack of selectivity of the rimonabant treatment towards mtCB1R does not allow us to exclude that the beneficial effects exerted by the treatment in the RTT mouse model may be ascribed more broadly to the modulation of CB1R activity and distribution among intracellular compartments, rather than to a selective effect on mtCB1R-mediated signaling. The low sample size of few experiments is a further limitation that has been addressed replicating the main findings under different experimental conditions. CONCLUSIONS The present data identify mtCB1R overexpression as a novel molecular alteration in the RTT mouse brain that may underlie defective brain mitochondrial bioenergetics and cognitive dysfunction.
Collapse
Affiliation(s)
- Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Italian National Institute of Health, Rome, Italy
| | - Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Italian National Institute of Health, Rome, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Domenico De Rasmo
- Institute of Biomembranes Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Daniela Valenti
- Institute of Biomembranes Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Mattia Pellas
- Center for Behavioral Sciences and Mental Health, Italian National Institute of Health, Rome, Italy
| | | | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | | | - Tiziana Bisogno
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Italian National Institute of Health, Rome, Italy.
| |
Collapse
|
4
|
Briglia M, Allia F, Avola R, Signorini C, Cardile V, Romano GL, Giurdanella G, Malaguarnera R, Bellomo M, Graziano ACE. Diet and Nutrients in Rare Neurological Disorders: Biological, Biochemical, and Pathophysiological Evidence. Nutrients 2024; 16:3114. [PMID: 39339713 PMCID: PMC11435074 DOI: 10.3390/nu16183114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Rare diseases are a wide and heterogeneous group of multisystem life-threatening or chronically debilitating clinical conditions with reduced life expectancy and a relevant mortality rate in childhood. Some of these disorders have typical neurological symptoms, presenting from birth to adulthood. Dietary patterns and nutritional compounds play key roles in the onset and progression of neurological disorders, and the impact of alimentary needs must be enlightened especially in rare neurological diseases. This work aims to collect the in vitro, in vivo, and clinical evidence on the effects of diet and of nutrient intake on some rare neurological disorders, including some genetic diseases, and rare brain tumors. Herein, those aspects are critically linked to the genetic, biological, biochemical, and pathophysiological hallmarks typical of each disorder. Methods: By searching the major web-based databases (PubMed, Web of Science Core Collection, DynaMed, and Clinicaltrials.gov), we try to sum up and improve our understanding of the emerging role of nutrition as both first-line therapy and risk factors in rare neurological diseases. Results: In line with the increasing number of consensus opinions suggesting that nutrients should receive the same attention as pharmacological treatments, the results of this work pointed out that a standard dietary recommendation in a specific rare disease is often limited by the heterogeneity of occurrent genetic mutations and by the variability of pathophysiological manifestation. Conclusions: In conclusion, we hope that the knowledge gaps identified here may inspire further research for a better evaluation of molecular mechanisms and long-term effects.
Collapse
Affiliation(s)
- Marilena Briglia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Fabio Allia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Rosanna Avola
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Maria Bellomo
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| |
Collapse
|
5
|
Pedrazzi JFC, Hassib L, Ferreira FR, Hallak JC, Del-Bel E, Crippa JA. Therapeutic potential of CBD in Autism Spectrum Disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:149-203. [PMID: 39029984 DOI: 10.1016/bs.irn.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and interaction, as well as restricted and repetitive patterns of behavior. Despite extensive research, effective pharmacological interventions for ASD remain limited. Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa plant, has potential therapeutic effects on several neurological and psychiatric disorders. CBD interacts with the endocannabinoid system, a complex cell-signaling system that plays a crucial role in regulating various physiological processes, maintaining homeostasis, participating in social and behavioral processing, and neuronal development and maturation with great relevance to ASD. Furthermore, preliminary findings from clinical trials indicate that CBD may have a modulatory effect on specific ASD symptoms and comorbidities in humans. Interestingly, emerging evidence suggests that CBD may influence the gut microbiota, with implications for the bidirectional communication between the gut and the central nervous system. CBD is a safe drug with low induction of side effects. As it has a multi-target pharmacological profile, it becomes a candidate compound for treating the central symptoms and comorbidities of ASD.
Collapse
Affiliation(s)
- João F C Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Lucas Hassib
- Department of Mental Health, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Jaime C Hallak
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Del-Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; National Institute for Science and Technology, Translational Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cannabinoid Research, Mental Health Building, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José A Crippa
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Li X, Yennawar M, Wiest A, O'Brien WT, Babrowicz B, White RS, Talos DM, Jensen FE. Cannabidiol attenuates seizure susceptibility and behavioural deficits in adult CDKL5 R59X knock-in mice. Eur J Neurosci 2024; 59:3337-3352. [PMID: 38654472 DOI: 10.1111/ejn.16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is caused by a loss-of-function mutation in CDKL5 gene, encoding a serine-threonine kinase highly expressed in the brain. CDD manifests with early-onset epilepsy, autism, motor impairment and severe intellectual disability. While there are no known treatments for CDD, the use of cannabidiol has recently been introduced into clinical practice for neurodevelopmental disorders. Given the increased clinical utilization of cannabidiol, we examined its efficacy in the CDKL5R59X knock-in (R59X) mice, a CDD model based on a human mutation that exhibits both lifelong seizure susceptibility and behavioural deficits. We found that cannabidiol pre-treatment rescued the increased seizure susceptibility in response to the chemoconvulsant pentylenetetrazol (PTZ), attenuated working memory and long-term memory impairments, and rescued social deficits in adult R59X mice. To elucidate a potential mechanism, we compared the developmental hippocampal and cortical expression of common endocannabinoid (eCB) targets in R59X mice and their wild-type littermates, including cannabinoid type 1 receptor (CB1R), transient receptor potential vanilloid type 1 (TRPV1) and 2 (TRPV2), G-coupled protein receptor 55 (GPR55) and adenosine receptor 1 (A1R). Many of these eCB targets were developmentally regulated in both R59X and wild-type mice. In addition, adult R59X mice demonstrated significantly decreased expression of CB1R and TRPV1 in the hippocampus, and TRPV2 in the cortex, while TRPV1 was increased in the cortex. These findings support the potential for dysregulation of eCB signalling as a plausible mechanism and therapeutic target in CDD, given the efficacy of cannabidiol to attenuate hyperexcitability and behavioural deficits in this disorder.
Collapse
Affiliation(s)
- Xiaofan Li
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Madhumita Yennawar
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alyssa Wiest
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William T O'Brien
- Neurobehavior Testing Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bergan Babrowicz
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel S White
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Delia M Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Desnous B, Beretti T, Muller N, Neveu J, Villeneuve N, Lépine A, Daquin G, Milh M. Efficacy and tolerance of cannabidiol in the treatment of epilepsy in patients with Rett syndrome. Epilepsia Open 2024; 9:397-403. [PMID: 37485779 PMCID: PMC10839357 DOI: 10.1002/epi4.12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023] Open
Abstract
We aim to assess the efficacy and tolerance of cannabidiol as adjunctive therapy for Rett syndrome (RTT) patients with epilepsy. We conducted a longitudinal observational study through a monocentric cohort of 46 patients with RTT. Patients were recruited from March 2020 to October 2022 and were treated with Epidyolex® (cannabidiol, CBD, 100 mg/mL oral solution). In our cohort, 26 patients had associated epilepsy (26/46 [56%]), and 10/26 (38%) were treated with CBD, in combination with clobazam in 50% of cases. The median dose at their last follow-up was 15 mg/kg/day. The median treatment duration was 13 months (range: 1-32 months). CBD reduced the incidence of seizures in seven out of 10 patients (70%) with one seizure-free patient, two patients with a reduction of seizures of more than 75%, and four patients with a decrease of more than 50%. No aggravation of symptoms or adverse effects were observed. Only one patient experienced a transitory drooling and somnolence episode at the CBD initiation. Half of the patients showed a reduction in agitation and/or anxiety attacks, and an improvement in spasticity was reported in 4/10 (40%) of patients. CBD appears to have potential therapeutic value for the treatment of drug-resistant epilepsy in Rett syndrome. CBD is well tolerated and, when used in combination with clobazam, may increase the effectiveness of clobazam alone.
Collapse
Affiliation(s)
- Béatrice Desnous
- Pediatric Neurology DepartmentTimone Enfant, APHMMarseilleFrance
| | - Thibault Beretti
- Pediatric Neurology DepartmentTimone Enfant, APHMMarseilleFrance
| | - Nathan Muller
- Pediatric Neurology DepartmentTimone Enfant, APHMMarseilleFrance
| | | | | | - Anne Lépine
- Pediatric Neurology DepartmentTimone Enfant, APHMMarseilleFrance
| | - Géraldine Daquin
- Epileptology and Cerebral Rhythmology DepartmentTimone Adulte, APHMMarseilleFrance
| | - Mathieu Milh
- Pediatric Neurology DepartmentTimone Enfant, APHMMarseilleFrance
| |
Collapse
|
8
|
Al-Khazaleh AK, Zhou X, Bhuyan DJ, Münch GW, Al-Dalabeeh EA, Jaye K, Chang D. The Neurotherapeutic Arsenal in Cannabis sativa: Insights into Anti-Neuroinflammatory and Neuroprotective Activity and Potential Entourage Effects. Molecules 2024; 29:410. [PMID: 38257323 PMCID: PMC10821245 DOI: 10.3390/molecules29020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Cannabis, renowned for its historical medicinal use, harbours various bioactive compounds-cannabinoids, terpenes, and flavonoids. While major cannabinoids like delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) have received extensive scrutiny for their pharmacological properties, emerging evidence underscores the collaborative interactions among these constituents, suggesting a collective therapeutic potential. This comprehensive review explores the intricate relationships and synergies between cannabinoids, terpenes, and flavonoids in cannabis. Cannabinoids, pivotal in cannabis's bioactivity, exhibit well-documented analgesic, anti-inflammatory, and neuroprotective effects. Terpenes, aromatic compounds imbuing distinct flavours, not only contribute to cannabis's sensory profile but also modulate cannabinoid effects through diverse molecular mechanisms. Flavonoids, another cannabis component, demonstrate anti-inflammatory, antioxidant, and neuroprotective properties, particularly relevant to neuroinflammation. The entourage hypothesis posits that combined cannabinoid, terpene, and flavonoid action yields synergistic or additive effects, surpassing individual compound efficacy. Recognizing the nuanced interactions is crucial for unravelling cannabis's complete therapeutic potential. Tailoring treatments based on the holistic composition of cannabis strains allows optimization of therapeutic outcomes while minimizing potential side effects. This review underscores the imperative to delve into the intricate roles of cannabinoids, terpenes, and flavonoids, offering promising prospects for innovative therapeutic interventions and advocating continued research to unlock cannabis's full therapeutic potential within the realm of natural plant-based medicine.
Collapse
Affiliation(s)
- Ahmad K. Al-Khazaleh
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Gerald W. Münch
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia
| | - Elaf Adel Al-Dalabeeh
- Department of Biological Sciences, School of Science, University of Jordan, Amman 11942, Jordan;
| | - Kayla Jaye
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
| |
Collapse
|
9
|
Mehmood A, Shah S, Guo RY, Haider A, Shi M, Ali H, Ali I, Ullah R, Li B. Methyl-CpG-Binding Protein 2 Emerges as a Central Player in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Cell Mol Neurobiol 2023; 43:4071-4101. [PMID: 37955798 PMCID: PMC11407427 DOI: 10.1007/s10571-023-01432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
MECP2 and its product methyl-CpG binding protein 2 (MeCP2) are associated with multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), which are inflammatory, autoimmune, and demyelinating disorders of the central nervous system (CNS). However, the mechanisms and pathways regulated by MeCP2 in immune activation in favor of MS and NMOSD are not fully understood. We summarize findings that use the binding properties of MeCP2 to identify its targets, particularly the genes recognized by MeCP2 and associated with several neurological disorders. MeCP2 regulates gene expression in neurons, immune cells and during development by modulating various mechanisms and pathways. Dysregulation of the MeCP2 signaling pathway has been associated with several disorders, including neurological and autoimmune diseases. A thorough understanding of the molecular mechanisms underlying MeCP2 function can provide new therapeutic strategies for these conditions. The nervous system is the primary system affected in MeCP2-associated disorders, and other systems may also contribute to MeCP2 action through its target genes. MeCP2 signaling pathways provide promise as potential therapeutic targets in progressive MS and NMOSD. MeCP2 not only increases susceptibility and induces anti-inflammatory responses in immune sites but also leads to a chronic increase in pro-inflammatory cytokines gene expression (IFN-γ, TNF-α, and IL-1β) and downregulates the genes involved in immune regulation (IL-10, FoxP3, and CX3CR1). MeCP2 may modulate similar mechanisms in different pathologies and suggest that treatments for MS and NMOSD disorders may be effective in treating related disorders. MeCP2 regulates gene expression in MS and NMOSD. However, dysregulation of the MeCP2 signaling pathway is implicated in these disorders. MeCP2 plays a role as a therapeutic target for MS and NMOSD and provides pathways and mechanisms that are modulated by MeCP2 in the regulation of gene expression.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Suleman Shah
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Arsalan Haider
- Key Lab of Health Psychology, Institute of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mengya Shi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, 44000, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, 32093, Kuwait
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China.
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
10
|
Wang X, Zhang H, Liu Y, Xu Y, Yang B, Li H, Chen L. An overview on synthetic and biological activities of cannabidiol (CBD) and its derivatives. Bioorg Chem 2023; 140:106810. [PMID: 37659147 DOI: 10.1016/j.bioorg.2023.106810] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
(-)-Cannabidiol is a class of non-psychoactive plant cannabinoids derived from cannabis plants. Currently, Epidiolex (Cannabidiol) has been approved by the FDA for the treatment of two rare and severe forms of epilepsy related diseases, namely Lennox-Gastaut syndrome (LGS) and Dravet (DS). In addition, Cannabidiol and its structural analogues have received increasing attention due to their potential therapeutic effects such as neuroprotection, anti-epilepsy, anti-inflammation, anti-anxiety, and anti-cancer. Based on literature review, no comprehensive reviews on the synthesis of Cannabidiol and its derivatives have been found in recent years. Therefore, this article summarizes the published synthesis methods of Cannabidiol and the synthesis routes of Cannabidiol derivatives, and introduces the biological activities of some Cannabidiol analogues that have been studied extensively and have significant activities.
Collapse
Affiliation(s)
- Xiuli Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huanbang Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Heilongjiang 150006, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Heilongjiang 150006, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
11
|
Premoli M, Fyke W, Bellocchio L, Lemaire V, Wolley-Roberts M, Bontempi B, Pietropaolo S. Early Administration of the Phytocannabinoid Cannabidivarin Prevents the Neurobehavioral Abnormalities Associated with the Fmr1-KO Mouse Model of Fragile X Syndrome. Cells 2023; 12:1927. [PMID: 37566006 PMCID: PMC10416983 DOI: 10.3390/cells12151927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
Phytocannabinoids, including the non-addictive cannabis component cannabidivarin (CBDV), have been reported to hold therapeutic potential in several neurodevelopmental disorders (NDDs). Nonetheless, the therapeutic value of phytocannabinoids for treating Fragile X syndrome (FXS), a major NDD, remains unexplored. Here, we characterized the neurobehavioral effects of CBDV at doses of 20 or 100 mg/kg in the Fmr1-knockout (Fmr1-KO) mouse model of FXS using two temporally different intraperitoneal regimens: subchronic 10-day delivery during adulthood (Study 1: rescue treatment) or chronic 5-week delivery at adolescence (Study 2: preventive treatment). Behavioral tests assessing FXS-like abnormalities included anxiety, locomotor, cognitive, social and sensory alterations. Expression of inflammatory and plasticity markers was investigated in the hippocampus and prefrontal cortex. When administered during adulthood (Study 1), the effects of CBDV were marginal, rescuing at the lower dose only the acoustic hyper-responsiveness of Fmr1-KO mice and at both doses their altered hippocampal expression of neurotrophins. When administered during adolescence (Study 2), CBDV at both doses prevented the cognitive, social and acoustic alterations of adult Fmr1-KO mice and modified the expression of several inflammatory brain markers in both wild-type littermates and mutants. These findings warrant the therapeutic potential of CBDV for preventing neurobehavioral alterations associated with FXS, highlighting the relevance of its early administration.
Collapse
Affiliation(s)
- Marika Premoli
- CNRS, EPHE, INCIA, UMR 5287, Univ. Bordeaux, 33000 Bordeaux, France
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - William Fyke
- CNRS, EPHE, INCIA, UMR 5287, Univ. Bordeaux, 33000 Bordeaux, France
- Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Group Endocannabinoids and Neuroadaptation, University of Bordeaux, 33077 Bordeaux, France
| | - Valerie Lemaire
- CNRS, EPHE, INCIA, UMR 5287, Univ. Bordeaux, 33000 Bordeaux, France
| | | | - Bruno Bontempi
- CNRS, EPHE, INCIA, UMR 5287, Univ. Bordeaux, 33000 Bordeaux, France
| | | |
Collapse
|
12
|
Ferreira LF, Pathapati N, Schultz ST, Nunn MC, Pierce BL, Sanchez YR, Murrell MD, Ginsburg BC, Onaivi ES, Gould GG. Acute cannabidiol treatment enhances social interaction in adult male mice. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11163. [PMID: 37273836 PMCID: PMC10237625 DOI: 10.3389/adar.2023.11163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/11/2023] [Indexed: 06/06/2023]
Abstract
Cannabidiol (CBD) is a non-intoxicating phytochemical from Cannabis sativa that is increasingly used to manage pain. The potential for CBD to ameliorate dimensional behavior symptoms occurring in multiple psychiatric disorders was suggested, including social interaction impairments. To test this hypothesis, adult male BTBRT+Itpr3tf/J (BTBR) mice, a model of idiopathic autism exhibiting social preference deficits and restrictive repetitive behaviors, were acutely treated with vehicle or 0.1, 1, or 10 mg/kg CBD. Social interaction preference was assessed 50 min after treatment, followed by social novelty preference at 60 min, marble burying at 75 min and social dominance at 120 min. CBD (10 mg/kg) enhanced BTBR social interaction but not social novelty preference, marble burying or dominance, with serum levels = 29 ± 11 ng/mg at 3 h post-injection. Next, acute 10 mg/kg CBD was compared to vehicle treatment in male serotonin transporter (SERT) knock-out mice, since SERT deficiency is an autism risk factor, and in their wildtype background strain controls C57BL/6J mice. CBD treatment generally enhanced social interaction preference and attenuated social novelty preference, yet neither marble burying nor dominance was affected. These findings show acute treatment with as little as 10 mg/kg purified CBD can enhance social interaction preference in male mice that are otherwise socially deficient.
Collapse
Affiliation(s)
- Livia F. Ferreira
- Center for Biomedical Neuroscience, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Cellular and Integrative Physiology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Nikhita Pathapati
- Center for Biomedical Neuroscience, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Cellular and Integrative Physiology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Stephen T. Schultz
- Center for Biomedical Neuroscience, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Cellular and Integrative Physiology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mary C. Nunn
- Center for Biomedical Neuroscience, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Cellular and Integrative Physiology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Bethany L. Pierce
- Center for Biomedical Neuroscience, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Cellular and Integrative Physiology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Yatzil R. Sanchez
- Center for Biomedical Neuroscience, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Cellular and Integrative Physiology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Meredith D. Murrell
- Biological Psychiatry Analytic Laboratory, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Brett C. Ginsburg
- Biological Psychiatry Analytic Laboratory, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Emmanuel S. Onaivi
- Cannabis Research Institute, William Paterson University, Wayne, NJ, United States
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Georgianna G. Gould
- Center for Biomedical Neuroscience, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Cellular and Integrative Physiology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
13
|
Gul W, Ibrahim EA, Gul SW, Shahzadi I, Radwan MM, Chandra S, Lata H, ElSohly MA. Development and Validation of a GC-FID Method for the Quantitation of 20 Different Acidic and Neutral Cannabinoids. PLANTA MEDICA 2023; 89:683-696. [PMID: 36257598 DOI: 10.1055/a-1962-8165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
For decades, Cannabis sativa had been illegal to sell or consume around the world, including in the United States. However, in light of the recent 2018 Farm Bill and the legalization of hemp across the US, various cannabis preparations have flooded the market, making it essential to be able to quantitate the levels of the different acidic and neutral cannabinoids in C. sativa and to have a complete cannabinoid profile of the different chemovars of the cannabis plant. A GC-FID method was developed and validated for the analysis of 20 acidic and neutral cannabinoids as trimethylsilyl (TMS) derivatives. The analyzed cannabinoids include cannabidivarinic acid (CBDVA), cannabidiolic acid (CBDA), cannabinolic acid (CBNA), cannabielsoic acid (CBEA), cannabicyclolic acid (CBLA), cannabichromenic acid (CBCA), trans-Δ9-tetrahydrocannabivarinic acid (Δ9-THCVA), trans-Δ9-tetrahydrocannabinolic acid A (Δ9-THCAA), cannabigerolic acid (CBGA), cannabidiol (CBD), cannabicyclol (CBL), cannabidivarin (CBDV), trans-Δ9-tetrahydrocannabivarin (THCV), cannabichromene (CBC), trans-Δ8-tetrahydrocannabinol (Δ8-THC), trans-Δ9-tetrahydrocannabinol (Δ9-THC), cannabigerol (CBG), cannabinol (CBN), cannabicitran (CBT), and cannabielsoin (CBE). The method limit of detection (LOD) was as low as 0.1 µg/mL, while the limit of quantitation ranged from 0.25 µg/mL to 0.5 µg/mL. The precision (%RSD) was < 10%, while trueness ranged from 90 - 107%. The developed method is simple, accurate, and sensitive for the quantitation of all 20 acidic and neutral cannabinoids. Finally, the proposed method was successfully applied to the quantitation of the cannabinoids in different cannabis chemovars grown at the University of Mississippi.
Collapse
Affiliation(s)
- Waseem Gul
- ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS, USA
| | - Elsayed A Ibrahim
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, USA
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Sharjeel W Gul
- ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS, USA
- Sally McDonnell Barksdale Honors College, University of Mississippi, USA
- School of Pharmacy, University of Mississippi, USA
- Frontier Medical College, Abbottabad, KPK, Pakistan
| | - Iram Shahzadi
- ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS, USA
| | - Mohamed M Radwan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Suman Chandra
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Hemant Lata
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Mahmoud A ElSohly
- ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS, USA
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, USA
- School of Pharmacy, University of Mississippi, USA
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, USA
| |
Collapse
|
14
|
Babayeva M, Loewy ZG. Cannabis Pharmacogenomics: A Path to Personalized Medicine. Curr Issues Mol Biol 2023; 45:3479-3514. [PMID: 37185752 PMCID: PMC10137111 DOI: 10.3390/cimb45040228] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Cannabis and related compounds have created significant research interest as a promising therapy in many disorders. However, the individual therapeutic effects of cannabinoids and the incidence of side effects are still difficult to determine. Pharmacogenomics may provide the answers to many questions and concerns regarding the cannabis/cannabinoid treatment and help us to understand the variability in individual responses and associated risks. Pharmacogenomics research has made meaningful progress in identifying genetic variations that play a critical role in interpatient variability in response to cannabis. This review classifies the current knowledge of pharmacogenomics associated with medical marijuana and related compounds and can assist in improving the outcomes of cannabinoid therapy and to minimize the adverse effects of cannabis use. Specific examples of pharmacogenomics informing pharmacotherapy as a path to personalized medicine are discussed.
Collapse
Affiliation(s)
- Mariana Babayeva
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
| | - Zvi G Loewy
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
15
|
Lins BR, Anyaegbu CC, Hellewell SC, Papini M, McGonigle T, De Prato L, Shales M, Fitzgerald M. Cannabinoids in traumatic brain injury and related neuropathologies: preclinical and clinical research on endogenous, plant-derived, and synthetic compounds. J Neuroinflammation 2023; 20:77. [PMID: 36935484 PMCID: PMC10026409 DOI: 10.1186/s12974-023-02734-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/13/2023] [Indexed: 03/21/2023] Open
Abstract
Traumatic brain injury is common, and often results in debilitating consequences. Even mild traumatic brain injury leaves approximately 20% of patients with symptoms that persist for months. Despite great clinical need there are currently no approved pharmaceutical interventions that improve outcomes after traumatic brain injury. Increased understanding of the endocannabinoid system in health and disease has accompanied growing evidence for therapeutic benefits of Cannabis sativa. This has driven research of Cannabis' active chemical constituents (phytocannabinoids), alongside endogenous and synthetic counterparts, collectively known as cannabinoids. Also of therapeutic interest are other Cannabis constituents, such as terpenes. Cannabinoids interact with neurons, microglia, and astrocytes, and exert anti-inflammatory and neuroprotective effects which are highly desirable for the management of traumatic brain injury. In this review, we comprehensively appraised the relevant scientific literature, where major and minor phytocannabinoids, terpenes, synthetic cannabinoids, and endogenous cannabinoids were assessed in TBI, or other neurological conditions with pathology and symptomology relevant to TBI, as well as recent studies in preclinical TBI models and clinical TBI populations.
Collapse
Affiliation(s)
- Brittney R Lins
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia.
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia.
| | - Chidozie C Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Sarah C Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Melissa Papini
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Terence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
| | - Luca De Prato
- MediCann Health Aust Pty Ltd, Osborne Park, 6017, Australia
| | - Matthew Shales
- MediCann Health Aust Pty Ltd, Osborne Park, 6017, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| |
Collapse
|
16
|
Urbinati C, Lanzillotta C, Cosentino L, Valenti D, Quattrini MC, Di Crescenzo L, Prestia F, Pietraforte D, Perluigi M, Di Domenico F, Vacca RA, De Filippis B. Chronic treatment with the anti-diabetic drug metformin rescues impaired brain mitochondrial activity and selectively ameliorates defective cognitive flexibility in a female mouse model of Rett syndrome. Neuropharmacology 2023; 224:109350. [PMID: 36442649 DOI: 10.1016/j.neuropharm.2022.109350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Metformin is the most common anti-diabetic drug and a promising therapy for disorders beyond diabetes, including Rett syndrome (RTT), a rare neurologic disease characterized by severe intellectual disability. A 10-day-long treatment rescued aberrant mitochondrial activity and restrained oxidative stress in a female RTT mouse model. However, this treatment regimen did not improve the phenotype of RTT mice. In the present study, we demonstrate that a 4-month-long treatment with metformin (150 mg/Kg/day, delivered in drinking bottles) provides a selective normalization of cognitive flexibility defects in RTT female mice at an advanced stage of disease, but it does not affect their impaired general health status and abnormal motor skills. The 4-month-long treatment also rescues the reduced activity of mitochondrial respiratory chain complex activities, the defective brain ATP production and levels as well as the increased production of reactive oxidizing species in the whole blood of RTT mice. A significant boost of PGC-1α-dependent pathways related to mitochondrial biogenesis and antioxidant defense occurs in the brain of RTT mice that received the metformin treatment. Further studies will have to verify whether these effects may underlie its long-lasting beneficial effects on brain energy metabolism.
Collapse
Affiliation(s)
- Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Chiara Lanzillotta
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy.
| | | | - Livia Di Crescenzo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Francesca Prestia
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | | | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy.
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
17
|
Wang F, Jin T, Li H, Long H, Liu Y, Jin S, Lu Y, Peng Y, Liu C, Zhao L, Wang X. Cannabidivarin alleviates α-synuclein aggregation via DAF-16 in Caenorhabditis elegans. FASEB J 2023; 37:e22735. [PMID: 36583706 DOI: 10.1096/fj.202200278rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022]
Abstract
Cannabidivarin (CBDV), a structural analog of cannabidiol (CBD), has received attention in recent years owing to its anticonvulsant property and potential for treating autism spectrum disorder. However, the function and mechanism of CBDV involved in the progression of Parkinson's disease (PD) remain unclear. In this work, we found that CBDV inhibited α-synuclein (α-syn) aggregation in an established transgenetic Caenorhabditis elegans (C. elegans). The phenolic hydroxyl groups of CBDV are critical for scavenging reactive oxygen species (ROS), reducing the in vivo aggregation of α-syn and preventing DAergic neurons from 6-hydroxydopamine (6-OHDA)-induced injury and degeneration. By combining multiple biophysical approaches, including nuclear magnetic resonance spectrometry, transmission electron microscopy and fibrillation kinetics assays, we confirmed that CBDV does not directly interact with α-syn or inhibit the formation of α-syn fibrils in vitro. Further cellular signaling investigation showed that the ability of CBDV to prevent oxidative stress, the accumulation of α-syn and the degeneration of DAergic neurons was mediated by DAF-16 in the worms. This study demonstrates that CBDV alleviates the aggregation of α-syn in vivo and reveals that the phenolic hydroxyl groups of CBDV are critical for this activity, providing a potential for the development of CBDV as a drug candidate for PD therapeutics.
Collapse
Affiliation(s)
- Fangru Wang
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Ting Jin
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Houfang Long
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ying Liu
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Sha Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yinghua Peng
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Lihui Zhao
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China.,Beijing National Laboratory for Molecular Sciences, Beijing, China
| |
Collapse
|
18
|
A Systemic Review of Medical Cannabinoids Dosing in Human. Clin Ther 2022; 44:e39-e58. [DOI: 10.1016/j.clinthera.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
|
19
|
Hurley EN, Ellaway CJ, Johnson AM, Truong L, Gordon R, Galettis P, Martin JH, Lawson JA. The efficacy and safety of cannabidivarin treatment on epilepsy in girls with Rett syndrome: A phase I clinical trial. Epilepsia 2022; 63:1736-1747. [PMID: 35364618 PMCID: PMC9544893 DOI: 10.1111/epi.17247] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022]
Abstract
Objective Rett syndrome (RTT), commonly caused by methyl‐CpG‐binding protein 2 (MECP2) pathogenic variants, has many comorbidities. Fifty to ninety percent of children with RTT have epilepsy, which is often drug‐resistant. Cannabidivarin (CBDV), a non‐hallucinogenic phytocannabinoid, has shown benefit in MECP2 animal models. This phase 1 trial assessed the safety and tolerability of CBDV in female children with RTT and drug‐resistant epilepsy, as well as the effect on mean monthly seizure frequency (MMSF), the electroencephalogram (EEG), and non‐epilepsy comorbid symptoms. Methods Five female children with drug‐resistant epilepsy and a pathogenic MECP2 variant were enrolled. Baseline clinical and laboratory assessments, including monthly seizure frequency, were recorded. CBDV oral solution (50 mg/ml) was prescribed and titrated to 10 mg/kg/day. Data collected included pharmacokinetics, seizure type and frequency, adverse events, EEG, and responses to the Rett Syndrome Behaviour Questionnaire and Rett Syndrome Symptom Severity Index, and were compared to baseline data. Results All five children reached the maximum CBDV dose of 10 mg/kg/day and had a reduction in MMSF (median = 79% reduction). Three children had MMSF reduction > 75%. This corresponded to an overall reduction in seizure frequency from 32 to 7.2 seizures per month. Ninety‐one percent of adverse events were mild or moderate, and none required drug withdrawal. Sixty‐two percent were judged to be unrelated to CBDV. Thirty‐one percent of adverse events were identified as possibly related, of which nearly all were mild, and the remainder were later assessed as RTT symptoms. Hypersomnolence and drooling were identified as related to CBDV. No serious adverse events reported were related to CBDV. No significant change was noted in EEG or non‐epilepsy‐related symptoms of RTT. Significance A dose of 10 mg/kg/day of CBDV is safe and well tolerated in a pediatric RTT cohort and suggests improved seizure control in children with MECP2‐related RTT.
Collapse
Affiliation(s)
- Ellen N Hurley
- Department of Neurology, Sydney Children's Hospital Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Medicine and Health, University of New South Wales, NSW, Australia
| | - Carolyn J Ellaway
- Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, Sydney, NSW, Australia.,Disciplines of Child and Adolescent Health and Genomic Medicine, University of Sydney, Sydney, NSW, Australia
| | - Alexandra M Johnson
- Department of Neurology, Sydney Children's Hospital Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Medicine and Health, University of New South Wales, NSW, Australia
| | - Linda Truong
- Department of Neurology, Sydney Children's Hospital Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Medicine and Health, University of New South Wales, NSW, Australia.,NHMRC Australian Centre for Cannabinoid Clinical and Research Excellence, University of Newcastle, NSW, Australia
| | - Rebecca Gordon
- NHMRC Australian Centre for Cannabinoid Clinical and Research Excellence, University of Newcastle, NSW, Australia.,Centre for Drug Repurposing and Medicines Research, School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Peter Galettis
- NHMRC Australian Centre for Cannabinoid Clinical and Research Excellence, University of Newcastle, NSW, Australia.,Centre for Drug Repurposing and Medicines Research, School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Jennifer H Martin
- NHMRC Australian Centre for Cannabinoid Clinical and Research Excellence, University of Newcastle, NSW, Australia.,Centre for Drug Repurposing and Medicines Research, School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - John A Lawson
- Department of Neurology, Sydney Children's Hospital Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Medicine and Health, University of New South Wales, NSW, Australia.,NHMRC Australian Centre for Cannabinoid Clinical and Research Excellence, University of Newcastle, NSW, Australia
| |
Collapse
|
20
|
Pattnaik F, Nanda S, Mohanty S, Dalai AK, Kumar V, Ponnusamy SK, Naik S. Cannabis: Chemistry, extraction and therapeutic applications. CHEMOSPHERE 2022; 289:133012. [PMID: 34838836 DOI: 10.1016/j.chemosphere.2021.133012] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/01/2021] [Accepted: 11/18/2021] [Indexed: 05/27/2023]
Abstract
Cannabis, a genus of perennial indigenous plants is well known for its recreational and medicinal activities. Cannabis and its derivatives have potential therapeutic activities to treat epilepsy, anxiety, depression, tumors, cancer, Alzheimer's disease, Parkinson's disease, to name a few. This article reviews some recent literature on the bioactive constituents of Cannabis, commonly known as phytocannabinoids, their interactions with the different cannabinoids and non-cannabinoid receptors as well as the significances of these interactions in treating various diseases and syndromes. The biochemistry of some notable cannabinoids such as tetrahydrocannabinol, cannabidiol, cannabinol, cannabigerol, cannabichromene and their carboxylic acid derivatives is explained in the context of therapeutic activities. The medicinal features of Cannabis-derived terpenes are elucidated for treating several neuro and non-neuro disorders. Different extraction techniques to recover cannabinoids are systematically discussed. Besides the medicinal activities, the traditional and recreational utilities of Cannabis and its derivatives are presented. A brief note on the legalization of Cannabis-derived products is provided. This review provides comprehensive knowledge about the medicinal properties, recreational usage, extraction techniques, legalization and some prospects of cannabinoids and terpenes extracted from Cannabis.
Collapse
Affiliation(s)
- Falguni Pattnaik
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India; Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sonil Nanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Ajay K Dalai
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Vivek Kumar
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Tamil Nadu, India
| | - Satyanarayan Naik
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
21
|
Walsh KB, McKinney AE, Holmes AE. Minor Cannabinoids: Biosynthesis, Molecular Pharmacology and Potential Therapeutic Uses. Front Pharmacol 2021; 12:777804. [PMID: 34916950 PMCID: PMC8669157 DOI: 10.3389/fphar.2021.777804] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
The medicinal use of Cannabis sativa L. can be traced back thousands of years to ancient China and Egypt. While marijuana has recently shown promise in managing chronic pain and nausea, scientific investigation of cannabis has been restricted due its classification as a schedule 1 controlled substance. A major breakthrough in understanding the pharmacology of cannabis came with the isolation and characterization of the phytocannabinoids trans-Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). This was followed by the cloning of the cannabinoid CB1 and CB2 receptors in the 1990s and the subsequent discovery of the endocannabinoid system. In addition to the major phytocannabinoids, Δ9-THC and CBD, cannabis produces over 120 other cannabinoids that are referred to as minor and/or rare cannabinoids. These cannabinoids are produced in smaller amounts in the plant and are derived along with Δ9-THC and CBD from the parent cannabinoid cannabigerolic acid (CBGA). While our current knowledge of minor cannabinoid pharmacology is incomplete, studies demonstrate that they act as agonists and antagonists at multiple targets including CB1 and CB2 receptors, transient receptor potential (TRP) channels, peroxisome proliferator-activated receptors (PPARs), serotonin 5-HT1a receptors and others. The resulting activation of multiple cell signaling pathways, combined with their putative synergistic activity, provides a mechanistic basis for their therapeutic actions. Initial clinical reports suggest that these cannabinoids may have potential benefits in the treatment of neuropathic pain, neurodegenerative diseases, epilepsy, cancer and skin disorders. This review focuses on the molecular pharmacology of the minor cannabinoids and highlights some important therapeutic uses of the compounds.
Collapse
Affiliation(s)
- Kenneth B Walsh
- Department of Pharmacology, Physiology and Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Amanda E McKinney
- Institute for Human and Planetary Health, Crete, NE, United States.,School of Integrative Learning, Doane University, Crete, NE, United States
| | - Andrea E Holmes
- School of Integrative Learning, Doane University, Crete, NE, United States.,Precision Plant Molecules, Denver, CO, United States
| |
Collapse
|
22
|
Pietropaolo S, Marsicano G. The role of the endocannabinoid system as a therapeutic target for autism spectrum disorder: Lessons from behavioral studies on mouse models. Neurosci Biobehav Rev 2021; 132:664-678. [PMID: 34813825 DOI: 10.1016/j.neubiorev.2021.11.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022]
Abstract
Recent years have seen an impressive amount of research devoted to understanding the etiopathology of Autism Spectrum Disorder (ASD) and developing therapies for this syndrome. Because of the lack of biomarkers of ASD, this work has been largely based on the behavioral characterization of rodent models, based on a multitude of genetic and environmental manipulations. Here we highlight how the endocannabinoid system (ECS) has recently emerged within this context of mouse behavioral studies as an etiopathological factor in ASD and a valid potential therapeutic target. We summarize the most recent results showing alterations of the ECS in rodent models of ASD, and demonstrating ASD-like behaviors in mice with altered ECS, induced either by genetic or pharmacological manipulations. We also give a critical overview of the most relevant advances in designing treatments and novel mouse models for ASD targeting the ECS, highlighting the relevance of thorough and innovative behavioral approaches to investigate the mechanisms acting underneath the complex features of ASD.
Collapse
Affiliation(s)
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077, Bordeaux Cedex, France
| |
Collapse
|
23
|
Major Phytocannabinoids and Their Related Compounds: Should We Only Search for Drugs That Act on Cannabinoid Receptors? Pharmaceutics 2021; 13:pharmaceutics13111823. [PMID: 34834237 PMCID: PMC8625816 DOI: 10.3390/pharmaceutics13111823] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
The most important discoveries in pharmacology, such as certain classes of analgesics or chemotherapeutics, started from natural extracts which have been found to have effects in traditional medicine. Cannabis, traditionally used in Asia for the treatment of pain, nausea, spasms, sleep, depression, and low appetite, is still a good candidate for the development of new compounds. If initially all attention was directed to the endocannabinoid system, recent studies suggest that many of the clinically proven effects are based on an intrinsic chain of mechanisms that do not necessarily involve only cannabinoid receptors. Recent research has shown that major phytocannabinoids and their derivatives also interact with non-cannabinoid receptors such as vanilloid receptor 1, transient receptor ankyrin 1 potential, peroxisome proliferator-activated receptor-gamma or glitazone receptor, G55 protein-coupled receptor, and nuclear receptor, producing pharmacological effects in diseases such as Alzheimer's, epilepsy, depression, neuropathic pain, cancer, and diabetes. Nonetheless, further studies are needed to elucidate the precise mechanisms of these compounds. Structure modulation of phytocannabinoids, in order to improve pharmacological effects, should not be limited to the exploration of cannabinoid receptors, and it should target other courses of action discovered through recent research.
Collapse
|
24
|
Fyke W, Velinov M. FMR1 and Autism, an Intriguing Connection Revisited. Genes (Basel) 2021; 12:genes12081218. [PMID: 34440392 PMCID: PMC8394635 DOI: 10.3390/genes12081218] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/27/2022] Open
Abstract
Autism Spectrum Disorder (ASD) represents a distinct phenotype of behavioral dysfunction that includes deficiencies in communication and stereotypic behaviors. ASD affects about 2% of the US population. It is a highly heritable spectrum of conditions with substantial genetic heterogeneity. To date, mutations in over 100 genes have been reported in association with ASD phenotypes. Fragile X syndrome (FXS) is the most common single-gene disorder associated with ASD. The gene associated with FXS, FMR1 is located on chromosome X. Accordingly, the condition has more severe manifestations in males. FXS results from the loss of function of FMR1 due to the expansion of an unstable CGG repeat located in the 5'' untranslated region of the gene. About 50% of the FXS males and 20% of the FXS females meet the Diagnostic Statistical Manual 5 (DSM-5) criteria for ASD. Among the individuals with ASD, about 3% test positive for FXS. FMRP, the protein product of FMR1, is a major gene regulator in the central nervous system. Multiple pathways regulated by FMRP are found to be dysfunctional in ASD patients who do not have FXS. Thus, FXS presents the opportunity to study cellular phenomena that may have wider applications in the management of ASD and to develop new strategies for ASD therapy.
Collapse
Affiliation(s)
- William Fyke
- SUNY Downstate Medical Center, SUNY Downstate College of Medicine, Brooklyn, NY 11203, USA;
- Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Milen Velinov
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
- Correspondence:
| |
Collapse
|
25
|
Urbinati C, Cosentino L, Germinario EAP, Valenti D, Vigli D, Ricceri L, Laviola G, Fiorentini C, Vacca RA, Fabbri A, De Filippis B. Treatment with the Bacterial Toxin CNF1 Selectively Rescues Cognitive and Brain Mitochondrial Deficits in a Female Mouse Model of Rett Syndrome Carrying a MeCP2-Null Mutation. Int J Mol Sci 2021; 22:6739. [PMID: 34201747 PMCID: PMC8269120 DOI: 10.3390/ijms22136739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Rett syndrome (RTT) is a rare neurological disorder caused by mutations in the X-linked MECP2 gene and a major cause of intellectual disability in females. No cure exists for RTT. We previously reported that the behavioural phenotype and brain mitochondria dysfunction are widely rescued by a single intracerebroventricular injection of the bacterial toxin CNF1 in a RTT mouse model carrying a truncating mutation of the MeCP2 gene (MeCP2-308 mice). Given the heterogeneity of MECP2 mutations in RTT patients, we tested the CNF1 therapeutic efficacy in a mouse model carrying a null mutation (MeCP2-Bird mice). CNF1 selectively rescued cognitive defects, without improving other RTT-related behavioural alterations, and restored brain mitochondrial respiratory chain complex activity in MeCP2-Bird mice. To shed light on the molecular mechanisms underlying the differential CNF1 effects on the behavioural phenotype, we compared treatment effects on relevant signalling cascades in the brain of the two RTT models. CNF1 provided a significant boost of the mTOR activation in MeCP2-308 hippocampus, which was not observed in the MeCP2-Bird model, possibly explaining the differential effects of CNF1. These results demonstrate that CNF1 efficacy depends on the mutation beared by MeCP2-mutated mice, stressing the need of testing potential therapeutic approaches across RTT models.
Collapse
Affiliation(s)
- Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Elena Angela Pia Germinario
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.A.P.G.); (A.F.)
| | - Daniela Valenti
- Bioenergetics and Molecular Biotechnologies, Institute of Biomembranes, National Council of Research, 70126 Bari, Italy; (D.V.); (R.A.V.)
| | - Daniele Vigli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Laura Ricceri
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Giovanni Laviola
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Carla Fiorentini
- Association for Research on Integrative Oncology Therapies (ARTOI), 00165 Rome, Italy;
| | - Rosa Anna Vacca
- Bioenergetics and Molecular Biotechnologies, Institute of Biomembranes, National Council of Research, 70126 Bari, Italy; (D.V.); (R.A.V.)
| | - Alessia Fabbri
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.A.P.G.); (A.F.)
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| |
Collapse
|
26
|
Nezgovorova V, Ferretti CJ, Taylor BP, Shanahan E, Uzunova G, Hong K, Devinsky O, Hollander E. Potential of cannabinoids as treatments for autism spectrum disorders. J Psychiatr Res 2021; 137:194-201. [PMID: 33689997 DOI: 10.1016/j.jpsychires.2021.02.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Current treatments for autism spectrum disorders (ASD) are limited in efficacy and are often associated with substantial side effects. These medications typically ameliorate problem behaviors associated with ASD, but do not target core symptom domains. As a result, there is a significant amount of research underway for development of novel experimental therapeutics. Endocannabinoids are arachidonic acid-derived lipid neuromodulators, which, in combination with their receptors and associated metabolic enzymes, constitute the endocannabinoid (EC) system. Cannabinoid signaling may be involved in the social impairment and repetitive behaviors observed in those with ASD. In this review, we discuss a possible role of the EC system in excitatory-inhibitory (E-I) imbalance and immune dysregulation in ASD. Novel treatments for the core symptom domains of ASD are needed and phytocannabinoids could be useful experimental therapeutics for core symptoms and associated domains.
Collapse
Affiliation(s)
- V Nezgovorova
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - C J Ferretti
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - B P Taylor
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - E Shanahan
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - G Uzunova
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - K Hong
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - O Devinsky
- New York University Comprehensive Epilepsy Center, New York, NY, USA
| | - E Hollander
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
27
|
Zamberletti E, Rubino T, Parolaro D. Therapeutic potential of cannabidivarin for epilepsy and autism spectrum disorder. Pharmacol Ther 2021; 226:107878. [PMID: 33895189 DOI: 10.1016/j.pharmthera.2021.107878] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022]
Abstract
Recent years have seen a renewed interest on the possible therapeutic exploitations of specific cannabinoids derived from the Cannabis sativa plant. Thus far, the most studied non-psychotomimetic cannabinoid is cannabidiol (CBD), which has shown promising therapeutic potential for relieving a variety of neurological diseases. However, also its propyl analogue, cannabidivarin (CBDV), has recently gained much attention as a potential therapeutic agent for the management of disabling neurological conditions. This review aims at providing a comprehensive and updated overview of the available animal and human data, which have investigated the possible therapeutic potential of CBDV for the management of epilepsy and autism spectrum disorder.
Collapse
Affiliation(s)
- Erica Zamberletti
- Dept. of Biotechnology and Life Sciences (DBSV) and Neuroscience Center, University of Insubria, Busto Arsizio, Italy.
| | - Tiziana Rubino
- Dept. of Biotechnology and Life Sciences (DBSV) and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - Daniela Parolaro
- Dept. of Biotechnology and Life Sciences (DBSV) and Neuroscience Center, University of Insubria, Busto Arsizio, Italy; Zardi-Gori Foundation, Milan, Italy.
| |
Collapse
|
28
|
Rett Syndrome: A Timely Review From Recognition to Current Clinical Approaches and Clinical Study Updates. Semin Pediatr Neurol 2021; 37:100881. [PMID: 33892852 DOI: 10.1016/j.spen.2021.100881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022]
Abstract
Since the discovery of the genetic basis of Rett syndrome in 1999, our understanding has grown considerably both in the scientific and the clinical realms. In the last two decades, we have learned about the far-reaching effects of the aberrant MeCP2 protein, the growing list of involved genetic factors, and the genotype-phenotype clinical expression of common MECP2 mutations. This knowledge has led to several basic science research and clinical trials, focusing specifically on emerging treatments of Rett syndrome. As the pathophysiology behind the disease is better understood, treatments aimed at specific molecular targets will become available for clinicians to improve the life of individuals with Rett syndrome.
Collapse
|
29
|
Conneely LJ, Mauleon R, Mieog J, Barkla BJ, Kretzschmar T. Characterization of the Cannabis sativa glandular trichome proteome. PLoS One 2021; 16:e0242633. [PMID: 33793557 PMCID: PMC8016307 DOI: 10.1371/journal.pone.0242633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cannabis sativa has been cultivated since antiquity as a source of fibre, food and medicine. The recent resurgence of C. sativa as a cash crop is mainly driven by the medicinal and therapeutic properties of its resin, which contains compounds that interact with the human endocannabinoid system. Compared to other medicinal crops of similar value, however, little is known about the biology of C. sativa. Glandular trichomes are small hair-like projections made up of stalk and head tissue and are responsible for the production of the resin in C. sativa. Trichome productivity, as determined by C. sativa resin yield and composition, is only beginning to be understood at the molecular level. In this study the proteomes of glandular trichome stalks and heads, were investigated and compared to the proteome of the whole flower tissue, to help further elucidate C. sativa glandular trichome biochemistry. The data suggested that the floral tissue acts as a major source of carbon and energy to the glandular trichome head sink tissue, supplying sugars which drive secondary metabolite biosynthesis. The trichome stalk seems to play only a limited role in secondary metabolism and acts as both source and sink.
Collapse
Affiliation(s)
- Lee James Conneely
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Ramil Mauleon
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Jos Mieog
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Bronwyn J. Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Tobias Kretzschmar
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
30
|
Cosentino L, Bellia F, Pavoncello N, Vigli D, D'Addario C, De Filippis B. Methyl-CpG binding protein 2 dysfunction provides stress vulnerability with sex- and zygosity-dependent outcomes. Eur J Neurosci 2021; 55:2766-2776. [PMID: 33655553 DOI: 10.1111/ejn.15165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
Stress vulnerability is a critical factor for the development of trauma-related disorders; however, its biological underpinnings are not clear. We demonstrated that dysfunctions in the X-linked epigenetic factor methyl-CpG binding protein 2 (MeCP2) provide trauma vulnerability in male mice. Given the prominent role of sex in stress outcomes, we explored the effects of MeCP2 hypofunctionality in females. Female mice carrying truncated MeCP2 (heterozygous and homozygous) and wild type controls (wt) were tested for fear memory. Stress-induced corticosterone release and brain expression of hypothalamic-pituitary-adrenal (HPA) axis regulatory genes were also evaluated in wt and mutant mice of both sexes. Although heterozygous females displayed a normal stress-related behavioural profile, homozygous mice showed enhanced memory recall for the threatening context compared to wt, thus recapitulating the phenotype previously evidenced in hemizygous males. Interestingly, MeCP2 truncation abolished the sex differences in stress-induced corticosterone release, which was found increased in mutant males, whereas blunted in mutant females in a zygosity-independent manner. Although heterozygous mice did not differ from controls, homozygous females and hemizygous males showed increased hypotalamic Crh and Avp mRNAs and a differentially altered expression of Fkbp5 in cortical areas. Present results demonstrate that in female mice carrying truncated MeCP2, altered stress responsivity is driven by homozygosity, whereas heterozygosity does not lead to maladaptive stress outcomes. MeCP2 dysfunctions thus provide stress vulnerability in mice with sex- and zygosity-dependent outcomes.
Collapse
Affiliation(s)
- Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Nicole Pavoncello
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Vigli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Claudio D'Addario
- Università degli Studi di Teramo, Teramo, Italy.,Department of Clinical Neuroscience, Karolinska Institute, Solna, Sweden
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
31
|
Oultram JMJ, Pegler JL, Bowser TA, Ney LJ, Eamens AL, Grof CPL. Cannabis sativa: Interdisciplinary Strategies and Avenues for Medical and Commercial Progression Outside of CBD and THC. Biomedicines 2021; 9:biomedicines9030234. [PMID: 33652704 PMCID: PMC7996784 DOI: 10.3390/biomedicines9030234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cannabis sativa (Cannabis) is one of the world’s most well-known, yet maligned plant species. However, significant recent research is starting to unveil the potential of Cannabis to produce secondary compounds that may offer a suite of medical benefits, elevating this unique plant species from its illicit narcotic status into a genuine biopharmaceutical. This review summarises the lengthy history of Cannabis and details the molecular pathways that underpin the production of key secondary metabolites that may confer medical efficacy. We also provide an up-to-date summary of the molecular targets and potential of the relatively unknown minor compounds offered by the Cannabis plant. Furthermore, we detail the recent advances in plant science, as well as synthetic biology, and the pharmacology surrounding Cannabis. Given the relative infancy of Cannabis research, we go on to highlight the parallels to previous research conducted in another medically relevant and versatile plant, Papaver somniferum (opium poppy), as an indicator of the possible future direction of Cannabis plant biology. Overall, this review highlights the future directions of cannabis research outside of the medical biology aspects of its well-characterised constituents and explores additional avenues for the potential improvement of the medical potential of the Cannabis plant.
Collapse
Affiliation(s)
- Jackson M. J. Oultram
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Joseph L. Pegler
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Timothy A. Bowser
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
| | - Luke J. Ney
- School of Psychological Sciences, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Andrew L. Eamens
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Christopher P. L. Grof
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
- Correspondence: ; Tel.: +612-4921-5858
| |
Collapse
|
32
|
Napoletani G, Vigli D, Cosentino L, Grieco M, Talamo MC, Lacivita E, Leopoldo M, Laviola G, Fuso A, d'Erme M, De Filippis B. Stimulation of the Serotonin Receptor 7 Restores Brain Histone H3 Acetylation and MeCP2 Corepressor Protein Levels in a Female Mouse Model of Rett Syndrome. J Neuropathol Exp Neurol 2021; 80:265-273. [PMID: 33598674 DOI: 10.1093/jnen/nlaa158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rett syndrome (RTT) is a rare neurological disorder caused by mutations in the X-linked MECP2 gene, characterized by severe behavioral and physiological impairments for which no cure is available. The stimulation of serotonin receptor 7 (5-HT7R) with its selective agonist LP-211 (0.25 mg/kg/day for 7 days) was proved to rescue neurobehavioral alterations in a mouse model of RTT. In the present study, we aimed at gaining insight into the mechanisms underpinning the efficacy of 5-HT7R pharmacological stimulation by investigating its epigenetic outcomes in the brain of RTT female mice bearing a truncating MeCP2 mutation. Treatment with LP-211 normalized the reduced histone H3 acetylation and HDAC3/NCoR levels, and increased HDAC1/Sin3a expression in RTT mouse cortex. Repeated 5-HT7R stimulation also appeared to strengthen the association between NCoR and MeCP2 in the same brain region. A different profile was found in RTT hippocampus, where LP-211 rescued H3 hyperacetylation and increased HDAC3 levels. Overall, the present data highlight a new scenario on the relationship between histone acetylation and serotoninergic pathways. 5-HT7R is confirmed as a pivotal therapeutic target for the recovery of neuronal function supporting the translational value of this promising pharmacological approach for RTT.
Collapse
Affiliation(s)
- Giorgia Napoletani
- From the Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy
| | - Daniele Vigli
- From the Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy.,Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| | - Maddalena Grieco
- From the Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy
| | - Maria Cristina Talamo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| | - Enza Lacivita
- Department of Pharmacy, University of Bari "Aldo Moro", Bari, Italy
| | | | - Giovanni Laviola
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Roma, Roma, Italy
| | - Maria d'Erme
- From the Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| |
Collapse
|
33
|
Arranz MJ, Gallego-Fabrega C, Martín-Blanco A, Soler J, Elices M, Dominguez-Clavé E, Salazar J, Vega D, Briones-Buixassa L, Pascual JC. A genome-wide methylation study reveals X chromosome and childhood trauma methylation alterations associated with borderline personality disorder. Transl Psychiatry 2021; 11:5. [PMID: 33414392 PMCID: PMC7791113 DOI: 10.1038/s41398-020-01139-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Borderline personality disorder (BPD) is a severe and highly prevalent psychiatric disorder, more common in females than in males and with notable differences in presentation between genders. Recent studies have shown that epigenetic modifications such as DNA methylation may modulate gene × environment interactions and impact on neurodevelopment. We conducted an epigenome wide study (Illumina Infinium HumanMethylation450k beadchip) in a group of BPD patients with (N = 49) and without (N = 47) childhood traumas and in a control group (N = 44). Results were confirmed in a replication cohort (N = 293 BPD patients and N = 114 controls) using EpiTYPER assays. Differentially methylated CpG sites were observed in several genes and intragenic regions in the X chromosome (PQBP1, ZNF41, RPL10, cg07810091 and cg24395855) and in chromosome 6 (TAP2). BPD patients showed significantly lower methylation levels in these CpG sites than healthy controls. These differences seemed to be increased by the existence of childhood trauma. Comparisons between BPD patients with childhood trauma and patients and controls without revealed significant differences in four genes (POU5F1, GGT6, TNFRSF13C and FAM113B), none of them in the X chromosome. Gene set enrichment analyses revealed that epigenetic alterations were more frequently found in genes controlling oestrogen regulation, neurogenesis and cell differentiation. These results suggest that epigenetic alterations in the X chromosome and oestrogen-regulation genes may contribute to the development of BPD and explain the differences in presentation between genders. Furthermore, childhood trauma events may modulate the magnitude of the epigenetic alterations contributing to BPD.
Collapse
Affiliation(s)
- María J. Arranz
- grid.414875.b0000 0004 1794 4956Fundació Docència i Recerca Mutua Terrassa, Terrassa, Spain ,grid.7722.00000 0001 1811 6966Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Cristina Gallego-Fabrega
- grid.414875.b0000 0004 1794 4956Fundació Docència i Recerca Mutua Terrassa, Terrassa, Spain ,grid.7722.00000 0001 1811 6966Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Ana Martín-Blanco
- grid.7722.00000 0001 1811 6966Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain ,grid.413396.a0000 0004 1768 8905Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain ,grid.7080.fDepartment of Psychiatry and Forensic Medicine & Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joaquim Soler
- grid.7722.00000 0001 1811 6966Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain ,grid.413396.a0000 0004 1768 8905Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain ,grid.7080.fDepartment of Psychiatry and Forensic Medicine & Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Matilde Elices
- grid.7722.00000 0001 1811 6966Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain ,grid.413396.a0000 0004 1768 8905Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain ,grid.7080.fDepartment of Psychiatry and Forensic Medicine & Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Elisabet Dominguez-Clavé
- grid.413396.a0000 0004 1768 8905Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Juliana Salazar
- grid.7722.00000 0001 1811 6966Translational Medical Oncology Laboratory, Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Bellaterra, Spain
| | - Daniel Vega
- grid.7080.fDepartment of Psychiatry and Forensic Medicine & Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain ,Psychiatry and Mental Health Department, Hospital of Igualada, Consorci Sanitari de l’Anoia & Fundació Sanitària d’Igualada, Igualada, Spain
| | - Laia Briones-Buixassa
- Psychiatry and Mental Health Department, Hospital of Igualada, Consorci Sanitari de l’Anoia & Fundació Sanitària d’Igualada, Igualada, Spain
| | - Juan Carlos Pascual
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain. .,Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. .,Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
34
|
Rock EM, Parker LA. Constituents of Cannabis Sativa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1264:1-13. [PMID: 33332000 DOI: 10.1007/978-3-030-57369-0_1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Cannabis sativa plant has been used medicinally and recreationally for thousands of years, but recently only relatively some of its constituents have been identified. There are more than 550 chemical compounds in cannabis, with more than 100 phytocannabinoids being identified, including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). These phytocannabinoids work by binding to the cannabinoid receptors, as well as other receptor systems. Also within cannabis are the aromatic terpenes, more than 100 of which have been identified. Cannabis and its constituents have been indicated as therapeutic compounds in numerous medical conditions, such as pain, anxiety, epilepsy, nausea and vomiting, and post-traumatic stress disorder. This chapter provides an overview of some of the biological effects of a number of the cannabinoids and terpenes, as well as discussing their known mechanisms of action and evidence of potential therapeutic effects.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
35
|
Healing autism spectrum disorder with cannabinoids: a neuroinflammatory story. Neurosci Biobehav Rev 2020; 121:128-143. [PMID: 33358985 DOI: 10.1016/j.neubiorev.2020.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a multifactorial etiology. Latest researches are raising the hypothesis of a link between the onset of the main behavioral symptoms of ASD and the chronic neuroinflammatory condition of the autistic brain; increasing evidence of this connection is shedding light on new possible players in the pathogenesis of ASD. The endocannabinoid system (ECS) has a key role in neurodevelopment as well as in normal inflammatory responses and it is not surprising that many preclinical and clinical studies account for alterations of the endocannabinoid signaling in ASD. These findings lay the foundation for a better understanding of the neurochemical mechanisms underlying ASD and for new therapeutic attempts aimed at exploiting the renowned anti-inflammatory properties of cannabinoids to treat pathologies encompassed in the autistic spectrum. This review discusses the current preclinical and clinical evidence supporting a key role of the ECS in the neuroinflammatory state that characterizes ASD, providing hints to identify new biomarkers in ASD and promising therapies for the future.
Collapse
|
36
|
Methyl-CpG-binding protein 2 mediates overlapping mechanisms across brain disorders. Sci Rep 2020; 10:22255. [PMID: 33335218 PMCID: PMC7746753 DOI: 10.1038/s41598-020-79268-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
MECP2 and its product, Methyl-CpG binding protein 2 (MeCP2), are mostly known for their association to Rett Syndrome (RTT), a rare neurodevelopmental disorder. Additional evidence suggests that MECP2 may underlie other neuropsychiatric and neurological conditions, and perhaps modulate common presentations and pathophysiology across disorders. To clarify the mechanisms of these interactions, we develop a method that uses the binding properties of MeCP2 to identify its targets, and in particular, the genes recognized by MeCP2 and associated to several neurological and neuropsychiatric disorders. Analysing mechanisms and pathways modulated by these genes, we find that they are involved in three main processes: neuronal transmission, immuno-reactivity, and development. Also, while the nervous system is the most relevant in the pathophysiology of the disorders, additional systems may contribute to MeCP2 action through its target genes. We tested our results with transcriptome analysis on Mecp2-null models and cells derived from a patient with RTT, confirming that the genes identified by our procedure are directly modulated by MeCP2. Thus, MeCP2 may modulate similar mechanisms in different pathologies, suggesting that treatments for one condition may be effective for related disorders.
Collapse
|
37
|
Gomathi M, Padmapriya S, Balachandar V. Drug Studies on Rett Syndrome: From Bench to Bedside. J Autism Dev Disord 2020; 50:2740-2764. [PMID: 32016693 DOI: 10.1007/s10803-020-04381-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drug studies on Rett syndrome (RTT) have drastically increased over the past few decades. This review aims to provide master data on bench-to-bedside drug studies involving RTT. A comprehensive literature review was performed by searching in PUBMED, MEDLINE and Google Scholar, international, national and regional clinical trial registries and pharmaceutical companies using the keywords "Rett syndrome treatment and/or drug or compound or molecule". Seventy drugs were investigated in non-clinical (N = 65 animal/cell line-based studies; N = 5 iPSC-based study) and clinical trials (N = 34) for ameliorating the symptoms of RTT. Though there is good progress in both clinical and non-clinical studies, none of these drugs entered phase III/IV for being launched as a therapeutic agent for RTT.
Collapse
Affiliation(s)
- Mohan Gomathi
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | | | - Vellingiri Balachandar
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
38
|
Stone NL, Murphy AJ, England TJ, O'Sullivan SE. A systematic review of minor phytocannabinoids with promising neuroprotective potential. Br J Pharmacol 2020; 177:4330-4352. [PMID: 32608035 PMCID: PMC7484504 DOI: 10.1111/bph.15185] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Embase and PubMed were systematically searched for articles addressing the neuroprotective properties of phytocannabinoids, apart from cannabidiol and Δ9 -tetrahydrocannabinol, including Δ9 -tetrahydrocannabinolic acid, Δ9 -tetrahydrocannabivarin, cannabidiolic acid, cannabidivarin, cannabichromene, cannabichromenic acid, cannabichromevarin, cannabigerol, cannabigerolic acid, cannabigerivarin, cannabigerovarinic acid, cannabichromevarinic acid, cannabidivarinic acid, and cannabinol. Out of 2,341 studies, 31 articles met inclusion criteria. Cannabigerol (range 5 to 20 mg·kg-1 ) and cannabidivarin (range 0.2 to 400 mg·kg-1 ) displayed efficacy in models of Huntington's disease and epilepsy. Cannabichromene (10-75 mg·kg-1 ), Δ9 -tetrahydrocannabinolic acid (20 mg·kg-1 ), and tetrahydrocannabivarin (range 0.025-2.5 mg·kg-1 ) showed promise in models of seizure and hypomobility, Huntington's and Parkinson's disease. Limited mechanistic data showed cannabigerol, its derivatives VCE.003 and VCE.003.2, and Δ9 -tetrahydrocannabinolic acid mediated some of their effects through PPAR-γ, but no other receptors were probed. Further studies with these phytocannabinoids, and their combinations, are warranted across a range of neurodegenerative disorders.
Collapse
Affiliation(s)
- Nicole L. Stone
- Division of Medical Sciences and Graduate Entry Medicine, School of MedicineUniversity of Nottingham, Royal Derby HospitalDerbyUK
| | - Alexandra J. Murphy
- Division of Medical Sciences and Graduate Entry Medicine, School of MedicineUniversity of Nottingham, Royal Derby HospitalDerbyUK
| | - Timothy J. England
- Division of Medical Sciences and Graduate Entry Medicine, School of MedicineUniversity of Nottingham, Royal Derby HospitalDerbyUK
| | - Saoirse E. O'Sullivan
- Division of Medical Sciences and Graduate Entry Medicine, School of MedicineUniversity of Nottingham, Royal Derby HospitalDerbyUK
| |
Collapse
|
39
|
Vigli D, Cosentino L, Pellas M, De Filippis B. Chronic Treatment with Cannabidiolic Acid (CBDA) Reduces Thermal Pain Sensitivity in Male Mice and Rescues the Hyperalgesia in a Mouse Model of Rett Syndrome. Neuroscience 2020; 453:113-123. [PMID: 33010341 DOI: 10.1016/j.neuroscience.2020.09.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023]
Abstract
Rett syndrome (RTT) is a rare neurologic disorder, characterized by severe behavioural and physiological symptoms. RTT is caused by mutations in the MECP2 gene in about 95% of cases and to date no cure is available. Recent evidence suggests that non-euphoric phytocannabinoids (pCBs) extracted from Cannabis sativa may represent innovative therapeutic molecules for RTT, with the cannabinoid cannabidivarin having beneficial effects on behavioural and brain molecular alterations in RTT mouse models. The present study evaluated the potential therapeutic efficacy for RTT of cannabidiolic acid (CBDA; 0.2, 2, 20 mg/kg through intraperitoneal injections for 14 days), a pCB that has proved to be effective for the treatment of nausea and anxiety in rodents. This study demonstrates that systemic treatment with the low dose of CBDA has anti-nociceptive effects and reduces the thermal hyperalgesia in 8 month-old MeCP2-308 male mice, a validated RTT mouse model. CBDA did not affect other behavioural or molecular parameters. These results provide support to the antinociceptive effects of CBDA and stress the need for further studies aimed at clarifying the mechanisms underlying the abnormal pain perception in RTT.
Collapse
Affiliation(s)
- Daniele Vigli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Mattia Pellas
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
40
|
Di Marzo V. The endocannabinoidome as a substrate for noneuphoric phytocannabinoid action and gut microbiome dysfunction in neuropsychiatric disorders
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020; 22:259-269. [PMID: 33162769 PMCID: PMC7605024 DOI: 10.31887/dcns.2020.22.3/vdimarzo] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endocannabinoid (eCB) system encompasses the eCBs anandamide and 2-arachidonoylglycerol, their anabolic/catabolic enzymes, and the cannabinoid CB1 and CB2 receptors. Its expansion to include several eCB-like lipid mediators, their metabolic enzymes, and their molecular targets, forms the endocannabinoidome (eCBome). This complex signaling system is deeply involved in the onset, progress, and symptoms of major neuropsychiatric disorders and provides a substrate for future therapeutic drugs against these diseases. Such drugs may include not only THC, the major psychotropic component of cannabis, but also other, noneuphoric plant cannabinoids. These compounds, unlike THC, possess a wide therapeutic window, possibly due to their capability of hitting several eCBome and non-eCBome receptors. This is particularly true for cannabidiol, which is one of the most studied cannabinoids and shows promise for the treatment of a wide range of mental and mood disorders. The eCBome plays a role also in the microbiota-gut-brain axis, which is emerging as an important actor in the control of affective and cognitive functions and in their pathological alterations.
.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Canada; Joint International Unit between Université Laval and Consiglio Nazionale delle Ricerche of Italy on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition, Istituto di Chimica Biomolecolare, CNR, Pozzuoli (NA), Italy
| |
Collapse
|
41
|
Receptors and Channels Possibly Mediating the Effects of Phytocannabinoids on Seizures and Epilepsy. Pharmaceuticals (Basel) 2020; 13:ph13080174. [PMID: 32751761 PMCID: PMC7463541 DOI: 10.3390/ph13080174] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Epilepsy contributes to approximately 1% of the global disease burden. By affecting especially young children as well as older persons of all social and racial variety, epilepsy is a present disorder worldwide. Currently, only 65% of epileptic patients can be successfully treated with antiepileptic drugs. For this reason, alternative medicine receives more attention. Cannabis has been cultivated for over 6000 years to treat pain and insomnia and used since the 19th century to suppress epileptic seizures. The two best described phytocannabinoids, (−)-trans-Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are claimed to have positive effects on different neurological as well as neurodegenerative diseases, including epilepsy. There are different cannabinoids which act through different types of receptors and channels, including the cannabinoid receptor 1 and 2 (CB1, CB2), G protein-coupled receptor 55 (GPR55) and 18 (GPR18), opioid receptor µ and δ, transient receptor potential vanilloid type 1 (TRPV1) and 2 (TRPV2), type A γ-aminobutyric acid receptor (GABAAR) and voltage-gated sodium channels (VGSC). The mechanisms and importance of the interaction between phytocannabinoids and their different sites of action regarding epileptic seizures and their clinical value are described in this review.
Collapse
|
42
|
Zuliani I, Urbinati C, Valenti D, Quattrini MC, Medici V, Cosentino L, Pietraforte D, Di Domenico F, Perluigi M, Vacca RA, De Filippis B. The Anti-Diabetic Drug Metformin Rescues Aberrant Mitochondrial Activity and Restrains Oxidative Stress in a Female Mouse Model of Rett Syndrome. J Clin Med 2020; 9:jcm9061669. [PMID: 32492904 PMCID: PMC7355965 DOI: 10.3390/jcm9061669] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
Metformin is the first-line therapy for diabetes, even in children, and a promising attractive candidate for drug repurposing. Mitochondria are emerging as crucial targets of metformin action both in the periphery and in the brain. The present study evaluated whether treatment with metformin may rescue brain mitochondrial alterations and contrast the increased oxidative stress in a validated mouse model of Rett syndrome (RTT), a rare neurologic disorder of monogenic origin characterized by severe behavioral and physiological symptoms. No cure for RTT is available. In fully symptomatic RTT mice (12 months old MeCP2-308 heterozygous female mice), systemic treatment with metformin (100 mg/kg ip for 10 days) normalized the reduced mitochondrial ATP production and ATP levels in the whole-brain, reduced brain oxidative damage, and rescued the increased production of reactive oxidizing species in blood. A 10-day long treatment with metformin also boosted pathways related to mitochondrial biogenesis and antioxidant defense in the brain of metformin-treated RTT mice. This treatment regimen did not improve general health status and motor dysfunction in RTT mice at an advanced stage of the disease. Present results provide evidence that systemic treatment with metformin may represent a novel, repurposable therapeutic strategy for RTT.
Collapse
Affiliation(s)
- Ilaria Zuliani
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (F.D.D.); (M.P.)
| | - Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (V.M.); (L.C.)
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, 70126 Bari, Italy; (D.V.); (R.A.V.)
| | | | - Vanessa Medici
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (V.M.); (L.C.)
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (V.M.); (L.C.)
| | | | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (F.D.D.); (M.P.)
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (F.D.D.); (M.P.)
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, 70126 Bari, Italy; (D.V.); (R.A.V.)
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (V.M.); (L.C.)
- Correspondence:
| |
Collapse
|
43
|
Pietropaolo S, Bellocchio L, Bouzón-Arnáiz I, Yee BK. The role of the endocannabinoid system in autism spectrum disorders: Evidence from mouse studies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 173:183-208. [PMID: 32711810 DOI: 10.1016/bs.pmbts.2020.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A substantive volume of research on autism spectrum disorder (ASD) has emerged in recent years adding to our understanding of the etiopathological process. Preclinical models in mice and rats have been highly instrumental in modeling and dissecting the contributions of a multitude of known genetic and environmental risk factors. However, the translation of preclinical data into suitable drug targets must overcome three critical hurdles: (i) ASD comprises a highly heterogeneous group of conditions that can markedly differ in terms of their clinical presentation and symptoms, (ii) the plethora of genetic and environmental risk factors suggests a complex, non-unitary, etiopathology, and (iii) the lack of consensus over the myriad of preclinical models, with respect to both construct validity and face validity. Against this backdrop, this Chapter traces how the endocannabinoid system (ECS) has emerged as a promising target for intervention with predictive validity. Recent supportive preclinical evidence is summarized, especially studies in mice demonstrating the emergence of ASD-like behaviors following diverse genetic or pharmacological manipulations targeting the ECS. The critical relevance of ECS to the complex pathogenesis of ASD is underscored by its multiple roles in modulating neuronal functions and shaping brain development. Finally, we argue that important lessons have been learned from the novel mouse models of ASD, which not only stimulate game-changing innovative treatments but also foster a consensual framework to integrate the diverse approaches applied in the search of novel treatments for ASD.
Collapse
Affiliation(s)
- Susanna Pietropaolo
- University of Bordeaux, Bordeaux Cedex, France; CNRS, INCIA, UMR 5287, Bat B2, Pessac Cedex, France.
| | - Luigi Bellocchio
- CNRS, INCIA, UMR 5287, Bat B2, Pessac Cedex, France; INSERM, U1215 NeuroCentre Magendie, Bordeaux Cedex, France
| | - Inés Bouzón-Arnáiz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Benjamin K Yee
- Department of Rehabilitation Sciences, Faculty of Health & Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
44
|
Franco R, Rivas-Santisteban R, Reyes-Resina I, Casanovas M, Pérez-Olives C, Ferreiro-Vera C, Navarro G, Sánchez de Medina V, Nadal X. Pharmacological potential of varinic-, minor-, and acidic phytocannabinoids. Pharmacol Res 2020; 158:104801. [PMID: 32416215 DOI: 10.1016/j.phrs.2020.104801] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
Abstract
While natural Δ9-tetrahidrocannabinol (Δ9THC), cannabidiol (CBD), and their therapeutic potential have been extensively researched, some cannabinoids have been less extensively investigated. The present article compiles data from the literature that highlight the health benefits and therapeutic potential of lesser known phytocannabinoids, which we have divided into varinic, acidic, and "minor" (i.e., cannabinoids that are not present in high quantities in common varieties of Cannabis sativa L). A growing interest in these compounds, which are enriched in some cannabis varieties, has already resulted in enough preclinical information to show that they are promising therapeutic agents for a variety of diseases. Every phytocannabinoid has a "preferential" mechanism of action, and often targets the cannabinoid receptors, CB1 and/or CB2. The recent resolution of the structure of cannabinoid receptors demonstrates the atypical nature of cannabinoid binding, and that different binding modes depend on the agonist or partial agonist/inverse agonist, which allows for differential signaling, even acting on the same cannabinoid receptor. In addition, other players and multiple signaling pathways may be targeted/engaged by phytocannabinoids, thereby expanding the mechanistic possibilities for therapeutic use.
Collapse
Affiliation(s)
- Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CiberNed), Spain.
| | - Rafael Rivas-Santisteban
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CiberNed), Spain
| | - Irene Reyes-Resina
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CiberNed), Spain
| | - Mireia Casanovas
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CiberNed), Spain
| | - Catalina Pérez-Olives
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Spain
| | | | - Gemma Navarro
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Spain
| | | | | |
Collapse
|
45
|
Martínez V, Iriondo De-Hond A, Borrelli F, Capasso R, del Castillo MD, Abalo R. Cannabidiol and Other Non-Psychoactive Cannabinoids for Prevention and Treatment of Gastrointestinal Disorders: Useful Nutraceuticals? Int J Mol Sci 2020; 21:E3067. [PMID: 32357565 PMCID: PMC7246936 DOI: 10.3390/ijms21093067] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cannabis sativa is an aromatic annual flowering plant with several botanical varieties, used for different purposes, like the production of fibers, the production of oil from the seeds, and especially for recreational or medical purposes. Phytocannabinoids (terpenophenolic compounds derived from the plant), include the well-known psychoactive cannabinoid Δ9-tetrahydrocannabinol, and many non-psychoactive cannabinoids, like cannabidiol. The endocannabinoid system (ECS) comprises of endocannabinoid ligands, enzymes for synthesis and degradation of such ligands, and receptors. This system is widely distributed in the gastrointestinal tract, where phytocannabinoids exert potent effects, particularly under pathological (i.e., inflammatory) conditions. Herein, we will first look at the hemp plant as a possible source of new functional food ingredients and nutraceuticals that might be eventually useful to treat or even prevent gastrointestinal conditions. Subsequently, we will briefly describe the ECS and the general pharmacology of phytocannabinoids. Finally, we will revise the available data showing that non-psychoactive phytocannabinoids, particularly cannabidiol, may be useful to treat different disorders and diseases of the gastrointestinal tract. With the increasing interest in the development of functional foods for a healthy life, the non-psychoactive phytocannabinoids are hoped to find a place as nutraceuticals and food ingredients also for a healthy gastrointestinal tract function.
Collapse
Affiliation(s)
- Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Neurosciences Institute, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Amaia Iriondo De-Hond
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (UAM-CSIC), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.I.D.-H.); (M.D.d.C.)
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy
| | - María Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (UAM-CSIC), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.I.D.-H.); (M.D.d.C.)
| | - Raquel Abalo
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC, Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), Campus de Alcorcón, Avda. de Atenas s/n, 28022 Madrid, Spain
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain;
| |
Collapse
|
46
|
Antioxidative and Anti-Inflammatory Properties of Cannabidiol. Antioxidants (Basel) 2019; 9:antiox9010021. [PMID: 31881765 PMCID: PMC7023045 DOI: 10.3390/antiox9010021] [Citation(s) in RCA: 440] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
Cannabidiol (CBD) is one of the main pharmacologically active phytocannabinoids of Cannabis sativa L. CBD is non-psychoactive but exerts a number of beneficial pharmacological effects, including anti-inflammatory and antioxidant properties. The chemistry and pharmacology of CBD, as well as various molecular targets, including cannabinoid receptors and other components of the endocannabinoid system with which it interacts, have been extensively studied. In addition, preclinical and clinical studies have contributed to our understanding of the therapeutic potential of CBD for many diseases, including diseases associated with oxidative stress. Here, we review the main biological effects of CBD, and its synthetic derivatives, focusing on the cellular, antioxidant, and anti-inflammatory properties of CBD.
Collapse
|
47
|
Zamberletti E, Gabaglio M, Woolley-Roberts M, Bingham S, Rubino T, Parolaro D. Cannabidivarin Treatment Ameliorates Autism-Like Behaviors and Restores Hippocampal Endocannabinoid System and Glia Alterations Induced by Prenatal Valproic Acid Exposure in Rats. Front Cell Neurosci 2019; 13:367. [PMID: 31447649 PMCID: PMC6696797 DOI: 10.3389/fncel.2019.00367] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a developmental condition whose primary features include social communication and interaction impairments with restricted or repetitive motor movements. No approved treatment for the core symptoms is available and considerable research efforts aim at identifying effective therapeutic strategies. Emerging evidence suggests that altered endocannabinoid signaling and immune dysfunction might contribute to ASD pathogenesis. In this scenario, phytocannabinoids could hold great pharmacological potential due to their combined capacities to act either directly or indirectly on components of the endocannabinoid system and to modulate immune functions. Among all plant-cannabinoids, the phytocannabinoid cannabidivarin (CBDV) was recently shown to reduce motor impairments and cognitive deficits in animal models of Rett syndrome, a condition showing some degree of overlap with autism, raising the possibility that CBDV might have therapeutic potential in ASD. Here, we investigated the ability of CBDV treatment to reverse or prevent ASD-like behaviors in male rats prenatally exposed to valproic acid (VPA; 500 mg/kg i.p.; gestation day 12.5). The offspring received CBDV according to two different protocols: symptomatic (0.2/2/20/100 mg/kg i.p.; postnatal days 34–58) and preventative (2/20 mg/kg i.p.; postnatal days 19–32). The major efficacy of CBDV was observed at the dose of 20 mg/kg for both treatment schedules. CBDV in symptomatic rats recovered social impairments, social novelty preference, short-term memory deficits, repetitive behaviors and hyperlocomotion whereas preventative treatment reduced sociability and social novelty deficits, short-term memory impairments and hyperlocomotion, without affecting stereotypies. As dysregulations in the endocannabinoid system and neuroinflammatory markers contribute to the development of some ASD phenotypes in the VPA model, neurochemical studies were performed after symptomatic treatment to investigate possible CBDV’s effects on the endocannabinoid system, inflammatory markers and microglia activation in the hippocampus and prefrontal cortex. Prenatal VPA exposure increased CB1 receptor, FAAH and MAGL levels, enhanced GFAP, CD11b, and TNFα levels and triggered microglia activation restricted to the hippocampus. All these alterations were restored after CBDV treatment. These data provide preclinical evidence in support of the ability of CBDV to ameliorate behavioral abnormalities resembling core and associated symptoms of ASD. At the neurochemical level, symptomatic CBDV restores hippocampal endocannabinoid signaling and neuroinflammation induced by prenatal VPA exposure.
Collapse
Affiliation(s)
- Erica Zamberletti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marina Gabaglio
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | | | - Tiziana Rubino
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Daniela Parolaro
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,Zardi-Gori Foundation, Milan, Italy
| |
Collapse
|
48
|
Mouro FM, Miranda-Lourenço C, Sebastião AM, Diógenes MJ. From Cannabinoids and Neurosteroids to Statins and the Ketogenic Diet: New Therapeutic Avenues in Rett Syndrome? Front Neurosci 2019; 13:680. [PMID: 31333401 PMCID: PMC6614559 DOI: 10.3389/fnins.2019.00680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused mainly by mutations in the MECP2 gene, being one of the leading causes of mental disability in females. Mutations in the MECP2 gene are responsible for 95% of the diagnosed RTT cases and the mechanisms through which these mutations relate with symptomatology are still elusive. Children with RTT present a period of apparent normal development followed by a rapid regression in speech and behavior and a progressive deterioration of motor abilities. Epilepsy is one of the most common symptoms in RTT, occurring in 60 to 80% of RTT cases, being associated with worsening of other symptoms. At this point, no cure for RTT is available and there is a pressing need for the discovery of new drug candidates to treat its severe symptoms. However, despite being a rare disease, in the last decade research in RTT has grown exponentially. New and exciting evidence has been gathered and the etiopathogenesis of this complex, severe and untreatable disease is slowly being unfolded. Advances in gene editing techniques have prompted cure-oriented research in RTT. Nonetheless, at this point, finding a cure is a distant reality, highlighting the importance of further investigating the basic pathological mechanisms of this disease. In this review, we focus our attention in some of the newest evidence on RTT clinical and preclinical research, evaluating their impact in RTT symptomatology control, and pinpointing possible directions for future research.
Collapse
Affiliation(s)
- Francisco Melo Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
49
|
Zamberletti E, Gabaglio M, Piscitelli F, Brodie JS, Woolley-Roberts M, Barbiero I, Tramarin M, Binelli G, Landsberger N, Kilstrup-Nielsen C, Rubino T, Di Marzo V, Parolaro D. Cannabidivarin completely rescues cognitive deficits and delays neurological and motor defects in male Mecp2 mutant mice. J Psychopharmacol 2019; 33:894-907. [PMID: 31084246 DOI: 10.1177/0269881119844184] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Recent evidence suggests that 2-week treatment with the non-psychotomimetic cannabinoid cannabidivarin (CBDV) could be beneficial towards neurological and social deficits in early symptomatic Mecp2 mutant mice, a model of Rett syndrome (RTT). AIM The aim of this study was to provide further insights into the efficacy of CBDV in Mecp2-null mice using a lifelong treatment schedule (from 4 to 9 weeks of age) to evaluate its effect on recognition memory and neurological defects in both early and advanced stages of the phenotype progression. METHODS CBDV 0.2, 2, 20 and 200 mg/kg/day was administered to Mecp2-null mice from 4 to 9 weeks of age. Cognitive and neurological defects were monitored during the whole treatment schedule. Biochemical analyses were carried out in brain lysates from 9-week-old wild-type and knockout mice to evaluate brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1) levels as well as components of the endocannabinoid system. RESULTS CBDV rescues recognition memory deficits in Mecp2 mutant mice and delays the appearance of neurological defects. At the biochemical level, it normalizes BDNF/IGF1 levels and the defective PI3K/AKT/mTOR pathway in Mecp2 mutant mice at an advanced stage of the disease. Mecp2 deletion upregulates CB1 and CB2 receptor levels in the brain and these changes are restored after CBDV treatment. CONCLUSIONS CBDV administration exerts an enduring rescue of memory deficits in Mecp2 mutant mice, an effect that is associated with the normalization of BDNF, IGF-1 and rpS6 phosphorylation levels as well as CB1 and CB2 receptor expression. CBDV delays neurological defects but this effect is only transient.
Collapse
Affiliation(s)
- Erica Zamberletti
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Marina Gabaglio
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Fabiana Piscitelli
- 2 Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | | | | | - Isabella Barbiero
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Marco Tramarin
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Giorgio Binelli
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Nicoletta Landsberger
- 4 Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | | | - Tiziana Rubino
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Vincenzo Di Marzo
- 2 Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | - Daniela Parolaro
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy.,5 Zardi Gori Foundation, Milan, Italy
| |
Collapse
|
50
|
Treating Rett syndrome: from mouse models to human therapies. Mamm Genome 2019; 30:90-110. [PMID: 30820643 PMCID: PMC6606665 DOI: 10.1007/s00335-019-09793-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
Abstract
Rare diseases are very difficult to study mechanistically and to develop therapies for because of the scarcity of patients. Here, the rare neuro-metabolic disorder Rett syndrome (RTT) is discussed as a prototype for precision medicine, demonstrating how mouse models have led to an understanding of the development of symptoms. RTT is caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). Mecp2-mutant mice are being used in preclinical studies that target the MECP2 gene directly, or its downstream pathways. Importantly, this work may improve the health of RTT patients. Clinical presentation may vary widely among individuals based on their mutation, but also because of the degree of X chromosome inactivation and the presence of modifier genes. Because it is a complex disorder involving many organ systems, it is likely that recovery of RTT patients will involve a combination of treatments. Precision medicine is warranted to provide the best efficacy to individually treat RTT patients.
Collapse
|