1
|
Tickerhoof MC, Nerio Morales LK, Goff J, Vitale EM, Smith AS. Extended amygdala corticotropin-releasing hormone neurons regulate sexually dimorphic changes in pair bond formation following social defeat in prairie voles (Microtus ochrogaster). Neuropsychopharmacology 2025; 50:965-975. [PMID: 39939823 DOI: 10.1038/s41386-025-02067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/03/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
The neurobiological mechanisms underlying the connection between anxiety brought on by social stressors and the negative impact on relationship formation have remained elusive. In order to address this question, we used the social defeat model in the socially monogamous prairie vole to investigate the impact of this stress on pair bond formation. Social defeat experience inhibited partner preference formation in males but promoted preference in females. Furthermore, pair bonding increased corticotropin-releasing hormone (CRH) expression in the bed nucleus of the stria terminalis (BNST) in male prairie voles, while defeat experience increased BNST CRH expression in females. Chemogenetic excitation of BNST CRH neurons during a short cohabitation with a new partner promoted a partner preference in stress-naïve prairie voles. Interestingly, chemogenetic inhibition of BNST CRH neurons during cohabitation with a new partner blocked partner preference in stress-naïve males but promoted preference in defeated males. Inhibition of BNST CRH neurons also blocked partner preference in stress-naïve females but did not alter preference behavior in defeated females. This study revealed sexual dimorphism in not only the impact of social defeat on pair bond formation, but also in the role BNST CRHergic neurons play in regulating changes in pair bonding following social conflict.
Collapse
Affiliation(s)
- Maria C Tickerhoof
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| | - Lina K Nerio Morales
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| | - Jeff Goff
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| | - Erika M Vitale
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| | - Adam S Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
2
|
Wan B, Zhang L, Wang X, Zhang R, Li L, Zhang Y, Chen Z, Hu C. Fam172a Mediates the Stimulation of Hypothalamic Oxytocin Neurons to Suppress Obesity-Induced Anxiety. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414723. [PMID: 39960327 PMCID: PMC11984834 DOI: 10.1002/advs.202414723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/25/2025] [Indexed: 03/29/2025]
Abstract
Anxiety disorder is the most common mental disorder worldwide. Although human studies have demonstrated a positive association between obesity and anxiety disorder, the exact mechanism linking these conditions is unclear. Interestingly, oxytocin (Oxt) neurons, predominantly expressed in the hypothalamic paraventricular nucleus (PVN), play a crucial role in both obesity and anxiety. In this study, obesity can induce anxiety-like behavior in mice, which can be ameliorated by the activation of PVN Oxt neurons. Conversely, inhibiting PVN Oxt neurons accelerate the progression of anxiety. Moreover, the family with sequence similarity 172, member A (Fam172a), an anxiety susceptibility gene, is highly expressed in the hypothalamic PVN Oxt neuron but reduce in the PVN Oxt neuron of mice in the high-fat diet and acute restraint stress conditions. Significantly, overexpression of Fam172a in PVN Oxt neurons improve obesity-anxiety-like behavior in mice. In contrast, disruption of Fam172a in PVN Oxt neurons exacerbate obesity-anxiety-like behavior. Furthermore, this study demonstrates that Fam172a is involved in mRNA degradation in Oxt neurons by regulating the intranuclear transport of Argonaute 2, thereby influencing Oxt secretion and ultimately impacting obesity-anxiety-like behavior. These findings suggest that Fam172a serves as a key target of PVN Oxt neurons in the regulation of obesity-induced anxiety.
Collapse
Affiliation(s)
- Baocheng Wan
- Jinzhou Medical University Graduate Training BaseShanghai Sixth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200233China
| | - Lina Zhang
- School of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Xinyu Wang
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Rong Zhang
- Shanghai Diabetes InstituteShanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for DiabetesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Lianxi Li
- Shanghai Diabetes InstituteShanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for DiabetesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Yi Zhang
- Shanghai Diabetes InstituteShanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for DiabetesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Zhuo Chen
- Shanghai Diabetes InstituteShanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for DiabetesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Cheng Hu
- Jinzhou Medical University Graduate Training BaseShanghai Sixth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200233China
- Department of Endocrinology and MetabolismFengxian Central Hospital Affiliated to Southern Medical UniversityShanghai201449China
| |
Collapse
|
3
|
Tickerhoof MC, Morales LKN, Goff J, Vitale EM, Smith AS. Extended amygdala corticotropin-releasing hormone neurons regulate sexually dimorphic changes in pair bond formation following social defeat in prairie voles ( Microtus ochrogaster). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623026. [PMID: 39605377 PMCID: PMC11601433 DOI: 10.1101/2024.11.11.623026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The neurobiological mechanisms underlying the connection between anxiety brought on by social stressors and the negative impact on relationship formation have remained elusive. In order to address this question, we used the social defeat model in the socially monogamous prairie vole to investigate the impact of this stress on pair bond formation. Social defeat experience inhibited partner preference formation in males but promoted preference in females. Furthermore, pair bonding increased corticotropin-releasing hormone (CRH) expression in the bed nucleus of the stria terminalis (BNST) in male prairie voles, while defeat experience increased BNST CRH expression in females. Chemogenetic excitation of BNST CRH neurons during a short cohabitation with a new partner promoted a partner preference in stress-naïve prairie voles. Interestingly, chemogenetic inhibition of BNST CRH neurons during cohabitation with a new partner blocked partner preference in stress-naïve males but promoted preference in defeated males. Inhibition of BNST CRH neurons also blocked partner preference in stress-naïve females but did not alter preference behavior in defeated females. This study revealed sexual dimorphism in not only the impact of social defeat on pair bond formation, but also in the role BNST CRHergic neurons play in regulating changes in pair bonding following social conflict.
Collapse
Affiliation(s)
- Maria C. Tickerhoof
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045
| | - Lina K. Nerio Morales
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045
| | - Jeff Goff
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045
| | - Erika M. Vitale
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045
| | - Adam S. Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045
| |
Collapse
|
4
|
Vitale EM, Tbaba AH, Sanchez S, Hale L, Kenkel WM, Johnson MA, Smith AS. Pair bond quality influences social conditioned place preference expression, passive coping behavior, and central oxytocin receptor expression following partner loss in male prairie voles. Soc Neurosci 2024; 19:273-286. [PMID: 39577457 DOI: 10.1080/17470919.2024.2428598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/17/2024] [Indexed: 11/24/2024]
Abstract
The dissolving of social bonds is disruptive and leads to increased stress responsivity and a strong desire for reunion. The oxytocin (OXT) system is critical for the formation of social attachments, such as pair bonds, and is also involved in social recognition, social memory, and social vigilance. Therefore, long-term changes in the OXT system resulting from cohabitation and pair bonding may contribute to reunion-seeking behavior. Here, we employed social conditioned place preference (SCPP) and the forced swim test (FST) to examine sensitivity to partner-associated contexts and passive stress coping following a period of partner separation. We found that opposite-sex cohabitation led to SCPP formation only in male prairie voles with a strong preference for their partner, and this SCPP was maintained following short-term loss of a pair bonded partner. Furthermore, pair bonded males that were separated from their partner displayed more passive stress-coping than those that were not bonded to their lost partner, suggesting that differences in prairie vole mating tactics (i.e. formation of a bond or not) influence the behavioral response to partner separation. Finally, we found changes in OXTR binding that may reflect variation in loss-related behavioral phenotypes based on different mating strategies.
Collapse
Affiliation(s)
- Erika M Vitale
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Amina H Tbaba
- Program in Neuroscience, University of Kansas, Lawrence, KS, USA
| | - Sophia Sanchez
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Luanne Hale
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - William M Kenkel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Michael A Johnson
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Adam S Smith
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
- Program in Neuroscience, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
5
|
Nerio-Morales LK, Boender AJ, Young LJ, Lamprea MR, Smith AS. Limbic oxytocin receptor expression alters molecular signaling and social avoidance behavior in female prairie voles ( Microtus ochrogaster). Front Neurosci 2024; 18:1409316. [PMID: 39081850 PMCID: PMC11286410 DOI: 10.3389/fnins.2024.1409316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The social defeat paradigm is the most representative animal model to study social anxiety disorder (SAD) and its underlying neuronal mechanisms. We have previously reported that defeat progressively reduces oxytocin receptors (OXTR) in limbic regions of the brain over an eight-week period in female prairie voles (Microtus ochrogaster). Oxytocin receptors activate the mitogen-activated protein kinase (MAPK) pathway, which has been previously associated with the anxiolytic effects of oxytocin. Here, we assessed the functional significance of OXTR in stress-induced social avoidance and the response of the MAPK signaling pathway in the nucleus accumbens (NAc), anterior cingulate cortex (ACC), and basolateral amygdala (BLA) of female prairie voles. Methods In experiment 1, Sexually naïve adult female prairie voles were defeated for three consecutive days and tested a week after for social preference/avoidance (SPA) test. Control subjects were similarly handled without defeat conditioning. In experiment 2, sexually and stress naïve adult female prairie voles were bilaterally injected into the NAc, ACC, or the BLA with a CRISPR/Cas9 virus targeting the Oxtr coding sequence to induce OXTR knockdown. Two weeks post-surgery, subjects were tested for SPA behavior. Viral control groups were similarly handled but injected with a control virus. A subgroup of animals from each condition in both experiments were similarly treated and euthanized without being tested for SPA behavior. Brains were harvested for OXTR autoradiography, western blot analysis of MAPK proteins and quantification of local oxytocin content in the NAc, BLA, ACC, and PVN through ELISA. Results Social defeat reduced OXTR binding in the NAc and affected MAPK pathway activity and oxytocin availability. These results were region-specific and sensitive to exposure to the SPA test. Additionally, OXTR knockdown in the NAc, ACC, and BLA induced social avoidance and decreased basal MAPK activity in the NAc. Finally, we found that OXTR knockdown in these regions was associated with less availability of oxytocin in the PVN. Conclusion Dysregulation of the oxytocin system and MAPK signaling pathway in the NAc, ACC, and BLA are important in social behavior disruptions in female voles. This dysregulation could, therefore, play an important role in the etiology of SAD in women.
Collapse
Affiliation(s)
- Lina K. Nerio-Morales
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Arjen J. Boender
- Department of Psychiatry and Behavioral Sciences, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Larry J. Young
- Department of Psychiatry and Behavioral Sciences, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Marisol R. Lamprea
- Department of Psychology, School of Human Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Adam S. Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Program in Neuroscience, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
6
|
Grippo AJ, Akinbo OI, Amidei A, Wardwell J, Normann MC, Ciosek S, Kovalev D. Maladaptive cardiac and behavioral reactivity to repeated vicarious stress exposure in socially bonded male prairie vole siblings. Auton Neurosci 2024; 251:103145. [PMID: 38194740 PMCID: PMC10843770 DOI: 10.1016/j.autneu.2023.103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024]
Abstract
Behaviors, emotions, and cardiovascular functions are influenced by stress. But these detrimental effects are not exclusive to an individual that directly experiences stress. Stress is also experienced vicariously through observation of another individual undergoing stress. The current study used the strong social bonds in socially monogamous prairie voles to determine effects of repeated vicarious stress on cardiac and behavioral outcomes. Male prairie voles were exposed to either a 5-minute open field chamber alone [separate (control)] or while concurrently witnessing their sibling undergo a tail-suspension stressor [concurrent (experimental)], repeated across 4 sessions. Cardiac responses in animals in the open field were evaluated for heart rate and heart rate variability prior to, during, and after each test session, and behaviors were evaluated for motion, exploration, stress reactivity, and anxiety-relevant behaviors during each test session. The concurrent condition (versus separate) displayed increased heart rate and reduced heart rate variability during repeated test sessions, and impaired recovery of these parameters following the test sessions. The pattern of disturbances suggests that both increased sympathetic and reduced parasympathetic influence contributed to the cardiac responses. Animals in the concurrent condition (versus separate) displayed disrupted rearing, grooming, and motion; reduced duration of center section exploration; and increased freezing responses across repeated test sessions. Collectively, cardiac and behavioral stress reactivity are increased as a function of vicarious stress in prairie voles, which are evident across repeated experiences of stress. These results inform our understanding of the experience of vicarious stress in social species, including humans.
Collapse
Affiliation(s)
- Angela J Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA.
| | - Oreoluwa I Akinbo
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Alex Amidei
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Joshua Wardwell
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Marigny C Normann
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Sarah Ciosek
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Dmitry Kovalev
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
7
|
Zhang S, Zhang YD, Shi DD, Wang Z. Therapeutic uses of oxytocin in stress-related neuropsychiatric disorders. Cell Biosci 2023; 13:216. [PMID: 38017588 PMCID: PMC10683256 DOI: 10.1186/s13578-023-01173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023] Open
Abstract
Oxytocin (OXT), produced and secreted in the paraventricular nucleus and supraoptic nucleus of magnocellular and parvocellular neurons. The diverse presence and activity of oxytocin suggests a potential for this neuropeptide in the pathogenesis and treatment of stress-related neuropsychiatric disorders (anxiety, depression and post-traumatic stress disorder (PTSD)). For a more comprehensive understanding of the mechanism of OXT's anti-stress action, the signaling cascade of OXT binding to targeting stress were summarized. Then the advance of OXT treatment in depression, anxiety, PTSD and the major projection region of OXT neuron were discussed. Further, the efficacy of endogenous and exogenous OXT in stress responses were highlighted in this review. To augment the level of OXT in stress-related neuropsychiatric disorders, current biological strategies were summarized to shed a light on the treatment of stress-induced psychiatric disorders. We also conclude some of the major puzzles in the therapeutic uses of OXT in stress-related neuropsychiatric disorders. Although some questions remain to be resolved, OXT has an enormous potential therapeutic use as a hormone that regulates stress responses.
Collapse
Affiliation(s)
- Sen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Ying-Dan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Monari PK, Herro ZJ, Bymers J, Marler CA. Chronic intranasal oxytocin increases acoustic eavesdropping and adult neurogenesis. Horm Behav 2023; 156:105443. [PMID: 37871536 DOI: 10.1016/j.yhbeh.2023.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
Social information gathering is a complex process influenced by neuroendocrine-modulated neural plasticity. Oxytocin (OXT) is a key regulator of social decision-making processes such as information gathering, as it contextually modulates social salience and can induce long-term structural plasticity, including neurogenesis. Understanding the link between OXT-induced plasticity and communicative awareness is crucial, particularly because OXT is being considered for treatment of social pathologies. We investigated the role of chronic OXT-dependent plasticity in attention to novel social information by manipulating the duration of time following cessation of intranasal treatment to allow for the functional integration of adult-born neurons resulting from OXT treatment. Following a 3-week delay, chronic intranasal OXT (IN-OXT) increased approach behavior of both female and male mice towards aggressive vocal playbacks of two unseen novel conspecifics, while no effect was observed after a 3-day delay. Immature neurons increased in the ventral hippocampus of females and males treated with chronic IN-OXT after the 3-week delay, indicating a potential association between ventral hippocampal neurogenesis and approach/acoustic eavesdropping. The less the mouse approached, the higher the level of neurogenesis. Contrary to expectations, the correlation between ventral hippocampal neurogenesis and approach behavior was not affected by IN-OXT, suggesting that other plasticity mechanisms underlie the long-term effects of chronic OXT on social approach. Furthermore, we found a negative correlation between ventral hippocampal neurogenesis and freezing behavior. Overall, our results demonstrate that chronic IN-OXT-induced long-term plasticity can influence approach to vocal information and we further reinforced the link between neurogenesis and anxiety.
Collapse
Affiliation(s)
- Patrick K Monari
- Department of Psychology, University of Wisconsin-Madison, WI, USA.
| | - Zachary J Herro
- Department of Psychology, University of Wisconsin-Madison, WI, USA
| | - Jessica Bymers
- Department of Psychology, University of Wisconsin-Madison, WI, USA
| | | |
Collapse
|
9
|
Guoynes CD, Marler CA. Acute intranasal oxytocin dose enhances social preference for parents over peers in male but not female peri-adolescent California mice (Peromyscus californicus). Gen Comp Endocrinol 2023; 335:114230. [PMID: 36781024 DOI: 10.1016/j.ygcen.2023.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Peri-adolescence is a critical developmental stage marked by profound changes in the valence of social interactions with parents and peers. We hypothesized that the oxytocin (OXT) and vasopressin (AVP) systems, known for influencing social behavior, would be involved in the maintenance and breaking of bonding behavior expressed by very early peri-adolescent males and females. In rodents, OXT is associated with mother-pup bonding and may promote social attachment to members of the natal territory. AVP, on the other hand, can act in contrasting ways to OXT and has been associated with aggression and territoriality. Specifically, we predicted that in peri-adolescent male and female juveniles of the biparental and territorial California mouse (Peromyscus californicus), a) OXT would increase the social preferences for the parents over unfamiliar age-matched peers (one male and one female), and b) AVP would break the parent-offspring bond and either increase time in the neutral chamber and/or approach to their unfamiliar and novel peers. We examined anxiety and exploratory behavior using an elevated plus maze and a novel object task as a control. Peri-adolescent mice were administered an acute intranasal (IN) treatment of 0.5 IU/kg IN AVP, 0.5 IU/kg IN OXT, or saline control; five minutes later, the behavioral tests were conducted. As predicted, we found that IN OXT enhanced social preference for parents; however, this was only in male and not female peri-adolescent mice. IN AVP did not influence social preference in either sex. These effects appear specific to social behavior and not anxiety, as neither IN OXT nor AVP influenced behavior during the elevated plus maze or novel object tasks. To our knowledge, this is the first evidence indicating that OXT may play a role in promoting peri-adolescent social preferences for parents and delaying weaning in males.
Collapse
Affiliation(s)
- Caleigh D Guoynes
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA; Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA.
| | - Catherine A Marler
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
10
|
Hou W, Huang S, Li L, Guo X, He Z, Shang S, Jia Z, Zhang L, Qu Y, Huang C, Li Y, Li Y, Lv Z, Tai F. Oxytocin treatments or activation of the paraventricular nucleus-the shell of nucleus accumbens pathway reduce adverse effects of chronic social defeat stress on emotional and social behaviors in Mandarin voles. Neuropharmacology 2023; 230:109482. [PMID: 36893984 DOI: 10.1016/j.neuropharm.2023.109482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/12/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Chronic social stress can cause psychological disease. Although oxytocin (OT) has been showed to modulate effects of chronic social defeat stress (CSDS) on emotional and social behaviors, however, how OT circuits mediate effects of CSDS on emotional and social abnormalities remains unclear. Here, we found that repeated intraperitoneal OT administration in the process of CSDS buffered adverse effects of CSDS on emotional and social behaviors in mandarin voles (Microtus mandarinus) of both sexes except no effect on depression-like behavior of males. Repeated OT treatments during CSDS prevented decrease of oxytocin receptors in nucleus accumbens (NAc) in females, but produced no effects on males. Furthermore, using designer receptors exclusively activated by designer drugs (DREADDs)-based chemogenetic tools, we determined that the activation of the paraventricular nucleus (PVN)-the shell of NAc (NAcs) projections before social defeat during CSDS process significantly prevented the increase of the anxiety-like behaviors and social avoidance induced by CSDS in both sexes, and reversed the depressive-like behaviors induced by CSDS only in females. Besides, optogenetic activation of PVN-NAcs projections after CSDS reduced anxiety-like behaviors and increased levels of sociality. Collectively, we suggest that PVN-NAcs projections modulate emotional and social behaviors during or after the process of CSDS sex-specifically, although AAV viruses did not specifically infect OT neurons. These findings offer potential targets for preventing or treating emotional and social disorders induced by chronic stress.
Collapse
Affiliation(s)
- Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Shuying Huang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Lu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Xing Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Shufeng Shang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China; College of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Ziyan Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Lizi Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yishan Qu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Caihong Huang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yin Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yitong Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Zijian Lv
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
11
|
García-Gutiérrez MS, Navarro D, Austrich-Olivares A, Manzanares J. Unveiling behavioral and molecular neuroadaptations related to the antidepressant action of cannabidiol in the unpredictable chronic mild stress model. Front Pharmacol 2023; 14:1171646. [PMID: 37144214 PMCID: PMC10151764 DOI: 10.3389/fphar.2023.1171646] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction: This study aims to further characterize cannabidiol's pharmacological and molecular profile as an antidepressant. Methods: Effects of cannabidiol (CBD), alone or combined with sertraline (STR), were evaluated in male CD1 mice (n = 48) exposed to an unpredictable chronic mild stress (UCMS) procedure. Once the model was established (4 weeks), mice received CBD (20 mg·kg-1, i.p.), STR (10 mg·kg-1, p.o.) or its combination for 28 days. The efficacy of CBD was evaluated using the light-dark box (LDB), elevated plus maze (EPM), tail suspension (TS), sucrose consumption (SC) and novel object recognition (NOR) tests. Gene expression changes in the serotonin transporter, 5-HT1A and 5-HT2A receptors, BDNF, VGlut1 and PPARdelta, were evaluated in the dorsal raphe, hippocampus (Hipp) and amygdala by real-time PCR. Besides, BDNF, NeuN and caspase-3 immunoreactivity were assessed in the Hipp. Results: CBD exerted anxiolytic and antidepressant-like effects at 4 and 7 days of treatment in the LDB and TS tests, respectively. In contrast, STR required 14 days of treatment to show efficacy. CBD improved cognitive impairment and anhedonia more significantly than STR. CBD plus STR showed a similar effect than CBD in the LBD, TST and EPM. However, a worse outcome was observed in the NOR and SI tests. CBD modulates all molecular disturbances induced by UCMS, whereas STR and the combination could not restore 5-HT1A, BDNF and PPARdelta in the Hipp. Discussion: These results pointed out CBD as a potential new antidepressant with faster action and efficiency than STR. Particular attention should be given to the combination of CBD with current SSRI since it appears to produce a negative impact on treatment.
Collapse
Affiliation(s)
- María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- *Correspondence: Jorge Manzanares,
| |
Collapse
|
12
|
Triana-Del Rio R, Ranade S, Guardado J, LeDoux J, Klann E, Shrestha P. The modulation of emotional and social behaviors by oxytocin signaling in limbic network. Front Mol Neurosci 2022; 15:1002846. [PMID: 36466805 PMCID: PMC9714608 DOI: 10.3389/fnmol.2022.1002846] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2024] Open
Abstract
Neuropeptides can exert volume modulation in neuronal networks, which account for a well-calibrated and fine-tuned regulation that depends on the sensory and behavioral contexts. For example, oxytocin (OT) and oxytocin receptor (OTR) trigger a signaling pattern encompassing intracellular cascades, synaptic plasticity, gene expression, and network regulation, that together function to increase the signal-to-noise ratio for sensory-dependent stress/threat and social responses. Activation of OTRs in emotional circuits within the limbic forebrain is necessary to acquire stress/threat responses. When emotional memories are retrieved, OTR-expressing cells act as gatekeepers of the threat response choice/discrimination. OT signaling has also been implicated in modulating social-exposure elicited responses in the neural circuits within the limbic forebrain. In this review, we describe the cellular and molecular mechanisms that underlie the neuromodulation by OT, and how OT signaling in specific neural circuits and cell populations mediate stress/threat and social behaviors. OT and downstream signaling cascades are heavily implicated in neuropsychiatric disorders characterized by emotional and social dysregulation. Thus, a mechanistic understanding of downstream cellular effects of OT in relevant cell types and neural circuits can help design effective intervention techniques for a variety of neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Sayali Ranade
- Department of Neurobiology and Behavior, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Jahel Guardado
- Center for Neural Science, New York University, New York, NY, United States
| | - Joseph LeDoux
- Center for Neural Science, New York University, New York, NY, United States
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, United States
| | - Prerana Shrestha
- Department of Neurobiology and Behavior, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
13
|
Powell JM, Garvin MM, Lee NS, Kelly AM. Behavioral trajectories of aging prairie voles (Microtus ochrogaster): Adapting behavior to social context wanes with advanced age. PLoS One 2022; 17:e0276897. [PMCID: PMC9665403 DOI: 10.1371/journal.pone.0276897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Several studies using mice have examined the effects of aging on cognitive tasks, as well as sensory and motor functions. However, few studies have examined the influence of aging on social behavior. Prairie voles (Microtus ochrogaster) are a socially monogamous and biparental rodent that live in small family groups and are now among the most popular rodent models for studies examining social behavior. Although the social behavioral trajectories of early-life development in prairie voles have been well-studied, how social behavior may change throughout adulthood remains unknown. Here we examined behavior in virgin male and female prairie voles in four different age groups: postnatal day (PND) 60–80, 140–160, 220–240, and 300–320. All animals underwent testing in a novel object task, a dominance test, a resident-intruder test, and several iterations of social approach and social interaction tests with varying types of social stimuli (i.e., novel same-sex conspecific, novel opposite-sex conspecific, familiar same-sex sibling/cagemate, small group of novel same-sex conspecifics). We found that age influenced neophobia and dominance, but not social approach behavior. Further, we found that young adult, but not older adult, prairie voles adapt prosocial and aggressive behavior relative to social context, and that selective aggression occurs in relation to age even in the absence of a pair bond. Our results suggest that prairie voles calibrate social phenotype in a context-dependent manner in young adulthood and stop adjusting behavior to social context in advanced age, demonstrating that social behavior is plastic not only throughout early development, but also well into adulthood. Together, this study provides insight into age-related changes in social behavior in prairie voles and shows that prairie voles may be a viable model for studying the cognitive and physiological benefits of social relationships and social engagement in advanced age.
Collapse
Affiliation(s)
- Jeanne M. Powell
- Department of Psychology, Emory University, Atlanta, Georgia, United States of America
| | - Madison M. Garvin
- Department of Psychology, Emory University, Atlanta, Georgia, United States of America
| | - Nicholas S. Lee
- Department of Psychology, Emory University, Atlanta, Georgia, United States of America
| | - Aubrey M. Kelly
- Department of Psychology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
14
|
Sailer LL, Patel PP, Park AH, Moon J, Hanadari-Levy A, Ophir AG. Synergistic consequences of early-life social isolation and chronic stress impact coping and neural mechanisms underlying male prairie vole susceptibility and resilience. Front Behav Neurosci 2022; 16:931549. [PMID: 35957922 PMCID: PMC9358287 DOI: 10.3389/fnbeh.2022.931549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic stress can be challenging, lead to maladaptive coping strategies, and cause negative mental and physical health outcomes. Early-life adversity exposes developing young to physical or psychological experiences that risks surpassing their capacity to effectively cope, thereby impacting their lifetime physical and mental wellbeing. Sensitivity to stressful events, like social isolation, has the potential to magnify stress-coping. Chronic stress through social defeat is an established paradigm that models adverse early-life experiences and can trigger enduring alterations in behavioral and neural phenotypes. To assess the degree to which stress resilience and sensitivity stemming from early-life chronic stress impact sociability, we exposed male prairie voles to chronic social defeat stress (CSDS) during adolescence. We simultaneously exposed subjects to either social isolation (CSDS+Isol) or group housing (CSDS+Soc) during this crucial time of development. On PND41, all subjects underwent a social approach test to examine the immediate impact of isolation, CSDS, or their combined effects on sociability. Unlike the CSDS+Isol group which primarily displayed social avoidance, the CSDS+Soc group was split by individuals exhibiting susceptible or resilient stress phenotypes. Notably, the Control+Soc and CSDS+Soc animals and their cage-mates significantly gained body weight between PND31 and PND40, whereas the Control+Isol and CSDS+Isol animals did not. These results suggest that the effects of early-life stress may be mitigated by having access to social support. Vasopressin, oxytocin, and opioids and their receptors (avpr1a, oxtr, oprk1, oprm1, and oprd1) are known to modulate social and stress-coping behaviors in the lateral septum (LS). Therefore, we did an mRNA expression analysis with RT-qPCR of the avpr1a, oxtr, oprk1, oprm1, and oprd1 genes to show that isolation and CSDS, or their collective influence, can potentially differentially bias sensitivity of the LS to early-life stressors. Collectively, our study supports the impact and dimensionality of early-life adversity because the type (isolation vs. CSDS), duration (acute vs. chronic), and combination (isolation + CSDS) of stressors can dynamically alter behavioral and neural outcomes.
Collapse
|
15
|
Arias del Razo R, Velasco Vazquez MDL, Turcanu P, Legrand M, Lau AR, Weinstein TAR, Goetze LR, Bales KL. Effects of Chronic and Acute Intranasal Oxytocin Treatments on Temporary Social Separation in Adult Titi Monkeys (Plecturocebus cupreus). Front Behav Neurosci 2022; 16:877631. [PMID: 35813591 PMCID: PMC9257099 DOI: 10.3389/fnbeh.2022.877631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
In socially monogamous titi monkeys, involuntary separation from a pair mate can produce behavioral distress and increased cortisol production. The neuropeptide oxytocin (OXT) is thought to play an important role in the separation response of pair-bonded species. Previous studies from our lab have shown that chronic intranasal oxytocin (IN OXT) during development can have long-term effects on adult social behavior. In the current study, we examined the chronic and acute effects of IN OXT or Saline (SAL) on the subjects’ response to a brief separation from their pair mates. Subjects with a history of chronic IN OXT or SAL treatment during development received a single dose of OXT or SAL as adults 30 min before being separated from their pair mate. Chronic treatment consisted of a daily dose of IN OXT (0.8 IU/kg) or SAL (control) from 12 to 18 months of age. Subjects (N = 29) were introduced to a pair mate at 30 months of age. After the pairs had cohabitated for 5 months, pairs underwent two “Brief Separation” (OXT and SAL) and two “Non-Separation” (OXT and SAL) test sessions. Vocalizations and locomotion were measured as behavioral indices of agitation or distress during the Brief Separation and Non-Separation periods (30 min each). We collected blood samples after the Brief Separation and Non-Separation periods to measure cortisol levels. Our results showed subjects treated with chronic OXT had a reduction in long call and peep vocalizations compared to subjects treated with chronic SAL. Subjects treated with chronic SAL and acute OXT produced more peeps and long calls compared to animals treated with acute SAL; however, patterns in this response depended on sex. Cortisol and locomotion were significantly higher during the Brief Separation period compared to the Non-Separation period; however, we did not find any treatment or sex effects. We conclude that chronic IN OXT given during development blunts the separation response, while acute OXT in chronic SAL subjects had sexually dimorphic effects, which could reflect increased partner seeking behaviors in males and increased anxiety in females.
Collapse
Affiliation(s)
- Rocío Arias del Razo
- Department of Psychology, University of California, Davis, Davis, CA, United States
- California National Primate Research Center, Davis, CA, United States
| | | | - Petru Turcanu
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Mathieu Legrand
- CNRS, LNCA UMR 7364, Strasbourg, France
- Centre de Primatologie de l’Université de Strasbourg, Niederhausbergen, France
| | - Allison R. Lau
- Department of Psychology, University of California, Davis, Davis, CA, United States
- California National Primate Research Center, Davis, CA, United States
- Animal Behavior Graduate Group, University of California, Davis, Davis, CA, United States
| | | | - Leana R. Goetze
- California National Primate Research Center, Davis, CA, United States
| | - Karen L. Bales
- Department of Psychology, University of California, Davis, Davis, CA, United States
- California National Primate Research Center, Davis, CA, United States
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
- *Correspondence: Karen L. Bales
| |
Collapse
|