1
|
Guan XY, Dong X, Wang YX, Xu BC, Wu XB. Mitochondrial dysfunction in trigeminal ganglion contributes to nociceptive behavior in a nitroglycerin-induced migraine mouse model. Mol Pain 2025; 21:17448069251332100. [PMID: 40110756 PMCID: PMC12035203 DOI: 10.1177/17448069251332100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Migraine is a chronic episodic neurological disorder. However, its diagnosis and management remain unclear. The pathogenesis of migraine is intricately linked to the dysfunction of mitochondria and aberrant trigeminal neuronal activity. Here, we established a murine migraine model via intraperitoneal administration of nitroglycerin (NTG) to examine alterations in mitochondria-associated proteins and calcium signaling patterns within trigeminal neurons, while also investigating the underlying mechanisms. NTG-treated mice exhibited marked periorbital allodynia, decreased crossing of the central area, and decreased time spent in the central area in the open field test compared to Veh treated animals. Furthermore, increased calcium signaling in response to adenosine triphosphate (ATP) stimulation was observed in the trigeminal ganglion (TG) of mice with migraine. Meanwhile, mRNA levels of genes including nuclear respiratory factor-1 (Nrf1), nuclear respiratory factor-2 (Nrf2) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1) were decreased in the TG. Pharmacological regulation of the mitochondrial function affected NTG-induced migraine chronic pain symptoms. TG mitochondria dysfunctions is implicated in the regulation of mechanical hyperalgesia through the modulation of calcium signaling in an NTG-induced migraine animal model.
Collapse
Affiliation(s)
- Xin-Ying Guan
- Department of Neurology, the Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Xin Dong
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi-Xuan Wang
- Department of Neurology, the Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Bing-Chao Xu
- Department of Neurology, the Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Xiao-Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
2
|
Pola P, Frezza A, Gavioli EC, Calò G, Ruzza C. Effects of Stress Exposure to Pain Perception in Pre-Clinical Studies: Focus on the Nociceptin/Orphanin FQ-NOP Receptor System. Brain Sci 2024; 14:936. [PMID: 39335430 PMCID: PMC11431041 DOI: 10.3390/brainsci14090936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Exposure to physical and psychological stress modulates pain transmission in a dual manner. Stress-induced analgesia (SIA) refers to the reduction in pain sensitivity that can occur in response to acute stress. On the contrary, chronic stress exposure may lead to a phenomenon named stress-induced hyperalgesia (SIH). SIH is a clinically relevant phenomenon since it has been well documented that physical and psychological stress exacerbates pain in patients with several chronic pain syndromes, including migraine. The availability of animal models of SIA and SIH is of high importance for understanding the biological mechanisms leading to these phenomena and for the identification of pharmacological targets useful to alleviate the burden of stress-exacerbated chronic pain. Among these targets, the nociceptin/orphanin FQ (N/OFQ)-N/OFQ peptide (NOP) receptor system has been identified as a key modulator of both pain transmission and stress susceptibility. This review describes first the experimental approaches to induce SIA and SIH in rodents. The second part of the manuscript summarizes the scientific evidence that suggests the N/OFQ-NOP receptor system as a player in the stress-pain interaction and candidates NOP antagonists as useful drugs to mitigate the detrimental effects of stress exposure on pain perception.
Collapse
Affiliation(s)
- Pietro Pola
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Frezza
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Elaine C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Girolamo Calò
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
- LTTA Laboratory for Advanced Therapies, Technopole of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Chaudhary S, Singh L, Kaur M, Kadyan P. Genistein mitigates nitroglycerine-induced migraine: modulation of nitric oxide-mediated vasodilation and oxidative stress. Metab Brain Dis 2024; 39:821-831. [PMID: 38795260 DOI: 10.1007/s11011-024-01360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/06/2024] [Indexed: 05/27/2024]
Abstract
Migraine is a widespread brain condition described by frequent, recurrent episodes of incapacitating, moderate-to-severe headaches with throbbing pain that are usually one-sided. It is the 2nd most debilitating state lived with disability in terms of years, with a prevalence rate of 15-20%. Significant drops in estrogen levels have been associated with triggering acute migraine attacks in certain cases. Phytoestrogens are plant-derived compounds that resemble estrogen in structure, enabling them to imitate estrogen's functions in the body by attaching to estrogen receptors. Thus, the study was aimed to explore the protective effect of genistein against migraine. Moreover, the role of nitric oxide was also studied in the observed effect of genistein. Nitric oxide (NO) is implicated in migraine pathophysiology due to its role in promoting cerebral vasodilation and modulation of pain perception. Exploring L-NAME, a nitric oxide synthase inhibitor in migraine research helps scientists better understand the role of NO in migraine. Nitroglycerine treatment significantly increased the facial-unilateral head pain and spontaneous pain, as evidenced by the increased number of head scratching and groomings. Nitroglycerine treatment also induced anxiogenic behavior in mice. A significant reduction in the number of entries in the light phase and open arm, respectively. Biochemical analysis indicated a significant increase in inflammatory and oxidative stress in the nitroglycerin group. A significant increase and decrease in brain TBARS and GSH were observed with nitroglycerine treatment, respectively. Moreover, nitroglycerine treatment has uplifted the serum TNF-α level. Genistein (20 mg/kg) significantly mitigated the facial-unilateral head pain, spontaneous pain, photophobia, and anxiety-like behavior induced by nitroglycerine. Biochemical analysis showed that genistein (20 mg/kg) significantly abrogated the nitroglycerine-induced lipid peroxidation and increased serum TNF-α level. Genistein treatment also upregulated the brain GSH level and downregulated the serum TNF-α level. The L-NAME-mediated alleviation of the protective effect of genistein might be attributed to the vasodilatory effect of L-NAME. Conclusively, it can be suggested that genistein might provide relief from migraine pain by inhibiting nitric oxide-mediated vasodilation and oxidative stress.
Collapse
Affiliation(s)
- Sarika Chaudhary
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, 140413, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Manjot Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Pankaj Kadyan
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, 140413, India
| |
Collapse
|
4
|
Breitwieser GE, Cippitelli A, Wang Y, Pelletier O, Dershem R, Wei J, Toll L, Fakhoury B, Brunori G, Metpally R, Carey DJ, Robishaw J. Rare GPR37L1 Variants Reveal Potential Association between GPR37L1 and Disorders of Anxiety and Migraine. J Neurosci 2024; 44:e1226232024. [PMID: 38569927 PMCID: PMC11089846 DOI: 10.1523/jneurosci.1226-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
GPR37L1 is an orphan receptor that couples through heterotrimeric G-proteins to regulate physiological functions. Since its role in humans is not fully defined, we used an unbiased computational approach to assess the clinical significance of rare G-protein-coupled receptor 37-like 1 (GPR37L1) genetic variants found among 51,289 whole-exome sequences from the DiscovEHR cohort. Rare GPR37L1 coding variants were binned according to predicted pathogenicity and analyzed by sequence kernel association testing to reveal significant associations with disease diagnostic codes for epilepsy and migraine, among others. Since associations do not prove causality, rare GPR37L1 variants were functionally analyzed in SK-N-MC cells to evaluate potential signaling differences and pathogenicity. Notably, receptor variants exhibited varying abilities to reduce cAMP levels, activate mitogen-activated protein kinase (MAPK) signaling, and/or upregulate receptor expression in response to the agonist prosaptide (TX14(A)), as compared with the wild-type receptor. In addition to signaling changes, knock-out (KO) of GPR37L1 or expression of certain rare variants altered cellular cholesterol levels, which were also acutely regulated by administration of the agonist TX14(A) via activation of the MAPK pathway. Finally, to simulate the impact of rare nonsense variants found in the large patient cohort, a KO mouse line lacking Gpr37l1 was generated. Although KO animals did not recapitulate an acute migraine phenotype, the loss of this receptor produced sex-specific changes in anxiety-related disorders often seen in chronic migraineurs. Collectively, these observations define the existence of rare GPR37L1 variants associated with neuropsychiatric conditions in the human population and identify the signaling changes contributing to pathological processes.
Collapse
Affiliation(s)
- Gerda E Breitwieser
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Andrea Cippitelli
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Yingcai Wang
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Oliver Pelletier
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Ridge Dershem
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Jianning Wei
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Lawrence Toll
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Bianca Fakhoury
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Gloria Brunori
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | | | - David J Carey
- Geisinger, Weis Center for Research, Danville, Pennsylvania
| | - Janet Robishaw
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
- College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
5
|
Targowska-Duda KM, Peters D, Marcus JL, Zribi G, Toll L, Ozawa A. Functional and anatomical analyses of active spinal circuits in a mouse model of chronic pain. Pain 2024; 165:685-697. [PMID: 37820238 PMCID: PMC10922047 DOI: 10.1097/j.pain.0000000000003068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/29/2023] [Indexed: 10/13/2023]
Abstract
ABSTRACT Decades of efforts in elucidating pain mechanisms, including pharmacological, neuroanatomical, and physiological studies have provided insights into how nociceptive information transmits from the periphery to the brain and the locations receiving nociceptive signals. However, little is known about which specific stimulus-dependent activated neurons, amongst heterogeneous neural environments, discriminatively evoke the cognate pain behavior. We here shed light on the population of neurons in the spinal cord activated by a painful stimulus to identify chronic pain-dependent activated neuronal subsets using Fos2A-iCreER (TRAP2) mice. We have found a large number of neurons activated by a normally nonpainful stimulus in the spinal cord of spinal nerve-ligated mice, compared with sham. Neuronal activation was observed in laminae I and II outer under heat hyperalgesia. A large number of neurons in laminae II inner were activated in both mechanical allodynia and heat hyperalgesia conditions, while mechanical allodynia tends to be the only stimulus that activates cells at lamina II inner dorsal region. Neuroanatomical analyses using spinal cell markers identified a large number of spinal inhibitory neurons that are recruited by both mechanical allodynia and heat hyperalgesia. Of interest, spinal neurons expressing calretinin, calbindin, and parvalbumin were activated differently with distinct pain modalities (ie, mechanical allodynia vs heat hyperalgesia). Chemogenetic inhibition of those activated neurons significantly and specifically reduced the response to the pain stimulus associated with the stimulus modality originally given to the animals. These findings support the idea that spinal neuronal ensembles underlying nociceptive transmission undergo dynamic changes to regulate selective pain responses.
Collapse
Affiliation(s)
- Katarzyna M. Targowska-Duda
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, 33431, United States
- Department of Biopharmacy, Medical University of Lublin, Lublin, 20-093, Poland
| | - Darian Peters
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, 33431, United States
| | - Jason L. Marcus
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, 33431, United States
| | - Gilles Zribi
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, 33431, United States
| | - Lawrence Toll
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, 33431, United States
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Akihiko Ozawa
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, 33431, United States
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
6
|
Chiang CC, Porreca F, Robertson CE, Dodick DW. Potential treatment targets for migraine: emerging options and future prospects. Lancet Neurol 2024; 23:313-324. [PMID: 38365382 DOI: 10.1016/s1474-4422(24)00003-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024]
Abstract
Migraine is a leading cause of disability worldwide. Despite the recent approval of several calcitonin gene-related peptide-targeted therapies, many people with migraine do not achieve satisfactory headache improvement with currently available therapies and there continues to be an unmet need for effective and tolerable migraine-specific treatments. Exploring additional targets that have compelling evidence for their involvement in modulating migraine pathways is therefore imperative. Potential new therapies for migraine include pathways involved in nociception, regulation of homoeostasis, modulation of vasodilation, and reward circuits. Animal and human studies show that these targets are expressed in regions of the CNS and peripheral nervous system that are involved in pain processing, indicating that these targets might be regarded as promising for the discovery of new migraine therapies. Future studies will require assessment of whether targets are suitable for therapeutic modulation, including assessment of specificity, affinity, solubility, stability, efficacy, and safety.
Collapse
Affiliation(s)
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | | | - David W Dodick
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA; Atria Academy of Science and Medicine, New York, NY, USA
| |
Collapse
|
7
|
Kim SJ, Yeo JH, Yoon SY, Roh DH. GV16 acupoint stimulation with bee venom reduces peripheral hypersensitivity via activation of α2 adrenoceptors in a nitroglycerin-induced migraine mouse model. Integr Med Res 2023; 12:100999. [PMID: 37953754 PMCID: PMC10638029 DOI: 10.1016/j.imr.2023.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/23/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Background Peripheral hypersensitivities develop in the face and hindpaws of mice with nitroglycerin (NTG)-induced migraine. We evaluated whether diluted bee venom (DBV) injections at acupoints prevented these peripheral hypersensitivities and c-Fos expression in the trigeminal nucleus caudalis (TNC). Methods NTG (10 mg/kg, intraperitoneal, i.p.) was administered every other day for nine days. DBV (0.1 mg/kg) was subcutaneously injected into the ST36 (Zusanli), LI4 (Hegu), or GV16 (Fengfu) acupoints 75 min after each NTG injection. Mice were pretreated with naloxone (5 mg/kg, i.p.) or yohimbine (5 mg/kg, i.p.) 30 min before the DBV injections. Results NTG injection caused facial cold allodynia, hindpaw mechanical allodynia, and increased c-Fos-immunoreactive (ir) cells in the TNC. Repetitive DBV injections at GV16, but not the ST36, or LI4 acupoints, suppressed NTG-induced hindpaw mechanical allodynia and facial cold allodynia. The number of c-Fos-ir cells also decreased in response to DBV injections at the GV16 acupoint. Remarkably, pretreatment with yohimbine reversed the anti-allodynic effects of DBV injections and attenuated the decreased c-Fos expression in response to GV16 DBV treatment. Naloxone did not block the effects of GV16 DBV stimulation. Conclusion These findings demonstrate that repetitive DBV treatment at the GV16 acupoint relieves NTG-induced facial and hindpaw hypersensitivities and decreases in c-Fos expression in the TNC via activation of the alpha-2 adrenoceptors, but not the opioid receptors.
Collapse
Affiliation(s)
- Sol-Ji Kim
- Department of Oral Physiology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Hee Yeo
- Department of Oral Physiology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seo-Yeon Yoon
- Department of Companion Animals, Yuhan University, Bucheon-si, Gyeonggi-do 14780, Republic of Korea
| | - Dae-Hyun Roh
- Department of Oral Physiology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
8
|
Sturaro C, Fakhoury B, Targowska-Duda KM, Zribi G, Schoch J, Ruzza C, Calò G, Toll L, Cippitelli A. Preclinical effects of cannabidiol in an experimental model of migraine. Pain 2023; 164:2540-2552. [PMID: 37310430 DOI: 10.1097/j.pain.0000000000002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/25/2023] [Indexed: 06/14/2023]
Abstract
ABSTRACT Migraine is a disabling disorder characterized by recurrent headaches, accompanied by abnormal sensory sensitivity and anxiety. Despite extensive historical use of cannabis in headache disorders, there is limited research on the nonpsychoactive cannabidiol (CBD) for migraine and there is no scientific evidence to prove that CBD is an effective treatment. The effects of CBD are examined here using a calcitonin gene-related peptide (CGRP)-induced migraine model that provides measures of cephalic allodynia, spontaneous pain, altered light sensitivity (photophobia), and anxiety-like behavior in C57BL/6J mice. A single administration of CGRP induced facial hypersensitivity in both female and male mice. Repeated CGRP treatment produced progressively decreased levels in basal thresholds of allodynia in females, but not in males. A single CBD administration protected both females and males from periorbital allodynia induced by a single CGRP injection. Repeated CBD administration prevented increased levels of basal allodynia induced by repeated CGRP treatment in female mice and did not lead to responses consistent with migraine headache as occurs with triptans. Cannabidiol, injected after CGRP, reversed CGRP-evoked allodynia. Cannabidiol also reduced spontaneous pain traits induced by CGRP administration in female mice. Finally, CBD blocked CGRP-induced anxiety in male mice, but failed in providing protection from CGRP-induced photophobia in females. These results demonstrate the efficacy of CBD in preventing episodic and chronic migraine-like states with reduced risk of causing medication overuse headache. Cannabidiol also shows potential as an abortive agent for treating migraine attacks and headache-related conditions such as spontaneous pain and anxiety.
Collapse
Affiliation(s)
- Chiara Sturaro
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Bianca Fakhoury
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Katarzyna M Targowska-Duda
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Gilles Zribi
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Jennifer Schoch
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Girolamo Calò
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Lawrence Toll
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Andrea Cippitelli
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
9
|
Xu M, Shi Z, He Z, Ling X, Wang W, Liu H, Gong M. Rutaecarpine alleviates migraine in nitroglycerin-induced mice by regulating PTEN/PGK1 signaling pathway to activate NRF2 antioxidant system. Biomed Pharmacother 2023; 166:115300. [PMID: 37557014 DOI: 10.1016/j.biopha.2023.115300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Due to its widespread prevalence, migraine is a common neurovascular condition that has a major impact on people's health and quality of life. Rutaecarpine (RUT) is one of the main effective components of Evodia rutaecarpa, which has a wide range of biological activities. However, the exact mechanism by which RUT improves migraine remain unknown. PURPOSE The purpose of this study was to investigate whether RUT improves migraine by inhibiting oxidative stress via activating the Nrf2 antioxidant system through the PTEN/PGK1 signaling pathway. METHODS In vivo, a mouse model of chronic migraine (CM) was established by repeated intraperitoneal injection of nitroglycerin (NTG). After treatment with RUT and Sumatriptan, behavioral tests were performed, followed by measurements of oxidative stress-related indicators in the trigeminal nucleus caudalis, expression of proteins associated with the Nrf2 antioxidant system, and the PTEN/PGK1 pathway. In vitro, PC12 cells were stimulated by 100 μM H2O2 for 24 h to induce oxidative stress, which was then treated with RUT. Furthermore, the role of PTEN in antioxidant stress of RUT was elucidated by knockout of the PTEN gene. RESULTS The results showed that RUT treatment improved NTG-induced migraine in mice by inhibiting oxidative stress. Importantly, RUT inhibited oxidative stress in NTG-induced mice or H2O2-induced PC12 cells via activating the Nrf2 antioxidant system by inhibiting PGK1 activity through PTEN. These results provide evidence that RUT improves migraine by activation of the Nrf2 antioxidant system through the PTEN/PGK1 pathway and provide new insights into the potential use of RUT as an effective drug development candidate for migraine.
Collapse
Affiliation(s)
- Min Xu
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, China
| | - Zhenhua Shi
- Department of Neurosurgery, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Nantong University, 215500 Jiangsu Province, China
| | - Ziyang He
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, China
| | - Xiaoyang Ling
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, China
| | - Wenhua Wang
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, China
| | - Hua Liu
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu Province, China.
| | - Mingjie Gong
- Department of Neurosurgery, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Nantong University, 215500 Jiangsu Province, China.
| |
Collapse
|
10
|
Breitwieser GE, Cippitelli A, Wang Y, Pelletier O, Dershem R, Wei J, Toll L, Fakhoury B, Brunori G, Metpally R, Carey DJ, Robishaw J. Rare GPR37L1 variants reveal potential roles in anxiety and migraine disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547546. [PMID: 37461723 PMCID: PMC10349990 DOI: 10.1101/2023.07.05.547546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
GPR37L1 is an orphan receptor that couples through heterotrimeric G-proteins to regulate physiological functions. Since its role in humans is not fully defined, we used an unbiased computational approach to assess the clinical significance of rare GPR37L1 genetic variants found among 51,289 whole exome sequences from the DiscovEHR cohort. Briefly, rare GPR37L1 coding variants were binned according to predicted pathogenicity, and analyzed by Sequence Kernel Association testing to reveal significant associations with disease diagnostic codes for epilepsy and migraine, among others. Since associations do not prove causality, rare GPR37L1 variants were then functionally analyzed in SK-N-MC cells to evaluate potential signaling differences and pathogenicity. Notably, receptor variants exhibited varying abilities to reduce cAMP levels, activate MAPK signaling, and/or upregulate receptor expression in response to the agonist prosaptide (TX14(A)), as compared to the wild-type receptor. In addition to signaling changes, knockout of GPR37L1 or expression of certain rare variants altered cellular cholesterol levels, which were also acutely regulated by administration of the agonist TX14(A) via activation of the MAPK pathway. Finally, to simulate the impact of rare nonsense variants found in the large patient cohort, a knockout (KO) mouse line lacking Gpr37L1 was generated, revealing loss of this receptor produced sex-specific changes implicated in migraine-related disorders. Collectively, these observations define the existence of rare GPR37L1 variants in the human population that are associated with neuropsychiatric conditions and identify the underlying signaling changes that are implicated in the in vivo actions of this receptor in pathological processes leading to anxiety and migraine. SIGNIFICANCE STATEMENT G-protein coupled receptors (GPCRs) represent a diverse group of membrane receptors that contribute to a wide range of diseases and serve as effective drug targets. However, a number of these receptors have no identified ligands or functions, i.e., orphan receptors. Over the past decade, advances have been made, but there is a need for identifying new strategies to reveal their roles in health and disease. Our results highlight the utility of rare variant analyses of orphan receptors for identifying human disease associations, coupled with functional analyses in relevant cellular and animal systems, to ultimately reveal their roles as novel drug targets for treatment of neurological disorders that lack wide-spread efficacy.
Collapse
|
11
|
Different Involvement of ASIC and TRPA1 in Facial and Hindpaw Allodynia in Nitroglycerin-Induced Peripheral Hypersensitivities in Mice. Life (Basel) 2022; 12:life12091294. [PMID: 36143331 PMCID: PMC9502551 DOI: 10.3390/life12091294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
The pathophysiological mechanism underlying migraine-associated peripheral hypersensitivity remains unclear. Acid-sensing ion channels (ASICs) and transient receptor potential ankyrin 1 (TRPA1) are known to be causative pathogenic factors of mechanical and cold allodynia, respectively. Here, we sought to investigate their involvement in cold and mechanical allodynia of the face and hindpaws, respectively, in a mouse model of repetitive nitroglycerin (NTG)-induced migraine. NTG (10 mg/kg) was administered to the mice every other day for 9 days, followed 90 min later by HC-030031 (a TRPA1 blocker) or amiloride (a non-selective ASIC blocker). Mechanical or cold sensitivity of the hindpaw and facial regions was quantified using von-Frey filaments or acetone solution, respectively. Immunohistochemistry revealed that c-Fos expression was significantly increased in the trigeminal nucleus caudalis region but not in the spinal cord. Amiloride treatment only reduced NTG-induced hindpaw mechanical allodynia, whereas HC-030031 treatment only improved facial cold allodynia. Interestingly, the number of c-Fos positive cells decreased to a similar level in each drug treatment group. These findings demonstrate that facial cold allodynia and hindpaw mechanical allodynia are differentially mediated by activation of TRPA1 and ASIC, respectively, in mice with repetitive NTG-induced hypersensitivity.
Collapse
|
12
|
Wu F, Huang Y, Wei G, Huang Z, Shi C, Lin W, Liao J. Exogenous Hsp70 attenuates nitroglycerin-induced migraine-like symptoms in mice. J Neurophysiol 2021; 126:1030-1037. [PMID: 34469702 DOI: 10.1152/jn.00314.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the connection between heat shock protein 70 (HSP70) and vestibular migraine is not clear, HSP70 is neuroprotective in other scenarios. This study aimed to investigate the potential of exogenous HSP70 for treating migraine-like symptoms in a mouse model of nitroglycerin (NTG)-induced migraine. HSP70 levels were assessed in patients with vestibular migraine and healthy individuals by ELISA. Migraine was induced in mice by NTG, and HSP70 expression was examined in the trigeminal nucleus caudalis (TNC) tissue of mice treated with NTG and NTG together with exogenous HSP70. The effects of exogenous HSP70 on migraine-like symptoms were assessed through behavioral assays. Finally, the impact of HSP70 on oxidative stress and NF-κB signaling in mice with migraine was investigated. Serum HSP70 in patients with vestibular migraine was significantly lower than that of healthy individuals. NTG administration significantly suppressed HSP70 expression in mouse TNC tissue, which was reversed by exogenous HSP70. HSP70 alleviated NTG-induced mechanical hypersensitivity, light aversion, and anxiety-like behavior. Finally, exogenous HSP70 suppressed NTG-induced oxidative stress and NF-κB signaling. Our study suggests that exogenous HSP70 may be a potential therapy for alleviating migraine symptoms and our promising finding warrants further investigation of HSP70 for clinical application.NEW & NOTEWORTHY The study suggests that exogenous HSP70 may be a potential therapy for alleviating migraine symptoms and our promising finding warrants further investigation of HSP70 for clinical application.
Collapse
Affiliation(s)
- Fengfang Wu
- Department of Otolaryngology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yifeng Huang
- Department of Diagnostic Radiology, Huaqiao University Affiliated Straight Hospital, Quanzhou, China
| | - Guifang Wei
- Department of Otolaryngology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Zhiwei Huang
- Department of Otolaryngology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Congwen Shi
- Department of Otolaryngology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Weinian Lin
- Department of Otolaryngology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Jun Liao
- Department of Otolaryngology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
13
|
Zhang Y, Standifer KM. Exacerbated Headache-Related Pain in the Single Prolonged Stress Preclinical Model of Post-traumatic Stress Disorder. Cell Mol Neurobiol 2021; 41:1009-1018. [PMID: 32930941 PMCID: PMC8159770 DOI: 10.1007/s10571-020-00962-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/03/2020] [Indexed: 11/29/2022]
Abstract
Chronic headache pain is one of the most commonly reported comorbid pain conditions with post-traumatic stress disorder (PTSD) patients and resistant to effective treatment, yet no combined preclinical model of the two disorders has been reported. Here, we used a modified chronic headache pain model to investigate the contribution of single prolonged stress (SPS) model of PTSD with sodium nitroprusside (SNP)-induced hyperalgesia. Injection of SNP (2 mg/kg, i.p.) occurred every other day from day 7 to day 15 after initiation of SPS in rats. Paw withdrawal threshold (PWT) to von Frey stimuli and tail flick latencies (TFL) dramatically decreased as early as 7 days after SPS and lasted until at least day 21. Basal PWT and TFL also significantly decreased during the SNP treatment period. The lower nociceptive thresholds recovered in 6 days following the final SNP injection in SNP group, but not in SPS + SNP group. Elevated nociceptin/OFQ (N/OFQ) levels observed in cerebrospinal fluid of SPS rats were even higher in SPS + SNP group. Glial fibrillary acidic protein (GFAP) and N/OFQ peptide (NOP) receptor mRNA expression increased in dorsal root ganglia (DRG) 21 days after SPS exposure; mRNA increases in the SPS/SNP group was more pronounced than SPS or SNP alone. GFAP protein expression was upregulated in trigeminal ganglia by SPS. Our results indicate that traumatic stress exaggerated chronic SNP-induced nociceptive hypersensitivity, and that N/OFQ and activated satellite glia cells may play an important role in the interaction between both conditions.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kelly M Standifer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
14
|
Toll L, Cippitelli A, Ozawa A. The NOP Receptor System in Neurological and Psychiatric Disorders: Discrepancies, Peculiarities and Clinical Progress in Developing Targeted Therapies. CNS Drugs 2021; 35:591-607. [PMID: 34057709 PMCID: PMC8279133 DOI: 10.1007/s40263-021-00821-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 02/01/2023]
Abstract
The nociceptin opioid peptide (NOP) receptor and its endogenous ligand nociceptin/orphanin FQ (N/OFQ) are the fourth members of the opioid receptor and opioid peptide families. Although they have considerable sequence homology to the other family members, they are not considered opioid per se because they do not have pharmacological profiles similar to the other family members. The number of NOP receptors in the brain is higher than the other family members, and NOP receptors can be found throughout the brain. Because of the widespread distribution of NOP receptors, N/OFQ and other peptide and small molecule agonists and antagonists have extensive CNS activities. Originally thought to be anti-opioid, NOP receptor agonists block some opioid activities, potentiate others, and modulate other activities not affected by traditional opiates. Because the effect of receptor activation can be dependent upon site of administration, state of the animal, and other variables, the study of NOP receptors has been fraught with contradictions and inconsistencies. In this article, the actions and controversies pertaining to NOP receptor activation and inhibition are discussed with respect to CNS disorders including pain (acute, chronic, and migraine), drug abuse, anxiety and depression. In addition, progress towards clinical use of NOP receptor-directed compounds is discussed.
Collapse
Affiliation(s)
- Lawrence Toll
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA.
| | - Andrea Cippitelli
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| | - Akihiko Ozawa
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| |
Collapse
|
15
|
Characterization of opioidergic mechanisms related to the anti-migraine effect of vagus nerve stimulation. Neuropharmacology 2021; 195:108375. [PMID: 33444636 DOI: 10.1016/j.neuropharm.2020.108375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/19/2022]
Abstract
Vagus nerve stimulation (VNS) is a promising neuromodulation approach used in the treatment of migraine, whose therapeutic mechanism is largely unknown. Previous studies suggest that VNS's anti-nociceptive effects may, in part, involve engaging opioidergic mechanisms. We used a validated preclinical model of head pain, with good translational outcomes in migraine, acute intracranial-dural stimulation, which has responded to invasive VNS. We tested the effects of μ (MOR), δ (DOR) and κ (KOR) opioid receptor agonists in this model, and subsequently the effects of opioid receptor antagonists against VNS-mediated neuronal inhibition. MOR, DOR, and KOR agonists all inhibited dural-evoked trigeminocervical neuronal responses. Both DOR and KOR agonists also inhibited ongoing spontaneous firing of dural responsive neurons. Both DOR and KOR agonists were more efficacious than the MOR agonist in this model. We confirm the inhibitory effect of invasive VNS and demonstrate that this effect was prevented by a broad-spectrum opioid receptor antagonist, and by a highly selective DOR antagonist. Our data confirm the role of MOR in dural-trigeminovascular neurotransmission and additionally provide evidence of a role of both DOR and KOR in dural-nociceptive transmission of trigeminocervical neurons. Further, the results here provide evidence of engagement of opioidergic mechanisms in the therapeutic action of VNS in headache, specifically the DOR. These studies provide further support for the important role of the DOR in headache mechanisms, and as a potential therapeutic target. The data begin to dissect the mode of action of the analgesic effects of VNS in the treatment of primary headache disorders.
Collapse
|
16
|
Ernstsen C, Christensen SL, Olesen J, Kristensen DM. No additive effect of combining sumatriptan and olcegepant in the GTN mouse model of migraine. Cephalalgia 2020; 41:329-339. [PMID: 33059476 DOI: 10.1177/0333102420963857] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Despite recent advances in migraine treatment there is a need for therapies with higher clinical efficacy and/or fewer side effects. Triptans (5-HT1B/1D/1F agonists) are essential in the present treatment regime and gepants (CGRP-receptor antagonists) are recognized as effective in acute migraine treatment. Triptans and gepants have different mechanisms of action and here we tested the hypothesis that a combination of these drugs (sumatriptan and olcegepant) would result in an additive effect. METHODS Using the validated glyceryl trinitrate mouse model of migraine, we initially tested dose-response relationships of sumatriptan (0.1, 0.3, and 0.6 mg/kg IP) and olcegepant (0.25, 0.50, and 1.0 mg/kg IP) to find suitable high and low doses. Subsequently, we performed a combination study of the two drugs with a low and a high dose. All experiments were vehicle (placebo) controlled and blinded. RESULTS Sumatriptan significantly reduced glyceryl trinitrate-induced allodynia (F(4,54) = 13.51, p < 0.0001) at all doses. Olcegepant also reduced glyceryl trinitrate-induced allodynia (F(4,53) = 16.11, p < 0.0001) with the two higher doses being significantly effective. Combining 0.50 mg/kg olcegepant with 0.1 or 0.6 mg/kg sumatriptan did not have any improved effect compared to either drug alone (p > 0.50 on all days) in our mouse model. CONCLUSION Combining olcegepant and sumatriptan did not have an additive effect compared to single-drug treatment in this study. Triptan-gepant combinations will therefore most likely not improve migraine treatment. Nevertheless, further studies are necessary, and combinations should also be examined in patients with migraine.
Collapse
Affiliation(s)
- Charlotte Ernstsen
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Sarah L Christensen
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Jes Olesen
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - David M Kristensen
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark.,University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
17
|
Wang S, Yao H, Xu Y, Hao R, Zhang W, Liu H, Huang Y, Guo W, Lu B. Therapeutic potential of a TrkB agonistic antibody for Alzheimer's disease. Theranostics 2020; 10:6854-6874. [PMID: 32550908 PMCID: PMC7295064 DOI: 10.7150/thno.44165] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
Repeated failures of "Aβ-lowering" therapies call for new targets and therapeutic approaches for Alzheimer's disease (AD). We propose to treat AD by halting neuronal death and repairing synapses using a BDNF-based therapy. To overcome the poor druggability of BDNF, we have developed an agonistic antibody AS86 to mimic the function of BDNF, and evaluate its therapeutic potential for AD. Method: Biochemical, electrophysiological and behavioral techniques were used to investigate the effects of AS86 in vitro and in vivo. Results: AS86 specifically activated the BDNF receptor TrkB and its downstream signaling, without affecting its other receptor p75NTR. It promoted neurite outgrowth, enhanced spine growth and prevented Aβ-induced cell death in cultured neurons, and facilitated Long-Term Potentiation (LTP) in hippocampal slices. A single-dose tail-vein injection of AS86 activated TrkB signaling in the brain, with a half-life of 6 days in the blood and brain. Bi-weekly peripheral administration of AS86 rescued the deficits in object-recognition memory in the APP/PS1 mouse model. AS86 also reversed spatial memory deficits in the 11-month, but not 14-month old AD mouse model. Conclusion: These results demonstrate the potential of AS86 in AD therapy, suggesting that neuronal and/or synaptic repair as an alternative therapeutic strategy for AD.
Collapse
Affiliation(s)
- Shudan Wang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, 100070
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| | - Hongyang Yao
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
| | - Yihua Xu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| | - Rui Hao
- Center of Translational Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China, 200065
| | - Wen Zhang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
| | - Hang Liu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| | - Ying Huang
- Center of Translational Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China, 200065
| | - Wei Guo
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, 100070
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, 100070
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| |
Collapse
|