1
|
Littlepage-Saunders M, Hochstein MJ, Chang DS, Johnson KA. G protein-coupled receptor modulation of striatal dopamine transmission: Implications for psychoactive drug effects. Br J Pharmacol 2024; 181:4399-4413. [PMID: 37258878 PMCID: PMC10687321 DOI: 10.1111/bph.16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Dopamine transmission in the striatum is a critical mediator of the rewarding and reinforcing effects of commonly misused psychoactive drugs. G protein-coupled receptors (GPCRs) that bind a variety of neuromodulators including dopamine, endocannabinoids, acetylcholine and endogenous opioid peptides regulate dopamine release by acting on several components of dopaminergic circuitry. Striatal dopamine release can be driven by both somatic action potential firing and local mechanisms that depend on acetylcholine released from striatal cholinergic interneurons. GPCRs that primarily regulate somatic firing of dopamine neurons via direct effects or modulation of synaptic inputs are likely to affect distinct aspects of behaviour and psychoactive drug actions compared with those GPCRs that primarily regulate local acetylcholine-dependent dopamine release in striatal regions. This review will highlight mechanisms by which GPCRs modulate dopaminergic transmission and the relevance of these findings to psychoactive drug effects on physiology and behaviour.
Collapse
Affiliation(s)
- Mydirah Littlepage-Saunders
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Michael J Hochstein
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Doris S Chang
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Varga B, Streicher JM, Majumdar S. Strategies towards safer opioid analgesics-A review of old and upcoming targets. Br J Pharmacol 2023; 180:975-993. [PMID: 34826881 PMCID: PMC9133275 DOI: 10.1111/bph.15760] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Opioids continue to be of use for the treatment of pain. Most clinically used analgesics target the μ opioid receptor whose activation results in adverse effects like respiratory depression, addiction and abuse liability. Various approaches have been used by the field to separate receptor-mediated analgesic actions from adverse effects. These include biased agonism, opioids targeting multiple receptors, allosteric modulators, heteromers and splice variants of the μ receptor. This review will focus on the current status of the field and some upcoming targets of interest that may lead to a safer next generation of analgesics. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Balazs Varga
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St Louis and Washington University School of Medicine, St Louis, MO, USA
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St Louis and Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
3
|
Khan MIH, Sawyer BJ, Akins NS, Le HV. A systematic review on the kappa opioid receptor and its ligands: New directions for the treatment of pain, anxiety, depression, and drug abuse. Eur J Med Chem 2022; 243:114785. [PMID: 36179400 DOI: 10.1016/j.ejmech.2022.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
Kappa opioid receptor (KOR) is a member of the opioid receptor system, the G protein-coupled receptors that are expressed throughout the peripheral and central nervous systems and play crucial roles in the modulation of antinociception and a variety of behavioral states like anxiety, depression, and drug abuse. KOR agonists are known to produce potent analgesic effects and have been used clinically for the treatment of pain, while KOR antagonists have shown efficacy in the treatment of anxiety and depression. This review summarizes the history, design strategy, discovery, and development of KOR ligands. KOR agonists are classified as non-biased, G protein-biased, and β-arrestin recruitment-biased, according to their degrees of bias. The mechanisms and associated effects of the G protein signaling pathway and β-arrestin recruitment signaling pathway are also discussed. Meanwhile, KOR antagonists are classified as long-acting and short-acting, based on their half-lives. In addition, we have special sections for mixed KOR agonists and selective peripheral KOR agonists. The mechanisms of action and pharmacokinetic, pharmacodynamic, and behavioral studies for each of these categories are also discussed in this review.
Collapse
Affiliation(s)
- Md Imdadul H Khan
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Benjamin J Sawyer
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Nicholas S Akins
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Hoang V Le
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
4
|
Neuwirth LS, Verrengia MT, Harikinish-Murrary ZI, Orens JE, Lopez OE. Under or Absent Reporting of Light Stimuli in Testing of Anxiety-Like Behaviors in Rodents: The Need for Standardization. Front Mol Neurosci 2022; 15:912146. [PMID: 36061362 PMCID: PMC9428565 DOI: 10.3389/fnmol.2022.912146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Behavioral neuroscience tests such as the Light/Dark Test, the Open Field Test, the Elevated Plus Maze Test, and the Three Chamber Social Interaction Test have become both essential and widely used behavioral tests for transgenic and pre-clinical models for drug screening and testing. However, as fast as the field has evolved and the contemporaneous involvement of technology, little assessment of the literature has been done to ensure that these behavioral neuroscience tests that are crucial to pre-clinical testing have well-controlled ethological motivation by the use of lighting (i.e., Lux). In the present review paper, N = 420 manuscripts were examined from 2015 to 2019 as a sample set (i.e., n = ~20–22 publications per year) and it was found that only a meager n = 50 publications (i.e., 11.9% of the publications sampled) met the criteria for proper anxiogenic and anxiolytic Lux reported. These findings illustrate a serious concern that behavioral neuroscience papers are not being vetted properly at the journal review level and are being released into the literature and public domain making it difficult to assess the quality of the science being reported. This creates a real need for standardizing the use of Lux in all publications on behavioral neuroscience techniques within the field to ensure that contributions are meaningful, avoid unnecessary duplication, and ultimately would serve to create a more efficient process within the pre-clinical screening/testing for drugs that serve as anxiolytic compounds that would prove more useful than what prior decades of work have produced. It is suggested that improving the standardization of the use and reporting of Lux in behavioral neuroscience tests and the standardization of peer-review processes overseeing the proper documentation of these methodological approaches in manuscripts could serve to advance pre-clinical testing for effective anxiolytic drugs. This report serves to highlight this concern and proposes strategies to proactively remedy them as the field moves forward for decades to come.
Collapse
Affiliation(s)
- Lorenz S. Neuwirth
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
- *Correspondence: Lorenz S. Neuwirth
| | - Michael T. Verrengia
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| | - Zachary I. Harikinish-Murrary
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| | - Jessica E. Orens
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| | - Oscar E. Lopez
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| |
Collapse
|
5
|
Uenohara Y, Tsumura S, Hirayama S, Higashi E, Watanabe Y, Gouda H, Nagase H, Fujii H. Morphinan derivatives with an oxabicyclo[3.2.1]octane structure as dual agonists toward δ and κ opioid receptors. Bioorg Med Chem 2022; 53:116552. [PMID: 34894610 DOI: 10.1016/j.bmc.2021.116552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022]
Abstract
The κ opioid receptor (KOR) is one of the promising targets to develop analgesics lacking morphine like side effects. To seek a novel KOR agonist we designed 6-amide derivatives with an oxabicyclo[3.2.1]octane structure based on a proposed active conformation of a selective KOR agonist nalfurafine. All the synthesized compounds strongly bound to the KOR and some compound showed KOR selectivities. 6R-Amides were more potent and efficacious KOR agonists than the corresponding 6S-isomers. However, most 6-amide derivatives were partial KOR agonist. Conformational analyses of 6R- and 6S-amide derivatives and nalfurafine well accounted for the difference of KOR agonistic activities between two diastereomers. Surprisingly, the tested N-H amides were full δ opioid receptor (DOR) agonists. Among the tested compounds 7a with benzamide moiety was the most potent dual DOR/KOR agonist. On the other hand, 6S-phenylacetamide 8b was potent full DOR agonist with less efficacious agonist activity for the μ receptor and KOR. 6-Amide derivatives with an oxabicyclo[3.2.1]octane structure were expected to be a promising fundamental skeleton for the dual DOR/KOR agonists and/or selective DOR agonists.
Collapse
Affiliation(s)
- Yuka Uenohara
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Saori Tsumura
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shigeto Hirayama
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Eika Higashi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yurie Watanabe
- School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hiroaki Gouda
- School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
6
|
Chakraborty S, Uprety R, Daibani AE, Rouzic VL, Hunkele A, Appourchaux K, Eans SO, Nuthikattu N, Jilakara R, Thammavong L, Pasternak GW, Pan YX, McLaughlin JP, Che T, Majumdar S. Kratom Alkaloids as Probes for Opioid Receptor Function: Pharmacological Characterization of Minor Indole and Oxindole Alkaloids from Kratom. ACS Chem Neurosci 2021; 12:2661-2678. [PMID: 34213886 PMCID: PMC8328003 DOI: 10.1021/acschemneuro.1c00149] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dry leaves of kratom (mitragyna speciosa) are anecdotally consumed as pain relievers and antidotes against opioid withdrawal and alcohol use disorders. There are at least 54 alkaloids in kratom; however, investigations to date have focused around mitragynine, 7-hydroxy mitragynine (7OH), and mitragynine pseudoindoxyl (MP). Herein, we probe a few minor indole and oxindole based alkaloids, reporting the receptor affinity, G-protein activity, and βarrestin-2 signaling of corynantheidine, corynoxine, corynoxine B, mitraciliatine, and isopaynantheine at mouse and human opioid receptors. We identify corynantheidine as a mu opioid receptor (MOR) partial agonist, whereas its oxindole derivative corynoxine was an MOR full agonist. Similarly, another alkaloid mitraciliatine was found to be an MOR partial agonist, while isopaynantheine was a KOR agonist which showed reduced βarrestin-2 recruitment. Corynantheidine, corynoxine, and mitraciliatine showed MOR dependent antinociception in mice, but mitraciliatine and corynoxine displayed attenuated respiratory depression and hyperlocomotion compared to the prototypic MOR agonist morphine in vivo when administered supraspinally. Isopaynantheine on the other hand was identified as the first kratom derived KOR agonist in vivo. While these minor alkaloids are unlikely to play the majority role in the biological actions of kratom, they represent excellent starting points for further diversification as well as distinct efficacy and signaling profiles with which to probe opioid actions in vivo.
Collapse
Affiliation(s)
- Soumen Chakraborty
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Rajendra Uprety
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Amal E Daibani
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Valerie L Rouzic
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Amanda Hunkele
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Kevin Appourchaux
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Shainnel O Eans
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United States
| | - Nitin Nuthikattu
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Rahul Jilakara
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Lisa Thammavong
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gavril W Pasternak
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Ying-Xian Pan
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United States
| | - Tao Che
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
7
|
Abstract
This paper is the forty-second consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2019 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
8
|
Atigari DV, Paton KF, Uprety R, Váradi A, Alder AF, Scouller B, Miller JH, Majumdar S, Kivell BM. The mixed kappa and delta opioid receptor agonist, MP1104, attenuates chemotherapy-induced neuropathic pain. Neuropharmacology 2021; 185:108445. [PMID: 33383089 PMCID: PMC8344368 DOI: 10.1016/j.neuropharm.2020.108445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/20/2020] [Accepted: 12/20/2020] [Indexed: 01/04/2023]
Abstract
Effective treatments for chronic pain without abuse liability are urgently needed. One in 5 adults suffer chronic pain and half of these patients report inefficient treatment. Mu opioid receptor agonists (MOP), including oxycodone, tramadol and morphine, are often prescribed to treat chronic pain, however, use of drugs targeting MOP can lead to drug dependency, tolerance and overdose deaths. Kappa opioid receptor (KOP) agonists have antinociceptive effects without abuse potential; however, they have not been utilised clinically due to dysphoria and sedation. We hypothesise that mixed opioid receptor agonists targeting the KOP and delta opioid receptor (DOP) would have a wider therapeutic index, with the rewarding effects of DOP negating the negative effects of KOP. MP1104, an analogue of 3-Iodobenzoyl naltrexamine, is a novel mixed opioid receptor agonist with potent antinociceptive effects mediated via KOP and DOP in mice without rewarding or aversive effects. In this study, we show MP1104 has potent, long-acting antinociceptive effects in the warm-water tail-withdrawal assay in male and female mice and rats; and is longer acting than morphine. In the paclitaxel-induced neuropathic pain model in mice, MP1104 reduced both mechanical and cold allodynia and unlike morphine, did not produce tolerance when administered daily for 23 days. Moreover, MP1104 did not induce sedative effects in the open-field locomotor activity test, respiratory depression in mice using whole-body plethysmography, or have cross-tolerance with morphine. This data supports the therapeutic development of mixed opioid receptor agonists, particularly mixed KOP/DOP agonists, as non-addictive pain medications with reduced tolerance.
Collapse
Affiliation(s)
- Diana Vivian Atigari
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Kelly Frances Paton
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Rajendra Uprety
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Centre, New York, USA
| | - András Váradi
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Centre, New York, USA
| | - Amy Frances Alder
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Brittany Scouller
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - John H Miller
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Susruta Majumdar
- Center of Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA
| | - Bronwyn Maree Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
9
|
Faouzi A, Uprety R, Gomes I, Massaly N, Keresztes AI, Le Rouzic V, Gupta A, Zhang T, Yoon HJ, Ansonoff M, Allaoa A, Pan YX, Pintar J, Morón JA, Streicher JM, Devi LA, Majumdar S. Synthesis and Pharmacology of a Novel μ-δ Opioid Receptor Heteromer-Selective Agonist Based on the Carfentanyl Template. J Med Chem 2020; 63:13618-13637. [PMID: 33170687 DOI: 10.1021/acs.jmedchem.0c00901] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, we studied a series of carfentanyl amide-based opioid derivatives targeting the mu opioid receptor (μOR) and the delta opioid receptor (δOR) heteromer as a credible novel target in pain management therapy. We identified a lead compound named MP135 that exhibits high G-protein activity at μ-δ heteromers compared to the homomeric δOR or μOR and low β-arrestin2 recruitment activity at all three. Furthermore, MP135 exhibits distinct signaling profile, as compared to the previously identified agonist targeting μ-δ heteromers, CYM51010. Pharmacological characterization of MP135 supports the utility of this compound as a molecule that could be developed as an antinociceptive agent similar to morphine in rodents. In vivo characterization reveals that MP135 maintains untoward side effects such as respiratory depression and reward behavior; together, these results suggest that optimization of MP135 is necessary for the development of therapeutics that suppress the classical side effects associated with conventional clinical opioids.
Collapse
Affiliation(s)
- Abdelfattah Faouzi
- Center for Clinical Pharmacology, St Louis College of Pharmacy and Washington University, School of Medicine, St. Louis, Missouri 63110, United States.,Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Rajendra Uprety
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Attila I Keresztes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arkansas 85724, United States
| | - Valerie Le Rouzic
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Achla Gupta
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Tiffany Zhang
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Hye Jean Yoon
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Michael Ansonoff
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, United States
| | - Abdullah Allaoa
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Ying Xian Pan
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - John Pintar
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, United States
| | - Jose A Morón
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States.,Department of Neuroscience and Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arkansas 85724, United States
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, St Louis College of Pharmacy and Washington University, School of Medicine, St. Louis, Missouri 63110, United States.,Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
10
|
Paton KF, Atigari DV, Kaska S, Prisinzano T, Kivell BM. Strategies for Developing κ Opioid Receptor Agonists for the Treatment of Pain with Fewer Side Effects. J Pharmacol Exp Ther 2020; 375:332-348. [PMID: 32913006 PMCID: PMC7589957 DOI: 10.1124/jpet.120.000134] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
There is significant need to find effective, nonaddictive pain medications. κ Opioid receptor (KOPr) agonists have been studied for decades but have recently received increased attention because of their analgesic effects and lack of abuse potential. However, a range of side effects have limited the clinical development of these drugs. There are several strategies currently used to develop safer and more effective KOPr agonists. These strategies include identifying G-protein-biased agonists, developing peripherally restricted KOPr agonists without centrally mediated side effects, and developing mixed opioid agonists, which target multiple receptors at specific ratios to balance side-effect profiles and reduce tolerance. Here, we review the latest developments in research related to KOPr agonists for the treatment of pain. SIGNIFICANCE STATEMENT: This review discusses strategies for developing safer κ opioid receptor (KOPr) agonists with therapeutic potential for the treatment of pain. Although one strategy is to modify selective KOPr agonists to create peripherally restricted or G-protein-biased structures, another approach is to combine KOPr agonists with μ, δ, or nociceptin opioid receptor activation to obtain mixed opioid receptor agonists, therefore negating the adverse effects and retaining the therapeutic effect.
Collapse
Affiliation(s)
- Kelly F Paton
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Diana V Atigari
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Sophia Kaska
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Thomas Prisinzano
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| |
Collapse
|
11
|
Ulker E, Toma W, White A, Uprety R, Majumdar S, Damaj MI. The antinociceptive effects of a dual kappa-delta opioid receptor agonist in the mouse formalin test. Behav Pharmacol 2020; 31:174-178. [PMID: 32168026 PMCID: PMC7080317 DOI: 10.1097/fbp.0000000000000541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pain management is a challenging and unmet medical need. Despite their demonstrated efficacy, currently used opioid drugs and nonsteroidal anti-inflammatory drugs are frequently associated with several adverse events. The identification of new and safe analgesics is therefore needed. MP1104, an analogue of 3'-iodobenzoyl naltrexamine, is a potent nonselective full agonist at mu (MOR), kappa (KOR), and delta (DOR) opioid receptors, respectively. It was shown to possess potent antinociceptive effects in acute thermal pain assays without aversion in mice. In this study, we investigated MP1104 in the formalin test, a model of tonic pain. MP1104 (0.05, 0.1, and 1.0 mg/kg) reduced pain-like behaviors in phases I and II of the formalin test in male and female ICR mice. Pretreatment with KOR antagonist (norbinaltorphimine 10 mg/kg) and DOR antagonist (naltrindole 10 mg/kg) abolished the antinociceptive effects of MP1104 in the formalin test. These findings support the development of MP1104 for further testing in other pain models.
Collapse
MESH Headings
- Analgesics/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Female
- Male
- Mice
- Mice, Inbred ICR
- Morphinans/metabolism
- Morphinans/pharmacology
- Narcotic Antagonists/pharmacology
- Pain/drug therapy
- Pain Management/methods
- Pain Measurement/drug effects
- Receptors, Opioid/agonists
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
Collapse
Affiliation(s)
- Esad Ulker
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, Virginia
| | - Wisam Toma
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, Virginia
| | - Alyssa White
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, Virginia
| | - Rajendra Uprety
- bDepartment of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York
| | - Susruta Majumdar
- cCenter for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, Missouri, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
12
|
Escobar ADP, Casanova JP, Andrés ME, Fuentealba JA. Crosstalk Between Kappa Opioid and Dopamine Systems in Compulsive Behaviors. Front Pharmacol 2020; 11:57. [PMID: 32132923 PMCID: PMC7040183 DOI: 10.3389/fphar.2020.00057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/22/2020] [Indexed: 12/02/2022] Open
Abstract
The strength of goal-oriented behaviors is regulated by midbrain dopamine neurons. Dysfunctions of dopaminergic circuits are observed in drug addiction and obsessive-compulsive disorder. Compulsive behavior is a feature that both disorders share, which is associated to a heightened dopamine neurotransmission. The activity of midbrain dopamine neurons is principally regulated by the homeostatic action of dopamine through D2 receptors (D2R) that decrease the firing of neurons as well as dopamine synthesis and release. Dopamine transmission is also regulated by heterologous neurotransmitter systems such as the kappa opioid system, among others. Much of our current knowledge of the kappa opioid system and its influence on dopamine transmission comes from preclinical animal models of brain diseases. In 1988, using cerebral microdialysis, it was shown that the acute activation of the Kappa Opioid Receptors (KOR) decreases synaptic levels of dopamine in the striatum. This inhibitory effect of KOR opposes to the facilitating influence of drugs of abuse on dopamine release, leading to the proposition of the use of KOR agonists as pharmacological therapy for compulsive drug intake. Surprisingly, 30 years later, KOR antagonists are instead proposed to treat drug addiction. What may have happened during these years that generated this drastic change of paradigm? The collected evidence suggested that the effect of KOR on synaptic dopamine levels is complex, depending on the frequency of KOR activation and timing with other incoming stimuli to dopamine neurons, as well as sex and species differences. Conversely to its acute effect, chronic KOR activation seems to facilitate dopamine neurotransmission and dopamine-mediated behaviors. The opposing actions exerted by acute versus chronic KOR activation have been associated with an initial aversive and a delayed rewarding effect, during the exposure to drugs of abuse. Compulsive behaviors induced by repeated activation of D2R are also potentiated by the sustained co-activation of KOR, which correlates with decreased synaptic levels of dopamine and sensitized D2R. Thus, the time-dependent activation of KOR impacts directly on dopamine levels affecting the tuning of motivated behaviors. This review analyzes the contribution of the kappa opioid system to the dopaminergic correlates of compulsive behaviors.
Collapse
Affiliation(s)
- Angélica Del Pilar Escobar
- Centro Interdisciplinario de Neurociencias de Valparaíso, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| | - José Patricio Casanova
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Núcleo Milenio NUMIND Biology of Neuropsychiatric Disorders, Universidad de Valparaíso, Valparaíso, Chile
| | - María Estela Andrés
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Antonio Fuentealba
- Department of Pharmacy and Interdisciplinary Center of Neuroscience, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Baumann MH, Pasternak GW, Negus SS. Confronting the opioid crisis with basic research in neuropharmacology. Neuropharmacology 2020; 166:107972. [PMID: 31958407 DOI: 10.1016/j.neuropharm.2020.107972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Michael H Baumann
- Designer Drug Research Unit (DDRU), National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Suite 4400, Baltimore, MD 21224, USA.
| | - Gavril W Pasternak
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Sidney S Negus
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, VA 23298, USA.
| |
Collapse
|