1
|
Tadese DA, Mwangi J, Luo L, Zhang H, Huang X, Michira BB, Zhou S, Kamau PM, Lu Q, Lai R. The microbiome's influence on obesity: mechanisms and therapeutic potential. SCIENCE CHINA. LIFE SCIENCES 2025; 68:657-672. [PMID: 39617855 DOI: 10.1007/s11427-024-2759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/16/2024] [Indexed: 01/03/2025]
Abstract
In 2023, the World Obesity Atlas Federation concluded that more than 50% of the world's population would be overweight or obese within the next 12 years. At the heart of this epidemic lies the gut microbiota, a complex ecosystem that profoundly influences obesity-related metabolic health. Its multifaced role encompasses energy harvesting, inflammation, satiety signaling, gut barrier function, gut-brain communication, and adipose tissue homeostasis. Recognizing the complexities of the cross-talk between host physiology and gut microbiota is crucial for developing cutting-edge, microbiome-targeted therapies to address the global obesity crisis and its alarming health and economic repercussions. This narrative review analyzed the current state of knowledge, illuminating emerging research areas and their implications for leveraging gut microbial manipulations as therapeutic strategies to prevent and treat obesity and related disorders in humans. By elucidating the complex relationship between gut microflora and obesity, we aim to contribute to the growing body of knowledge underpinning this critical field, potentially paving the way for novel interventions to combat the worldwide obesity epidemic.
Collapse
Affiliation(s)
- Dawit Adisu Tadese
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James Mwangi
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Luo
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Zhang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiaoshan Huang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Brenda B Michira
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengwen Zhou
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peter Muiruri Kamau
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiumin Lu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ren Lai
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Stallmach A. [The gastrointestinal microbiome - vision and mission]. Dtsch Med Wochenschr 2025; 150:157-162. [PMID: 39879970 DOI: 10.1055/a-2303-3368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The gastrointestinal microbiome influences physiological functions and is altered in a variety of diseases. The causality of "dysbiosis" in the pathogenesis is not always proven; association studies are often involved. Patients with IBD, bacteria, fungi, bacteriophages, and archaea show disease-typical patterns associated with metabolome disturbances. Fecal microbiome transfer (FMT) for treating various diseases is the subject of numerous clinical studies. Currently, recurrent Clostridioides difficile infection (rCDI) is the only confirmed indication recommended in medical guidelines. In Germany, the FMT is subject to the Medicines Act and may only be carried out as part of individual healing attempts or clinical studies. For patient safety, repeated donor screening, ideally with the construction of a chair bench, is necessary. This significantly limits the nationwide availability of the FMT in Germany. Microbiota-based therapeutics prepared from the stool of tested donors have recently been approved by the US Food and Drug Administration (FDA) for the prevention of rCDI. More microbiome-based medicines can be expected in the future.
Collapse
|
3
|
Penninx BW, Lamers F, Jansen R, Berk M, Khandaker GM, De Picker L, Milaneschi Y. Immuno-metabolic depression: from concept to implementation. THE LANCET REGIONAL HEALTH. EUROPE 2025; 48:101166. [PMID: 39801616 PMCID: PMC11721223 DOI: 10.1016/j.lanepe.2024.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025]
Abstract
Major depressive disorder is a common, disabling mental disorder characterized by extensive etiological and phenotypic heterogeneity. This heterogeneity makes treatment approaches imprecise and often ineffective. Insight into the underlying biological mechanisms underpinning depression and its subtypes may enable more personalized treatments. In this review, we provide an overview of immuno-metabolic depression and illustrate that significant immuno-metabolic dysregulations are present in about 20-30% of people with depression. Such immuno-metabolic depression is characterized by the clustering of 1) atypical, energy-related depressive symptoms such as hypersomnia, fatigue, hyperphagia, and possibly anhedonia, 2) systemic low-grade inflammation with elevated levels of e.g., C-reactive protein, cytokines and glycoprotein acetyls, and 3) metabolic abnormalities involving e.g., obesity, dyslipidaemia, insulin and leptin resistance. Persons with immuno-metabolic depression are at a higher risk for cardiometabolic diseases and seem to respond less well to standard antidepressant treatment. Interventions targeting inflammation, metabolism or lifestyle may be more effective treatment options for individuals with immuno-metabolic depression, in line with principles of precision psychiatry.
Collapse
Affiliation(s)
- Brenda W.J.H. Penninx
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC, Vrije University, Amsterdam, the Netherlands
| | - Femke Lamers
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC, Vrije University, Amsterdam, the Netherlands
| | - Rick Jansen
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC, Vrije University, Amsterdam, the Netherlands
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Golam M. Khandaker
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health and Care Research Bristol Biomedical Research Centre, United Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
- Avon and Wiltshire Mental Health Partnership NHS Trust, Bristol, UK
| | - Livia De Picker
- Collaborative Antwerp Psychiatric Research Institute, Faculty of Health Sciences, University of Antwerp, Antwerp, Belgium
- University Psychiatric Hospital Campus Duffel, Duffel, Belgium
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC, Vrije University, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Yuan X, Chai J, Xu W, Zhao Y. Exploring the Potential of Probiotics and Prebiotics in Major Depression: From Molecular Function to Clinical Therapy. Probiotics Antimicrob Proteins 2024; 16:2181-2217. [PMID: 39078446 DOI: 10.1007/s12602-024-10326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Major depressive disorder (MDD) represents a complex and challenging mental health condition with multifaceted etiology. Recent research exploring the gut-brain axis has shed light on the potential influence of gut microbiota on mental health, offering novel avenues for therapeutic intervention. This paper reviews current evidence on the role of prebiotics and probiotics in the context of MDD treatment. Clinical studies assessing the effects of prebiotic and probiotic interventions have demonstrated promising results, showcasing improvements in depression symptoms and metabolic parameters in certain populations. Notably, prebiotics and probiotics have shown the capacity to modulate inflammatory markers, cortisol levels, and neurotransmitter pathways linked to MDD. However, existing research presents varied outcomes, underscoring the need for further investigation into specific microbial strains, dosage optimization, and long-term effects. Future research should aim at refining personalized interventions, elucidating mechanisms of action, and establishing standardized protocols to integrate these interventions into clinical practice. While prebiotics and probiotics offer potential adjunctive therapies for MDD, continued interdisciplinary efforts are vital to harnessing their full therapeutic potential and reshaping the landscape of depression treatment paradigms.
Collapse
Affiliation(s)
- Xin Yuan
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jianbo Chai
- Heilongjiang Mental Hospital, Harbin, 150036, China
| | - Wenqiang Xu
- Harbin Jiarun Hospital, Harbin, 150040, China
| | - Yonghou Zhao
- Heilongjiang Mental Hospital, Harbin, 150036, China.
| |
Collapse
|
5
|
Li Y, Yang Y, Guan X, Liu Z, Pan L, Wang Y, Jia X, Yang J, Hou T. SorCS2 is involved in promoting periodontitis-induced depression-like behaviour in mice. Oral Dis 2024; 30:5408-5420. [PMID: 38568959 DOI: 10.1111/odi.14944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Emerging evidence supports the association between periodontitis and depression, although the mechanisms are unclear. This study investigated the role of SorCS2 in the pathogenesis of periodontitis-induced depression. MATERIALS AND METHODS An experimental periodontitis model was established using SorCS2 knockout mice and their wild-type littermates, and depression-like behaviour was evaluated. The expression of proBDNF signalling, neuronal activity, and glutamate-associated signalling pathways were further measured by western blotting and immunofluorescence. In addition, neuroinflammatory status, astrocytic and microglial markers, and the expression of corticosterone-related factors were measured by immunofluorescence, western blotting, and enzyme-linked immunosorbent assays. RESULTS SorCS2 deficiency alleviated periodontitis-induced depression-like behaviour in mice. Further results suggested that SorCS2 deficiency downregulated the expression of pro-BDNF and glutamate signalling and restored neuronal activities in mice with periodontitis. Neuroinflammation in the mouse hippocampus was triggered by experimental periodontitis but was not affected by SorCS2 deficiency. The levels of corticosterone and the expression of glucocorticoid receptors were also not altered. CONCLUSION Our study, for the first time, reveals the critical role of SorCS2 in the pathogenesis of periodontitis-induced depression. The underlying mechanism involves proBDNF and glutamate signalling in the hippocampus, providing a novel therapeutic target for periodontitis-associated depression.
Collapse
Affiliation(s)
- Yingxue Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yao Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyue Guan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Zhijun Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lifei Pan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yuting Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xiangbin Jia
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Jianmin Yang
- Department of Medicine, Weill Cornell Medical School, Cornell University, New York, New York, USA
| | - Tiezhou Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Jarkas DA, Villeneuve AH, Daneshmend AZB, Villeneuve PJ, McQuaid RJ. Sex differences in the inflammation-depression link: A systematic review and meta-analysis. Brain Behav Immun 2024; 121:257-268. [PMID: 39089535 DOI: 10.1016/j.bbi.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024] Open
Abstract
Major Depressive Disorder (MDD) is a heterogeneous disorder that affects twice as many women than men. Precluding advances in more tailored and efficacious treatments for depression is the lack of reliable biomarkers. While depression is linked to elevations in inflammatory immune system functioning, this relationship is not evident among all individuals with depression and may vary based on symptom subtypes and/or sex. This systematic review and meta-analysis examined whether inflammatory immune peripheral markers of depression are sex-specific. PRISMA guidelines were followed for the systematic review, and a comprehensive search strategy that identified studies from PubMed and PsycInfo was applied. Studies were included if they reported C-reactive protein (CRP), interleukin (IL)-6, tumor necrosis factor (TNF)-α and/or IL-1β for males and/or females among depressed and healthy adults. We identified 23 studies that satisfied these inclusion criteria. Random-effects meta-analysis models were fit, and measures of association were summarized between levels of circulating markers of inflammation in depressed and healthy males and females. Sex-based analyses revealed elevated levels of CRP among females with depression (Cohen's d = 0.19) relative to their healthy counterparts (p = 0.02), an effect not apparent among males (Cohen's d = -0.01). Similarly, levels of IL-6 were increased among females with depression compared to healthy controls (Cohen's d = 0.51; p = 0.04), but once again this was not found among males (Cohen's d = 0.16). While TNF-α levels were elevated among individuals with depression compared to controls (p = 0.01), no statistically significant sex differences were found. The meta-analysis for IL-1β resulted in only three articles, and thus, results are presented in the supplemental section. This meta-analysis advances our understanding of the unique involvement of inflammatory biomarkers in depression among men and women, which may help inform more tailored sex-specific treatment approaches in the future.
Collapse
Affiliation(s)
- Dana A Jarkas
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada.
| | - Ally H Villeneuve
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Ayeila Z B Daneshmend
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Paul J Villeneuve
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Robyn J McQuaid
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Chen C, Zhang D, Wu D, Chen F, Li Z, Hu Y. Gut microbiome, and immune cells mediated effect on depression: A two-step, two-sample Mendelian randomization analysis. Exp Gerontol 2024; 195:112530. [PMID: 39059516 DOI: 10.1016/j.exger.2024.112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND The gut microbiota (GM) plays an important role in the development of immune-related diseases, and the immune response is one of the pathomechanisms of depression (Dep); whether the effect of GM on Dep is mediated by immune cells (ImC) is unclear. OBJECTIVE ImC may mediate the effect of GM on Dep. Our aim is to identify and quantify the role of immune characteristics as potential mediators. METHODS Pooled statistics for GM (n = 7738) and ImC (n = 3757) were obtained from publicly available genome-wide association studies (GWAS), and for Dep (n = 47,696) from the Finnish database R10. We used a mediated Mendelian randomization (MR) study to investigate the causal relationship between GM and Dep and the mediating role of ImC between GM and Dep associations. RESULTS The results showed that the genetically predicted GM was significantly correlated with both ImC as well as Dep. MR analysis identified five microbiomes that had significant causal effects on Dep (Methionine biosynthesis III, PWY-6737-Starch degradation V, Parasutterella excrementihominis, Parasutterella, and Lysine biosynthesis I). In addition, five of the 26 ImC trait significantly associated with GM were most closely associated with Dep (T cell %lymphocyte、CD28-CD127-CD25++CD8br AC、CD28-CD8br AC、CD27 receptor on peripheral blood plasma cells (CD27 on PB/PC) and CD11b receptor on mononuclear myeloid-derived suppressor cells (CD11b on Mo MDSC)). This mediated MR illustrates the causal role of methionine biosynthesis III on Dep (IVW: OR = 1.08, 95%CI [1.04,1.14], P = 0.001). And there was no strong evidence for a causal effect of depression on methionine biosynthesis III. In the B cell group, the proportion of CD27 on PB/PC mediated was 7.88 %(95%CI [-0.04,0.03]) of the total effect. This study further suggests that Dep patients should actively seek immunologic intervention therapy. CONCLUSION This MR study found that GM may play a causal role in Dep by mediating ImC. Our findings will help to understand the pathogenic mechanism of GM in Dep and the risk of immune mediation.
Collapse
Affiliation(s)
- Canrong Chen
- Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Ding Zhang
- Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Donglin Wu
- Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Feiyu Chen
- Yongning District Traditional Chinese Medicine Hospital, Nanning, 530299, China
| | - Zi Li
- Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yueqiang Hu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, China.
| |
Collapse
|
8
|
Liwinski T, Auer MK, Schröder J, Pieknik I, Casar C, Schwinge D, Henze L, Stalla GK, Lang UE, von Klitzing A, Briken P, Hildebrandt T, Desbuleux JC, Biedermann SV, Holterhus PM, Bang C, Schramm C, Fuss J. Gender-affirming hormonal therapy induces a gender-concordant fecal metagenome transition in transgender individuals. BMC Med 2024; 22:346. [PMID: 39218875 PMCID: PMC11367877 DOI: 10.1186/s12916-024-03548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Limited data exists regarding gender-specific microbial alterations during gender-affirming hormonal therapy (GAHT) in transgender individuals. This study aimed to investigate the nuanced impact of sex steroids on gut microbiota taxonomy and function, addressing this gap. We prospectively analyzed gut metagenome changes associated with 12 weeks of GAHT in trans women and trans men, examining both taxonomic and functional shifts. METHODS Thirty-six transgender individuals (17 trans women, 19 trans men) provided pre- and post-GAHT stool samples. Shotgun metagenomic sequencing was used to assess the changes in gut microbiota structure and potential function following GAHT. RESULTS While alpha and beta diversity remained unchanged during transition, specific species, including Parabacteroides goldsteinii and Escherichia coli, exhibited significant abundance shifts aligned with affirmed gender. Overall functional metagenome analysis showed a statistically significant effect of gender and transition (R2 = 4.1%, P = 0.0115), emphasizing transitions aligned with affirmed gender, particularly in fatty acid-related metabolism. CONCLUSIONS This study provides compelling evidence of distinct taxonomic and functional profiles in the gut microbiota between trans men and women. GAHT induces androgenization in trans men and feminization in trans women, potentially impacting physiological and health-related outcomes. TRIAL REGISTRATION Clinicaltrials.gov NCT02185274.
Collapse
Affiliation(s)
- Timur Liwinski
- Clinic for Adult Psychiatry, University Psychiatric Clinics, University of Basel, Wilhelm Klein-Strasse 27, Basel, CH-4002, Switzerland
| | - Matthias K Auer
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Alfredstr. 68-72, Essen, 45130, Germany
| | - Johanna Schröder
- Department of Psychology, Institute for Clinical Psychology and Psychotherapy, Medical School Hamburg, Hamburg, Germany
| | - Ina Pieknik
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Alfredstr. 68-72, Essen, 45130, Germany
| | - Christian Casar
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dorothee Schwinge
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Lara Henze
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Günter K Stalla
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
- Medicover Neuroendocrinology, Munich, Germany
| | - Undine E Lang
- Clinic for Adult Psychiatry, University Psychiatric Clinics, University of Basel, Wilhelm Klein-Strasse 27, Basel, CH-4002, Switzerland
| | - Alina von Klitzing
- Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peer Briken
- Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Hildebrandt
- Department of Gynecology and Obstetrics, CCC Erlangen EMN, Friedrich Alexander University, Erlangen, Germany
| | - Jeanne C Desbuleux
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Alfredstr. 68-72, Essen, 45130, Germany
| | - Sarah V Biedermann
- Department of Psychiatry and Psychotherapy, Social and Emotional Neuroscience Group, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul-Martin Holterhus
- Division of Pediatric Endocrinology and Diabetes, Department of Children and Adolescent Medicine I, University Hospital of Schleswig-Holstein, Campus Kiel/Christian-Albrechts University of Kiel, Kiel, D-24105, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig-Holstein, Rosalind-Franklin-Str. 12, Kiel, 24105, Germany
| | - Christoph Schramm
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Centre for Translational Immunology (HCTI), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Fuss
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Alfredstr. 68-72, Essen, 45130, Germany
| |
Collapse
|
9
|
Tao K, Yuan Y, Xie Q, Dong Z. Relationship between human oral microbiome dysbiosis and neuropsychiatric diseases: An updated overview. Behav Brain Res 2024; 471:115111. [PMID: 38871130 DOI: 10.1016/j.bbr.2024.115111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The role of the gut-brain axis in mental health disorders has been extensively studied. As the oral cavity is the starting point of the digestive tract, the role that the oral microbiota plays in mental health disorders has gained recent attention. Oral microbiota can enter the bloodstream and trigger inflammatory responses or translocate to the brain through the trigeminal nerve or olfactory system. Hence, the concept of the oral microbiota-brain axis has emerged. Several hypotheses have been suggested that the oral microbiota can enter the gastrointestinal tract and affect the gut-brain axis; however, literature describing oral-brain communication remains limited. This review summarizes the characteristics of oral microbiota and its mechanisms associated with mental health disorders. Through a comprehensive examination of the relationship between oral microbiota and various neuropsychiatric diseases, such as anxiety, depression, schizophrenia, autism spectrum disorder, epilepsy, Parkinson's disease, and dementia, this review seeks to identify promising avenues of future research.
Collapse
Affiliation(s)
- Kai Tao
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yanling Yuan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qinglian Xie
- Department of Outpatient, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China; Department of Outpatient, West China Xiamen Hospital, Sichuan University, Fujian 361022, People's Republic of China.
| | - Zaiquan Dong
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
10
|
Zhang L, García-Pérez P, Muñoz-Palazon B, Gonzalez-Martinez A, Lucini L, Rodriguez-Sanchez A. A metabolomics perspective on the effect of environmental micro and nanoplastics on living organisms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172915. [PMID: 38719035 DOI: 10.1016/j.scitotenv.2024.172915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
The increasing trend regarding the use of plastics has arisen an exponential concern on the fate of their derived products to the environment. Among these derivatives, microplastics and nanoplastics (MNPs) have been featured for their associated environmental impact due to their low molecular size and high surface area, which has prompted their ubiquitous transference among all environmental interfaces. Due to the heterogenous chemical composition of MNPs, the study of these particles has focused a high number of studies, as a result of the myriad of associated physicochemical properties that contribute to the co-transference of a wide range of contaminants, thus becoming a major challenge for the scientific community. In this sense, both primary and secondary MNPs are well-known to be adscribed to industrial and urbanized areas, from which they are massively released to the environment through a multiscale level, involving the atmosphere, hydrosphere, and lithosphere. Consequently, much research has been conducted on the understanding of the interconnection between those interfaces, that motivate the spread of these contaminants to biological systems, being mostly represented by the biosphere, especially phytosphere and, finally, the anthroposphere. These findings have highlighted the potential hazardous risk for human health through different mechanisms from the environment, requiring a much deeper approach to define the real risk of MNPs exposure. As a result, there is a gap of knowledge regarding the environmental impact of MNPs from a high-throughput perspective. In this review, a metabolomics-based overview on the impact of MNPs to all environmental interfaces was proposed, considering this technology a highly valuable tool to decipher the real impact of MNPs on biological systems, thus opening a novel perspective on the study of these contaminants.
Collapse
Affiliation(s)
- Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Pascual García-Pérez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | | | - Alejandro Gonzalez-Martinez
- Department of Microbiology, Campus Universitario de Fuentenueva s/n, 18071, University of Granada, Spain; Institute of Water Research, Calle Ramon y Cajal 4, 18001, University of Granada, Spain
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alejandro Rodriguez-Sanchez
- Department of Microbiology, Campus Universitario de Fuentenueva s/n, 18071, University of Granada, Spain; Institute of Water Research, Calle Ramon y Cajal 4, 18001, University of Granada, Spain
| |
Collapse
|
11
|
Zhu L, Wang Y, Li J, Zhou H, Li N, Wang Y. Depressive symptoms and all-cause mortality among middle-aged and older people in China and associations with chronic diseases. Front Public Health 2024; 12:1381273. [PMID: 38841667 PMCID: PMC11151855 DOI: 10.3389/fpubh.2024.1381273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction It remains unclear whether depressive symptoms are associated with increased all-cause mortality and to what extent depressive symptoms are associated with chronic disease and all-cause mortality. The study aims to explore the relationship between depressive symptoms and all-cause mortality, and how depressive symptoms may, in turn, affect all-cause mortality among Chinese middle-aged and older people through chronic diseases. Methods Data were collected from the China Health and Retirement Longitudinal Study (CHARLS). This cohort study involved 13,855 individuals from Wave 1 (2011) to Wave 6 (2020) of the CHARLS, which is a nationally representative survey that collects information from Chinese residents ages 45 and older to explore intrinsic mechanisms between depressive symptoms and all-cause mortality. The Center for Epidemiological Studies Depression Scale (CES-D-10) was validated through the CHARLS. Covariates included socioeconomic variables, living habits, and self-reported history of chronic diseases. Kaplan-Meier curves depicted mortality rates by depressive symptom levels, with Cox proportional hazards regression models estimating the hazard ratios (HRs) of all-cause mortality. Results Out of the total 13,855 participants included, the median (Q1, Q3) age was 58.00 (51.00, 63.00) years. Adjusted for all covariates, middle-aged and older adults with depressive symptoms had a higher all-cause mortality rate (HR = 1.20 [95% CI, 1.09-1.33]). An increased rate was observed for 55-64 years old (HR = 1.23 [95% CI, 1.03-1.47]) and more than 65 years old (HR = 1.32 [95% CI, 1.18-1.49]), agricultural Hukou (HR = 1.44, [95% CI, 1.30-1.59]), and nonagricultural workload (HR = 1.81 [95% CI, 1.61-2.03]). Depressive symptoms increased the risks of all-cause mortality among patients with hypertension (HR = 1.19 [95% CI, 1.00-1.40]), diabetes (HR = 1.41[95% CI, 1.02-1.95]), and arthritis (HR = 1.29 [95% CI, 1.09-1.51]). Conclusion Depressive symptoms raise all-cause mortality risk, particularly in those aged 55 and above, rural household registration (agricultural Hukou), nonagricultural workers, and middle-aged and older people with hypertension, diabetes, and arthritis. Our findings through the longitudinal data collected in this study offer valuable insights for interventions targeting depression, such as early detection, integrated chronic disease care management, and healthy lifestyles; and community support for depressive symptoms may help to reduce mortality in middle-aged and older people.
Collapse
Affiliation(s)
- Lan Zhu
- School of Education and Psychology, Key Research Institute of Humanities and Social Sciences of State Ethnic Affairs Commission, and Research Centre of Sichuan Minzu Education Development, Southwest Minzu University, Chengdu, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yixi Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaqi Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Huan Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ningxiu Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanyuan Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
12
|
Busch A, Roy S, Helbing DL, Colic L, Opel N, Besteher B, Walter M, Bauer M, Refisch A. Gut microbiome in atypical depression. J Affect Disord 2024; 349:277-285. [PMID: 38211751 DOI: 10.1016/j.jad.2024.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Recent studies showed that immunometabolic dysregulation is related to unipolar major depressive disorder (MDD) and that it more consistently maps to MDD patients endorsing an atypical symptom profile, characterized by energy-related symptoms including increased appetite, weight gain, and hypersomnia. Despite the documented influence of the microbiome on immune regulation and energy homeostasis, studies have not yet investigated microbiome differences among clinical groups in individuals with MDD. METHODS Fifteen MDD patients with atypical features according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5)-5, forty-four MDD patients not fulfilling the DSM-5 criteria for the atypical subtype, and nineteen healthy controls were included in the study. Participants completed detailed clinical assessment and stool samples were collected. Samples were sequenced for the prokaryotic 16S rRNA gene, in the V3-V4 variable regions. Only samples with no antibiotic exposure in the previous 12 months and a minimum of >2000 quality-filtered reads were included in the analyses. RESULTS There were no statistically significant differences in alpha- and beta-diversity between the MDD groups and healthy controls. However, within the atypical MDD group, there was an increase in the Verrucomicrobiota phylum, with Akkermansia as the predominant bacterial genus. LIMITATIONS Cross-sectional data, modest sample size, and significantly increased body mass index in the atypical MDD group. CONCLUSIONS There were no overall differences among the investigated groups. However, differences were found at several taxonomic levels. Studies in larger longitudinal samples with relevant confounders are needed to advance the understanding of the microbial influences on the clinical heterogeneity of depression.
Collapse
Affiliation(s)
- Anne Busch
- Theoretical Microbial Ecology, Friedrich Schiller University Jena, Jena, Germany; Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| | - Sagnik Roy
- Theoretical Microbial Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Dario Lucas Helbing
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany; Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745 Jena, Germany
| | - Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany; German Center for Mental Health (DZPG), Germany
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany; German Center for Mental Health (DZPG), Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| |
Collapse
|
13
|
Zerekidze A, Li M, Refisch A, Shameya J, Sobanski T, Walter M, Wagner G. Impact of Toxoplasma gondii and Human Microbiome on Suicidal Behavior: A Systematic Review. J Clin Med 2024; 13:593. [PMID: 38276099 PMCID: PMC10816148 DOI: 10.3390/jcm13020593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Suicide remains a persistent global health challenge, resisting widespread prevention efforts. According to previous findings, toxoplasmosis is particularly associated with altered decision making, which could lead to risk-taking behavior, thereby increasing the likelihood for suicidal behavior (SB). In addition, discussion about the role of microbiome in psychiatric disorders has emerged lately, which also makes it relevant to investigate its role in the context of SB. Therefore, two systematic reviews are integrated in this paper, and the existing knowledge is comprehensively summarized regarding the association between microbial pathogens and SB. METHODS We conducted a systematic search with keywords including SB and Toxoplasma gondii (Suicid* AND Toxoplasm*) and microbiome (Suicid* AND Microbiome AND Microbiota) throughout PubMed and Scopus to retrieve related studies up to 9 November 2023, identifying 24 eligible records. The subjects of the included studies had to have fulfilled the criteria of an SB disorder as defined by DSM-5, and death cases needed to have been defined as suicide. RESULTS Most studies reported significant association between toxoplasmosis and SB, suggesting a higher likelihood of SB in the infected population. Regarding the microbiome, only very few studies investigated an association between SB and alterations in the microbiome. Based on six included studies, there were some indications of a link between changes in the microbiome and SB. CONCLUSION The cognitive aspects of decision making in T. gondii-infected individuals with SB should be further investigated to unravel the underlying mechanisms. Further sufficiently powered studies are needed to establish a link between SB and alterations in the microbiome.
Collapse
Affiliation(s)
- Ani Zerekidze
- Department of Psychiatry and Psychotherapy, Jena Center for Mental Health, Jena University Hospital, 07743 Jena, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena Center for Mental Health, Jena University Hospital, 07743 Jena, Germany
- Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, 07743 Jena, Germany
| | - Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena Center for Mental Health, Jena University Hospital, 07743 Jena, Germany
- Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, 07743 Jena, Germany
| | - Justina Shameya
- Department of Psychiatry and Psychotherapy, Jena Center for Mental Health, Jena University Hospital, 07743 Jena, Germany
| | - Thomas Sobanski
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Center for Mental Health, Thueringen-Kliniken “Georgius Agricola”, 07318 Saalfeld, Germany;
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena Center for Mental Health, Jena University Hospital, 07743 Jena, Germany
- Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, 07743 Jena, Germany
- German Center for Mental Health (DZPG), Partner Site Jena, 07743 Jena, Germany
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena Center for Mental Health, Jena University Hospital, 07743 Jena, Germany
- Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, 07743 Jena, Germany
| |
Collapse
|
14
|
Kibitov AO, Rakitko AS, Kasyanov ED, Rukavishnikov GV, Shumskaia DS, Ilinsky VV, Neznanov NG, Mazo GE. [Online phenotypes of depression symptoms are associated with polygenic risk scores of somatic diseases in a population-based cohort]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:122-131. [PMID: 39690559 DOI: 10.17116/jnevro2024124111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
OBJECTIVE To test an associations of online phenotypes of depressive symptoms with polygenic risk scores (PRS) for selected somatic diseases in a population-based cohort. MATERIAL AND METHODS Participants in a Russian population-based cohort (n=4520) underwent online phenotyping based on the originally developed questionnaire using DSM-5 criteria (DSM phenotypes) and the Hospital Anxiety and Depression Scale (HADS) questionnaire (HADS phenotypes). After DNA genotyping with microarrays, PRS were calculated using summary statistics from large-scale GWASs (mostly from UK Biobank) for irritable bowel syndrome (IBS), coronary heart disease (narrow and broad phenotypes) (CHD), ischemic stroke (IS),diabetes mellitus type 2 (DT2) and migraine (MG). Then we assessed associations of PRS for somatic diseases with online phenotypes of depressive symptoms in a population-based cohort. RESULTS Highly specific associations of PRS for somatic diseases with online phenotypes of depressive symptoms in a population cohort were identified: positive associations of PRS IBS with «DSM depression» (p=0.0035) and PRS CHD (narrow phenotype) with «DSM bipolar disorder» (p=0.0207), as well as a negative association of PRS IS with the symptomatic DSM phenotype «Hyperphagia» (p=0.0262). All the HADS phenotypes (clinical depression, subclinical depression, and HADS-D total score) showed a positive association with PRS for IBS and DT2, and at the same time were negatively associated with PRS IS. The DSM phenotype «Hypersomnia and hyperphagia» was positively associated with PRS for DT2 and IS, and negatively associated with PRS CHD (narrow phenotype). The DSM phenotypes «Subclinical Depression», «Hypersomnia», and «Anhedonia» showed exclusively negative associations with PRSs for DT2, IS, and IBS. Three maximum informative PRS by explained variance (PRS.R2) were found for the single DSM phenotype «Hypersomnia and hyperphagia»: PRS for IS and DT2 are positively associated and increase the risk of this phenotype, and PRS CHD (narrow phenotype) has a negative association and reduces the risk of this phenotype. CONCLUSION Our study confirmed the presence of possible genetic comorbidity of depression and chronic somatic diseases and showed different effectiveness of online phenotyping of depressive symptoms as markers of genetic risk of somatic diseases in the population cohort. Further research is needed to construct various versions of online phenotyping test systems for population-based screening of cohorts at high genetic risk for genetically comorbid diseases.
Collapse
Affiliation(s)
- A O Kibitov
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
- Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia
| | - A S Rakitko
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
- Genotek ltd., Moscow, Russia
| | - E D Kasyanov
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - G V Rukavishnikov
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - D S Shumskaia
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - V V Ilinsky
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - N G Neznanov
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
- Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia
| | - G E Mazo
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| |
Collapse
|