1
|
Quelch D, Lingford-Hughes A, John B, Nutt D, Bradberry S, Roderique-Davies G. Promising strategies for the prevention of alcohol-related brain damage through optimised management of acute alcohol withdrawal: A focussed literature review. J Psychopharmacol 2024:2698811241294005. [PMID: 39529219 DOI: 10.1177/02698811241294005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
There is an increasing awareness of the link between chronic alcohol consumption and the development of cognitive, behavioural and functional deficits. Currently, preventative strategies are limited and require engagement in dedicated long-term rehabilitation and sobriety services, the availability of which is low. The acute alcohol withdrawal syndrome is an episode of neurochemical imbalance leading to autonomic dysregulation, increased seizure risk and cognitive disorientation. In addition to harm from symptoms of alcohol withdrawal (e.g. seizures), the underpinning neurochemical changes may also lead to cytotoxicity through various cellular mechanisms, which long-term, may translate to some of the cognitive impairments observed in Alcohol-Related Brain Damage (ARBD). Here we review some of the pharmacological and neurochemical mechanisms underpinning alcohol withdrawal. We discuss the cellular and pharmacological basis of various potential neuroprotective strategies that warrant further exploration in clinical populations with a view to preventing the development of ARBD. Such strategies, when integrated into the clinical management of acute alcohol withdrawal, may impact large populations of individuals, who currently face limited dedicated service delivery and healthcare resource.
Collapse
Affiliation(s)
- Darren Quelch
- Addictions Research Group, Applied Psychology Research and Innovation Group, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
- Alcohol Care Team and Clinical Toxicology Service, Sandwell and West-Birmingham NHS Trust, City Hospital, Birmingham, UK
| | - Anne Lingford-Hughes
- Centre for Neuropsychopharmacology, Division of Psychiatry, Imperial College London, Hammersmith Hospital, London, UK
| | - Bev John
- Addictions Research Group, Applied Psychology Research and Innovation Group, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - David Nutt
- Centre for Neuropsychopharmacology, Division of Psychiatry, Imperial College London, Hammersmith Hospital, London, UK
| | - Sally Bradberry
- Addictions Research Group, Applied Psychology Research and Innovation Group, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
- Alcohol Care Team and Clinical Toxicology Service, Sandwell and West-Birmingham NHS Trust, City Hospital, Birmingham, UK
| | - Gareth Roderique-Davies
- Addictions Research Group, Applied Psychology Research and Innovation Group, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| |
Collapse
|
2
|
Wang W, Wang D, Zhao D, Xu L, Jiang S, Zhang Y, Cui M, Liu J, Meng F, Liu C, Liu D, Li W, Li C. Dorsal raphe dopaminergic neurons target CaMKII + neurons in dorsal bed nucleus of the stria terminalis for mediating depression-related behaviors. Transl Psychiatry 2024; 14:408. [PMID: 39358336 PMCID: PMC11447211 DOI: 10.1038/s41398-024-03093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Dopamine (DA) neurons play a crucial role in the development and manifestation of depression, as well as in response to antidepressant treatments. While the function of the predominantly distributed DA neurons in the ventral tegmental area (VTA) is well established, the contribution of a small fraction of DA neurons in the dorsal raphe nucleus (DRN) during depression remains unclear. In this study, we found that chronic unpredictable stress (CUS) induces depression-related behaviors and decreases spontaneous firing rates, excitatory and inhibitory postsynaptic currents of DA neurons in the DRN associated with reduced excitatory synaptic transmission in male and female mice. The chemogenetic inhibition of DA neurons in the DRN produces depressive phenotypes. Conversely, their activation completely reversed the anhedonic and despair behaviors induced by CUS. Furthermore, we showed that a DRN dopaminergic projecting to the dorsal bed nucleus of the stria terminalis (dBNST) selectively controls depressive behaviors by influencing the neural activity and N-methyl-D-aspartate receptor (NMDAR) mediating EPSC of calcium/calmodulin-dependent protein kinase II+ (CaMKII+) target neurons by regulating dopamine neurotransmitter and dopamine receptor 2 (DR2) in the dBNST. Overall, these findings highlight the essential role of the DRNDA → dBNSTCaMKII+ neural circuit in bi-directionally mediating stress-induced depression-related behaviors. Our findings indicate that DRN DA neurons are a key component of the neural circuitry involved in regulating depression-related behaviors, making them a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dan Wang
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Di Zhao
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lihong Xu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shujun Jiang
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
| | - Yu Zhang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Nursing, Binzhou Medical University, Yantai, Shandong, China
| | - Minghu Cui
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Cuilan Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dunjiang Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wei Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Chen Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
3
|
Ben-Azu B, Oritsemuelebi B, Oghorodi AM, Adebesin A, Isibor H, Eduviere AT, Otuacha OS, Akudo M, Ekereya S, Maidoh IF, Iyayi JO, Uzochukwu-Godfrey FC. Psychopharmacological interaction of alcohol and posttraumatic stress disorder: Effective action of naringin. Eur J Pharmacol 2024; 978:176791. [PMID: 38944175 DOI: 10.1016/j.ejphar.2024.176791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/09/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Posttraumatic stress disorder (PTSD) and alcohol use disorder (AUD) are prevalently co-occurring, important risk factors for a broad array of neuropsychiatric diseases. To date, how these two contrastive concomitant pairs increase the risk of neuropsychiatric states, notably exacerbating PTSD-related symptoms, remains unknown. Moreover, pharmacological interventions with agents that could reverse PTSD-AUD comorbidity, however, remained limited. Hence, we investigated the neuroprotective actions of naringin in mice comorbidly exposed to PTSD followed by repeated ethanol (EtOH)-induced AUD. Following a 7-day single-prolong-stress (SPS)-induced PTSD in mice, binge/heavy drinking, notably related to AUD, was induced in the PTSD mice with every-other-day ethanol (2 g/kg, p.o.) administration, followed by daily treatments with naringin (25 and 50 mg/kg) or fluoxetine (10 mg/kg), from days 8-21. PTSD-AUD-related behavioral changes, alcohol preference, hypothalamic-pituitary-adrenal (HPA)-axis dysfunction-induced neurochemical alterations, oxidative/nitrergic stress, and inflammation were examined in the prefrontal-cortex, striatum, and hippocampus. PTSD-AUD mice showed aggravated anxiety, spatial-cognitive, social impairments and EtOH intake, which were abated by naringin, similar to fluoxetine. Our assays on the HPA-axis showed exacerbated increased corticosterone release and adrenal hypertrophy, accompanied by marked dopamine and serotonin increase, with depleted glutamic acid decarboxylase enzyme in the three brain regions, which naringin, however, reversed, respectively. PTSD-AUD mice also showed increased TNF-α, IL-6, malondialdehyde and nitrite levels, with decreased antioxidant elements in the prefrontal-cortex, striatum, and hippocampus compared to SPS-EtOH-mice, mainly exacerbating catalase and glutathione decrease in the hippocampus relative SPS-mice. These findings suggest that AUD exacerbates PTSD pathologies in different brain regions, notably comprising neurochemical dysregulations, oxidative/nitrergic and cytokine-mediated inflammation, with HPA dysfunction, which were, however, revocable by naringin.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria.
| | - Benjamin Oritsemuelebi
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Akpobo M Oghorodi
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria; Department of Biomedical Engineering, Faculty of Technology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adaeze Adebesin
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria
| | - Happy Isibor
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Anthony T Eduviere
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Oghenemine S Otuacha
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Moses Akudo
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Surhirime Ekereya
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Isioma F Maidoh
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Joy O Iyayi
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Faith C Uzochukwu-Godfrey
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| |
Collapse
|
4
|
Favoretto CA, Bertagna NB, Miguel TT, Quadros IMH. The CRF/Urocortin systems as therapeutic targets for alcohol use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:97-152. [PMID: 39523064 DOI: 10.1016/bs.irn.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Development and maintenance of alcohol use disorders have been proposed to recruit critical mechanisms involving Corticotropin Releasing Factor and Urocortins (CRF/Ucns). The CRF/Ucns system is comprised of a family of peptides (CRF, Ucn 1, Ucn 2, Ucn 3) which act upon two receptor subtypes, CRFR1 and CRFR2, each with different affinity profiles to the endogenous peptides and differential brain distribution. Activity of CRF/Ucn system is further modulated by CRF binding protein (CRF-BP), which regulates availability of CRF and Ucns to exert their actions. Extensive evidence in preclinical models support the involvement of CRF/Ucn targets in escalated alcohol drinking, as well as point to changes in CRF/Ucn brain function as a result of chronic alcohol exposure and/or withdrawal. It highlights the role of CRF and CRFR1-mediated signaling in conditions of excessive alcohol taking and seeking, including during various stages of withdrawal and relapse to alcohol. Besides its role in the hypothalamic-pituitary-adrenal (HPA) axis, the importance of extra-hypothalamic CRF pathways, especially in the extended amygdala, in the neurobiology of alcohol abuse and dependence is emphasized. Emerging roles for other targets of the CRF/Ucn system, such as CRF2 receptors, CRF-BP and Ucns in escalated alcohol drinking is also discussed. Finally, the limited translational value of CRF/Ucn interventions in stress-related and alcohol use disorders is discussed. So far, CRFR1 antagonists have shown little or no efficacy in human clinical trials, although a range of unexplored conditions and possibilities remain to be explored.
Collapse
Affiliation(s)
- Cristiane Aparecida Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Natalia Bonetti Bertagna
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil
| | | | - Isabel M H Quadros
- Psychobiology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil.
| |
Collapse
|
5
|
Neira S, Lee S, Hassanein LA, Sides T, D'Ambrosio SL, Boyt KM, Bains JS, Kash TL. Impact and Role of Hypothalamic Corticotropin Releasing Hormone Neurons in Withdrawal from Chronic Alcohol Consumption in Female and Male Mice. J Neurosci 2023; 43:7657-7667. [PMID: 37833068 PMCID: PMC10634552 DOI: 10.1523/jneurosci.1153-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/24/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Worldwide, alcohol use and abuse are a leading risk of mortality, causing 5.3% of all deaths (World Health Organization, 2022). The endocrine stress system, initiated by the peripheral release of corticotropin releasing hormone (CRH) from primarily glutamatergic neurons in the paraventricular nucleus of the hypothalamus (PVN), is profoundly linked with alcohol use, abuse, and relapse (Blaine and Sinha, 2017). These PVN CRH-releasing (PVNCRH) neurons are essential for peripheral and central stress responses (Rasiah et al., 2023), but little is known about how alcohol affects these neurons. Here, we show that two-bottle choice alcohol consumption blunts the endocrine-mediated corticosterone response to stress during acute withdrawal in female mice. Conversely, using slice electrophysiology, we demonstrate that acute withdrawal engenders a hyperexcitable phenotype of PVNCRH neurons in females that is accompanied by increased glutamatergic transmission in both male and female mice. GABAergic synaptic transmission was unaffected by alcohol history. We then tested whether chemogenetic inhibition of PVNCRH neurons would restore stress response in female mice with a history of alcohol drinking in the looming disk test, which mimics an approaching predator threat. Accordingly, inhibition of PVNCRH neurons reduced active escape in hM4Di alcohol history mice only. This study indicates that stress-responsive PVNCRH neurons in females are particularly affected by a history of alcohol consumption. Interestingly, women have indicated an increase in heavy alcohol use to cope with stress (Rodriguez et al., 2020), perhaps pointing to a potential underlying mechanism in alcohol-mediated changes to PVNCRH neurons that alter stress response.SIGNIFICANCE STATEMENT Paraventricular nucleus of the hypothalamus neurons that release corticotropin releasing hormone (PVNCRH) are vital for stress response. These neurons have been understudied in relation to alcohol and withdrawal despite profound relations between stress, alcohol use disorders (AUD), and relapse. In this study, we use a variety of techniques to show that acute withdrawal from a history of alcohol impacts peripheral stress response, PVNCRH neurons, and behavior. Specifically, PVNCRH are in a hyperactive state during withdrawal, which drives an increase in active stress coping behaviors in female mice only. Understanding how alcohol use and withdrawal affects stress responding PVNCRH neurons may contribute to finding new potential targets for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Sofia Neira
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Sophia Lee
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Leslie A Hassanein
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Tori Sides
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Shannon L D'Ambrosio
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kristen M Boyt
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jaideep S Bains
- Hotchkiss Brain Institute and Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
6
|
Borges Dos Santos JR, Rae M, Teixeira SA, Muscará MN, Szumlinski KK, Camarini R. The effect of MK-801 on stress-ethanol cross-sensitization is dissociable from its effects on nNOS activity. Alcohol 2023; 112:31-39. [PMID: 37479092 DOI: 10.1016/j.alcohol.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/23/2023]
Abstract
Locomotor behavioral sensitization represents an animal model for understanding neuroadaptive processes related to repeated drug exposure. Repeated stress can elicit a cross-sensitization to the stimulant response of ethanol, which involves neuronal nitric oxide synthase (nNOS). Activation of N-methyl d-aspartate (NMDA) glutamate receptors triggers nNOS and the synthesis of nitric oxide (NO). In this study, we investigated the effects of blocking NMDA receptors using the NMDA receptor antagonist MK-801 on the cross-sensitization between restraint stress and ethanol. We also evaluated the nNOS activity in the prefrontal cortex (PFC) and hippocampus. Mice were pretreated with saline or MK-801 30 min before an injection of saline or stress exposure for 14 days. On the following day, they were challenged with either saline or 1.8 g/kg ethanol. Swiss male mice pretreated with 0.25 mg/kg MK-801 exhibited a sensitized response to ethanol. Moreover, MK-801 potentiated the cross-sensitization between stress and ethanol. However, MK-801 prevented the enhanced nNOS activity in stress-exposed groups (challenged with saline or ethanol) in the PFC; the antagonist also prevented the ethanol-induced increase in nNOS activity and reduced this enzyme activity in mice exposed to stress in the hippocampus. These data indicate that systemic treatment with the NMDA antagonist potentiated, rather than blocked, ethanol-induced behavioral sensitization and that this effect is dissociable from the capacity of NMDA antagonists to reduce ethanol/stress-induced NOS stimulation in the PFC and hippocampus.
Collapse
Affiliation(s)
- Jaqueline Rocha Borges Dos Santos
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, SP, Brazil; Department of Pharmaceutical Sciences, Institute of Biological and Health Sciences, Universidade Federal Rural Do Rio de Janeiro, RJ, Brazil
| | - Mariana Rae
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, SP, Brazil
| | | | - Marcelo Nicolás Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, SP, Brazil
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, United States
| | - Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Munier J, Shen S, Rahal D, Hanna A, Marty V, O'Neill P, Fanselow M, Spigelman I. Chronic intermittent ethanol exposure disrupts stress-related tripartite communication to impact affect-related behavioral selection in male rats. Neurobiol Stress 2023; 24:100539. [PMID: 37131490 PMCID: PMC10149313 DOI: 10.1016/j.ynstr.2023.100539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 05/04/2023] Open
Abstract
Alcohol use disorder (AUD) is characterized by loss of intake control, increased anxiety, and susceptibility to relapse inducing stressors. Both astrocytes and neurons contribute to behavioral and hormonal consequences of chronic intermittent ethanol (CIE) exposure in animal models. Details on how CIE disrupts hypothalamic neuro-glial communication, which mediates stress responses are lacking. We conducted a behavioral battery (grooming, open field, reactivity to a single, uncued foot-shock, intermittent-access two-bottle choice ethanol drinking) followed by Ca2+ imaging in ex-vivo slices of paraventricular nucleus of the hypothalamus (PVN) from male rats exposed to CIE vapor or air-exposed controls. Ca2+ signals were evaluated in response to norepinephrine (NE) with or without selective α-adrenergic receptor (αAR) or GluN2B-containing N-methyl-D-aspartate receptor (NMDAR) antagonists, followed by dexamethasone (DEX) to mock a pharmacological stress response. Expectedly, CIE rats had altered anxiety-like, rearing, grooming, and drinking behaviors. Importantly, NE-mediated reductions in Ca2+ event frequency were blunted in both CIE neurons and astrocytes. Administration of the selective α1AR antagonist, prazosin, reversed this CIE-induced dysfunction in both cell types. Additionally, the pharmacological stress protocol reversed the altered basal Ca2+ signaling profile of CIE astrocytes. Signaling changes in astrocytes in response to NE were correlated with anxiety-like behaviors, such as the grooming:rearing ratio, suggesting tripartite synaptic function plays a role in switching between exploratory and stress-coping behavior. These data show how CIE exposure causes persistent changes to PVN neuro-glial function and provides the groundwork for how these physiological changes manifest in behavioral selection.
Collapse
Affiliation(s)
- J.J. Munier
- Laboratory of Neuropharmacology, Section of Biosystems & Function, School of Dentistry, UCLA, United States
- Corresponding author.
| | - S. Shen
- Laboratory of Neuropharmacology, Section of Biosystems & Function, School of Dentistry, UCLA, United States
| | - D. Rahal
- Edna Bennett Pierce Prevention Research Center, The Pennsylvania State University, United States
| | - A. Hanna
- Laboratory of Neuropharmacology, Section of Biosystems & Function, School of Dentistry, UCLA, United States
| | - V.N. Marty
- Laboratory of Neuropharmacology, Section of Biosystems & Function, School of Dentistry, UCLA, United States
| | - P.R. O'Neill
- Hatos Center for Neuropharmacology, Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, UCLA, United States
| | - M.S. Fanselow
- Department of Psychology, College of Life Sciences, Department of Psychiatry & Biobehavioral Science, David Geffen School of Medicine, UCLA, United States
| | - I. Spigelman
- Laboratory of Neuropharmacology, Section of Biosystems & Function, School of Dentistry, UCLA, United States
- Corresponding author. Laboratory of Neuropharmacology, Section of Biosystems & Function, School of Dentistry, UCLA, 10833 Le Conte Avenue, 63-078 CHS, Los Angeles, CA, 90095-1668, United States.
| |
Collapse
|
8
|
Gonzalez D, Justin H, Reiss S, Faulkner J, Mahoney H, Yunus A, Gamsby J, Gulick D. Circadian rhythm shifts and alcohol access in adolescence synergistically increase alcohol preference and intake in adulthood in male C57BL/6 mice. Behav Brain Res 2023; 438:114216. [PMID: 36400236 DOI: 10.1016/j.bbr.2022.114216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Adolescents have a natural tendency to be night owls, maintaining delayed circadian rhythms, and this rhythm is in direct conflict with the early wake times required during the school year. This leads to 'social jetlag', chronic circadian stress or desynchrony (CD) in which the rhythm of the intrinsic body clock is out of sync with behavior. CD increases alcohol intake in adolescents and adults, yet it is unknown whether adolescent CD also increases long-term addiction risk. The goal of this study was to determine whether adolescent alcohol intake in CD would increase adult alcohol preference and intake in male C57BL/6 J mice. METHODS We measured free access alcohol intake, water intake, and wheel-running activity during a normal 12 h (h) baseline photoperiod and then during shifting lighting schedules (Experiment 1) or a shortened circadian day (Experiment 2). RESULTS In Experiment 1, altered lighting produced a persistent increase in adolescent alcohol intake and in binge-like drinking (drinking at least 5 licks per minute, with no more than a 1 min break in drinking) in adulthood, but only a transient increase in total alcohol intake for the first week after alcohol was reintroduced in adulthood. In Experiment 2, the circadian shift produced a significant increase in alcohol intake in both adolescence and adulthood. Molecular analysis demonstrated changes in plasma corticosterone and neuronal markers of stress and addiction at the conclusion of these experiments in the CD and alcohol-exposed groups. CONCLUSIONS Thus, we conclude that circadian stress during adolescence is sufficient to produce a long-lasting susceptibility to alcohol use.
Collapse
Affiliation(s)
- David Gonzalez
- USF Neuroscience Institute, Byrd Institute, University of South Florida Health, Tampa, FL, USA; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Hannah Justin
- USF Neuroscience Institute, Byrd Institute, University of South Florida Health, Tampa, FL, USA; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Samantha Reiss
- USF Neuroscience Institute, Byrd Institute, University of South Florida Health, Tampa, FL, USA; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - John Faulkner
- USF Neuroscience Institute, Byrd Institute, University of South Florida Health, Tampa, FL, USA
| | - Heather Mahoney
- USF Neuroscience Institute, Byrd Institute, University of South Florida Health, Tampa, FL, USA; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Amara Yunus
- USF Neuroscience Institute, Byrd Institute, University of South Florida Health, Tampa, FL, USA
| | - Joshua Gamsby
- USF Neuroscience Institute, Byrd Institute, University of South Florida Health, Tampa, FL, USA; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Danielle Gulick
- USF Neuroscience Institute, Byrd Institute, University of South Florida Health, Tampa, FL, USA; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
9
|
Amado P, Zegers J, Yarur HE, Gysling K. Transcriptional Regulation, Signaling Pathways, and Subcellular Localization of Corticotropin-Releasing Factor Receptors in the Central Nervous System. Mol Pharmacol 2022; 102:280-287. [PMID: 36167424 DOI: 10.1124/molpharm.121.000476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
Corticotropin-releasing factor (CRF) receptors CRF-R1 and CRF-R2 are differentially distributed in body tissues, and although they respond differentially to stimuli due to their association with different signaling pathways, both receptors have a fundamental role in the response and adaptation to stressful stimuli. Here, we summarize the reported data on different forms of CRF-R1 and CRF-R2 regulation as well as on their subcellular localization. Although the presence of R1 has been described at pre- and postsynaptic sites, R2 is mainly associated with postsynaptic densities. Different studies have provided valuable information on how these receptors regulate responses at a central level, elucidating different and sometimes synergistic roles in response to stress, but despite their high sequence identity, both receptors have been described to be differentially regulated both by their ligands and by transcriptional factors. To date, and from the point of view of their promoter sequences, it has not yet been reported how the different consensus sites identified in silico could be modulating the transcriptional regulation and expression of the receptors under different conditions, which strongly limits the full understanding of their differential functions, providing a wide field to increase and expand the study of the regulation and role of CRF receptors in the CRF system. SIGNIFICANCE STATEMENT: A large number of physiological functions related to the organization of the stress response in different body tissues are associated with the corticotropin-releasing factor system. This system also plays a relevant role in depression and anxiety disorders, as well as being a direct connection between stress and addiction. A better understanding of how the receptors of this system are regulated would help to expand the understanding of how these receptors respond differently to both drugs and stressful stimuli.
Collapse
Affiliation(s)
- Paula Amado
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Zegers
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hector E Yarur
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Munier JJ, Marty VN, Spigelman I. Sex differences in α-adrenergic receptor function contribute to impaired hypothalamic metaplasticity following chronic intermittent ethanol exposure. Alcohol Clin Exp Res 2022; 46:1384-1396. [PMID: 35791038 PMCID: PMC9612407 DOI: 10.1111/acer.14900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/03/2022] [Accepted: 06/23/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Individuals with alcohol use disorder (AUD) exhibit maladaptive responses of the hypothalamic-pituitary-adrenal (HPA) axis to stress, which has been linked to high rates of relapse to drinking among abstinent individuals. Corticotropin-releasing factor (CRF) parvocellular neuroendocrine cells (PNCs) within the paraventricular nucleus of the hypothalamus (PVN) are critical to stress-induced HPA axis activation. Here, we investigate sex differences in synaptic transmission and plasticity in PNCs following the application of the stress-associated neurotransmitter norepinephrine (NE) in a rat model of AUD. METHODS Adult Sprague-Dawley rats were exposed to 40 days of chronic intermittent ethanol (CIE) vapor and 30 to 108 days of protracted withdrawal. We measured changes in holding current, evoked synaptic currents, and short-term glutamatergic plasticity (STP) in putative PNCs following the application of NE (10 μM) with and without the selective α1 adrenergic receptor (AR) antagonist prazosin (10 μM) or the α2AR antagonist atipamezole (10 μM). The experiments were performed using whole-cell patch clamp recordings in slices from CIE rats and air-exposed controls. RESULTS NE application caused two distinct effects: a depolarizing, inward, postsynaptic current and a reduction in amplitude of an evoked glutamatergic excitatory postsynaptic current (eEPSC). Both effects were sex- and CIE-specific. Prazosin blocked the postsynaptic inward current, while atipamezole blocked the NE-mediated suppression of eEPSCs. Additionally, STP formation was facilitated following NE application only in stress-naïve males and this response was lost in stressed animals exposed to a 30-min restraint stress following CIE exposure. Furthermore, NE + prazosin restored STP formation in stressed CIE males. CONCLUSIONS NE exerts excitatory and inhibitory effects on CRF PVN PNCs, and both effects are influenced by sex and CIE. Behavioral and hormonal responses to stress are influenced by STP formation within the PVN, which is lost following CIE and restored with the preapplication of prazosin. The selective blockade of α1AR may, therefore, ameliorate CIE-induced deficits in HPA responses to stress in a sex-specific manner.
Collapse
Affiliation(s)
- Joseph J. Munier
- Department of Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, CA, USA,Laboratory of Neuropharmacology, Section of Biosystems and Function, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Vincent N. Marty
- Laboratory of Neuropharmacology, Section of Biosystems and Function, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Igor Spigelman
- Laboratory of Neuropharmacology, Section of Biosystems and Function, School of Dentistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Neira S, Hassanein LA, Stanhope CM, Buccini MC, D’Ambrosio SL, Flanigan ME, Haun HL, Boyt KM, Bains JS, Kash TL. Chronic alcohol consumption alters home-cage behaviors and responses to ethologically relevant predator tasks in mice. Alcohol Clin Exp Res 2022; 46:1616-1629. [PMID: 35797227 PMCID: PMC9906815 DOI: 10.1111/acer.14901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/13/2022] [Accepted: 06/29/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Alcohol withdrawal is a key component of severe alcohol use disorder. Animal models of alcohol withdrawal tend to focus on traditional anxiety/stress tests. While these have been essential to advancing our understanding of the biology of alcohol withdrawal, abrupt cessation of drinking following heavy alcohol consumption can also trigger withdrawal-related affective states that impact responses to a variety of life events and stressors. To this end, we show that behaviors in a variety of tasks that differ in task demand and intensity are altered during withdrawal in male and female mice after voluntary alcohol access. METHODS Male and female miceunderwent six weeks of intermittent two-bottle choice alcohol exposure followed by behavioral tests. The tests included-Home cage: low-stress baseline environment to measure spontaneous natural behaviors; Open field: anxiety-inducing bright novel environment; Looming disc: arena with a protective hut where mice are exposed to a series of discs that mimic an overhead advancing predator, and Robogator-simulated predator task: forced foraging behavioral choice in the presence of an advancing robot predator that "attacks" when mice are near a food pellet in a large open arena. RESULTS A history of alcohol exposure impacted behaviors in these tasks in a sex-dependent manner. In the home cage, alcohol induced reductions in digging and heightened stress coping through an increase in grooming time. In males, increased rearing yielded greater vigilance/exploration in a familiar environment. The open-field test revealed an anxiety phenotype in both male and female mice exposed to alcohol. Male mice showed no behavioral alterations to the looming disc task, while females exposed to alcohol showed greater escape responses than water controls, indicative of active stress-response behaviors. In males, the Robogator task revealed a hesitant/avoidant phenotype in alcohol-exposed mice under greater task demands. CONCLUSIONS Few drugs show robust evidence of efficacy in clinical trials for alcohol withdrawal. Understanding how withdrawal alters a variety of behaviors in both males and females that are linked to stress coping can increase our understanding of alcohol misuse and aid in developing better medications for treating individuals with AUD.
Collapse
Affiliation(s)
- Sofia Neira
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Neuroscience, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Leslie A. Hassanein
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christina M. Stanhope
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michelle C. Buccini
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shannon L. D’Ambrosio
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meghan E. Flanigan
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Harold L. Haun
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kristen M. Boyt
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jaideep S. Bains
- Hotchkiss Brain Institute and Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Thomas L. Kash
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Neuroscience, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
Ventral hippocampal NMDA receptors mediate the effects of nicotine on stress-induced anxiety/exploratory behaviors in rats. Neurosci Lett 2022; 780:136649. [DOI: 10.1016/j.neulet.2022.136649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 03/19/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
|
13
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Marty VN, Farokhnia M, Munier JJ, Mulpuri Y, Leggio L, Spigelman I. Long-Acting Glucagon-Like Peptide-1 Receptor Agonists Suppress Voluntary Alcohol Intake in Male Wistar Rats. Front Neurosci 2020; 14:599646. [PMID: 33424537 PMCID: PMC7785877 DOI: 10.3389/fnins.2020.599646] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/03/2020] [Indexed: 12/21/2022] Open
Abstract
Alcohol use disorder (AUD) is a chronic relapsing condition characterized by compulsive alcohol-seeking behaviors, with serious detrimental health consequences. Despite high prevalence and societal burden, available approved medications to treat AUD are limited in number and efficacy, highlighting a critical need for more and novel pharmacotherapies. Glucagon-like peptide-1 (GLP-1) is a gut hormone and neuropeptide involved in the regulation of food intake and glucose metabolism via GLP-1 receptors (GLP-1Rs). GLP-1 analogs are approved for clinical use for diabetes and obesity. Recently, the GLP-1 system has been shown to play a role in the neurobiology of addictive behaviors, including alcohol seeking and consumption. Here we investigated the effects of different pharmacological manipulations of the GLP-1 system on escalated alcohol intake and preference in male Wistar rats exposed to intermittent access 2-bottle choice of 10% ethanol or water. Administration of AR231453 and APD668, two different agonists of G-protein receptor 119, whose activation increases GLP-1 release from intestinal L-cells, did not affect voluntary ethanol intake. By contrast, injections of either liraglutide or semaglutide, two long-acting GLP-1 analogs, potently decreased ethanol intake. These effects, however, were transient, lasting no longer than 48 h. Semaglutide, but not liraglutide, also reduced ethanol preference on the day of injection. As expected, both analogs induced a reduction in body weight. Co-administration of exendin 9-39, a GLP-1R antagonist, did not prevent liraglutide- or semaglutide-induced effects in this study. Injection of exendin 9-39 alone, or blockade of dipeptidyl peptidase-4, an enzyme responsible for GLP-1 degradation, via injection of sitagliptin, did not affect ethanol intake or preference. Our findings suggest that among medications targeting the GLP-1 system, GLP-1 analogs may represent novel and promising pharmacological tools for AUD treatment.
Collapse
Affiliation(s)
- Vincent N Marty
- Laboratory of Neuropharmacology, Section of Oral Biology, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD, United States.,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, United States.,Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Joseph J Munier
- Laboratory of Neuropharmacology, Section of Oral Biology, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yatendra Mulpuri
- Laboratory of Neuropharmacology, Section of Oral Biology, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD, United States.,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, United States.,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, United States.,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, United States.,Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Igor Spigelman
- Laboratory of Neuropharmacology, Section of Oral Biology, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|