1
|
Grönholm-Nyman P, Saarela C, Ellfolk U, Joutsa J, Parkkola R, Laine M, Karrasch M, Rinne JO. Phonemic word fluency is related to temporal and striatal gray matter volume in healthy older adults. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2024:1-24. [PMID: 39690714 DOI: 10.1080/13825585.2024.2436996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
Word fluency (WF) tasks that tap verbal and executive function show deteriorating performance by advancing age. To address the scarcely studied age-related brain correlates of WF, we employed whole-brain voxel-based morphometry to examine gray matter (GM) correlates of semantic and phonemic WF in 46 healthy older adults. Lower phonemic WF score was related to smaller anterior medial temporal GM volume as well as smaller GM volume in the putamen bilaterally. A disproportionally weak score on phonemic WF in relation to semantic WF was associated with smaller GM volume in the left inferior frontal cortex, the right anterior medial temporal lobe, and the right striatum. There were no significant associations for semantic WF. The fact that our temporal and subcortical findings were bilateral and right-lateralized, may reflect age-related compensation by these brain areas.
Collapse
Affiliation(s)
| | - Carina Saarela
- Department of Psychology, Åbo Akademi University, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Ulla Ellfolk
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Juho Joutsa
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Matti Laine
- Department of Psychology, Åbo Akademi University, Turku, Finland
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland
| | - Mira Karrasch
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
2
|
Cui L, Zhang Z, Guo Y, Li Y, Xie F, Guo Q. Category Switching Test: A Brief Amyloid-β-Sensitive Assessment Tool for Mild Cognitive Impairment. Assessment 2024; 31:543-556. [PMID: 37081801 DOI: 10.1177/10731911231167537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The Category Switching Test (CaST) is a verbal fluency test with active semantic category switching. This study aimed to explore the association between CaST performance and brain amyloid-β (Aβ) burden in patients with mild cognitive impairment (MCI) and the neurofunctional mechanisms. A total of 112 participants with MCI underwent Florbetapir positron emission tomography, resting-state functional magnetic resonance imaging, and a neuropsychological test battery. The high Aβ burden group had worse CaST performance than the low-burden group. CaST score and left middle temporal gyrus fractional amplitude of low-frequency fluctuations (fALFF) related inversely to the global Florbetapir standardized uptake value rate. Functional connectivity between the left middle temporal gyrus and frontal lobe decreased widely and correlated with CaST score in the high Aβ burden group. Thus, CaST score and left middle temporal gyrus fALFF were valuable in discriminating high Aβ burden. CaST might be useful in screening for MCI with high Aβ burden.
Collapse
Affiliation(s)
- Liang Cui
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Zhang
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihan Guo
- School of Medicine, The University of Queensland, Brisbane, Australia
| | - Yuehua Li
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Coleman MM, Keith CM, Wilhelmsen K, Mehta RI, Vieira Ligo Teixeira C, Miller M, Ward M, Navia RO, McCuddy WT, D'Haese PF, Haut MW. Surface-based correlates of cognition along the Alzheimer's continuum in a memory clinic population. Front Neurol 2023; 14:1214083. [PMID: 37731852 PMCID: PMC10508059 DOI: 10.3389/fneur.2023.1214083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Composite cognitive measures in large-scale studies with biomarker data for amyloid and tau have been widely used to characterize Alzheimer's disease (AD). However, little is known about how the findings from these studies translate to memory clinic populations without biomarker data, using single measures of cognition. Additionally, most studies have utilized voxel-based morphometry or limited surface-based morphometry such as cortical thickness, to measure the neurodegeneration associated with cognitive deficits. In this study, we aimed to replicate and extend the biomarker, composite study relationships using expanded surface-based morphometry and single measures of cognition in a memory clinic population. We examined 271 clinically diagnosed symptomatic individuals with mild cognitive impairment (N = 93) and Alzheimer's disease dementia (N = 178), as well as healthy controls (N = 29). Surface-based morphometry measures included cortical thickness, sulcal depth, and gyrification index within the "signature areas" of Alzheimer's disease. The cognitive variables pertained to hallmark features of Alzheimer's disease including verbal learning, verbal memory retention, and language, as well as executive function. The results demonstrated that verbal learning, language, and executive function correlated with the cortical thickness of the temporal, frontal, and parietal areas. Verbal memory retention was correlated to the thickness of temporal regions and gyrification of the inferior temporal gyrus. Language was related to the temporal regions and the supramarginal gyrus' sulcal depth and gyrification index. Executive function was correlated with the medial temporal gyrus and supramarginal gyrus sulcal depth, and the gyrification index of temporal regions and supramarginal gyrus, but not with the frontal areas. Predictions of each of these cognitive measures were dependent on a combination of structures and each of the morphometry measurements, and often included medial temporal gyrus thickness and sulcal depth. Overall, the results demonstrated that the relationships between cortical thinning and cognition are widespread and can be observed using single measures of cognition in a clinically diagnosed AD population. The utility of sulcal depth and gyrification index measures may be more focal to certain brain areas and cognitive measures. The relative importance of temporal, frontal, and parietal regions in verbal learning, language, and executive function, but not verbal memory retention, was replicated in this clinic cohort.
Collapse
Affiliation(s)
- Michelle M. Coleman
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Cierra M. Keith
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
- Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, WV, United States
| | - Kirk Wilhelmsen
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
- Department of Neurology, West Virginia University, Morgantown, WV, United States
| | - Rashi I. Mehta
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
- Department of Neuroradiology, West Virginia University, Morgantown, WV, United States
| | | | - Mark Miller
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
- Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, WV, United States
| | - Melanie Ward
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
- Department of Neurology, West Virginia University, Morgantown, WV, United States
| | - Ramiro Osvaldo Navia
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
- Department of Medicine, West Virginia University, Morgantown, WV, United States
| | - William T. McCuddy
- Department of Neuropsychology, St. Joseph Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Pierre-François D'Haese
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
- Department of Neurology, West Virginia University, Morgantown, WV, United States
| | - Marc W. Haut
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
- Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, WV, United States
- Department of Neurology, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
4
|
Isella V, Licciardo D, Ferri F, Crivellaro C, Morzenti S, Appollonio I, Ferrarese C. Reduced phonemic fluency in progressive supranuclear palsy is due to dysfunction of dominant BA6. Front Aging Neurosci 2022; 14:969875. [PMID: 36158541 PMCID: PMC9492952 DOI: 10.3389/fnagi.2022.969875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Reduced phonemic fluency is extremely frequent in progressive supranuclear palsy (PSP), but its neural correlate is yet to be defined. Objective We explored the hypothesis that poor fluency in PSP might be due to neurodegeneration within a dominant frontal circuit known to be involved in speech fluency, including the opercular area, the superior frontal cortex (BA6), and the frontal aslant tract connecting these two regions. Methods We correlated performance on a letter fluency task (F, A, and S, 60 s for each letter) with brain metabolism as measured with Fluoro-deoxy-glucose Positron Emission Tomography, using Statistical Parametric Mapping, in 31 patients with PSP. Results Reduced letter fluency was associated with significant hypometabolism at the level of left BA6. Conclusion Our finding is the first evidence that in PSP, as in other neurogical disorders, poor self-initiated, effortful verbal retrieval appears to be linked to dysfunction of the dominant opercular-aslant-BA6 circuit.
Collapse
Affiliation(s)
- Valeria Isella
- Department of Neurology, School of Medicine, University of Milano - Bicocca, Monza, Italy
- Milan Center for Neurosciences, Milan, Italy
| | - Daniele Licciardo
- Milan Center for Neurosciences, Milan, Italy
- Neurology Unit, San Gerardo Hospital, Monza, Italy
| | - Francesca Ferri
- Milan Center for Neurosciences, Milan, Italy
- Neurology Unit, San Gerardo Hospital, Monza, Italy
| | | | | | - Ildebrando Appollonio
- Department of Neurology, School of Medicine, University of Milano - Bicocca, Monza, Italy
- Milan Center for Neurosciences, Milan, Italy
- Neurology Unit, San Gerardo Hospital, Monza, Italy
| | - Carlo Ferrarese
- Department of Neurology, School of Medicine, University of Milano - Bicocca, Monza, Italy
- Milan Center for Neurosciences, Milan, Italy
- Neurology Unit, San Gerardo Hospital, Monza, Italy
| |
Collapse
|
5
|
Almkvist O, Brüggen K, Nordberg A. Subcortical and Cortical Regions of Amyloid-β Pathology Measured by 11C-PiB PET Are Differentially Associated with Cognitive Functions and Stages of Disease in Memory Clinic Patients. J Alzheimers Dis 2021; 81:1613-1624. [PMID: 33967046 DOI: 10.3233/jad-201612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The effect of regional brain amyloid-β (Aβ) pathology on specific cognitive functions is incompletely known. OBJECTIVE The relationship between Aβ and cognitive functions was investigated in this cross-sectional multicenter study of memory clinic patients. METHODS The participants were patients diagnosed with Alzheimer's disease (AD, n = 83), mild cognitive impairment (MCI, n = 60), and healthy controls (HC, n = 32), who had been scanned by 11C-PiB PET in 13 brain regions of both hemispheres and who had been assessed by cognitive tests covering seven domains. RESULTS Hierarchic multiple regression analyses were performed on each cognitive test as dependent variable, controlling for demographic characteristics and APOE status (block 1) and PiB measures in 13 brain regions (block 2) as independent variables. The model was highly significant for each cognitive test and most strongly for tests of episodic memory (learning and retention) versus PiB in putamen, visuospatially demanding tests (processing and retention) versus the occipital lobe, semantic fluency versus the parietal lobe, attention versus posterior gyrus cinguli, and executive function versus nucleus accumbens. In addition, education had a positively and APOE status a negatively significant effect on cognitive tests. CONCLUSION Five subcortical and cortical regions with Aβ pathology are differentially associated with cognitive functions and stages of disease in memory clinic patients.
Collapse
Affiliation(s)
- Ove Almkvist
- Division of Clinical Geriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden.,Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Katharina Brüggen
- Division of Clinical Geriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
White matter pathways underlying Chinese semantic and phonological fluency in mild cognitive impairment. Neuropsychologia 2020; 149:107671. [PMID: 33189733 DOI: 10.1016/j.neuropsychologia.2020.107671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022]
Abstract
Neuroimaging evidence has suggested that Chinese-language processing differs from that of its alphabetic-language counterparts. However, the underlying white matter pathway correlations between semantic and phonological fluency in Chinese-language processing remain unknown. Thus, we investigated the differences between two verbal fluency tests on 50 participants with amnestic mild cognitive impairment (aMCI) and 36 healthy controls (HC) with respect to five groups (ventral and dorsal stream fibers, frontal-striatal fibers, hippocampal-related fibers, and the corpus callosum) of white matter microstructural integrity. Diffusion spectrum imaging was used. The results revealed a progressive reduction in advantage in semantic fluency relative to phonological fluency from HC to single-domain aMCI to multidomain aMCI. Common and dissociative white matter correlations between tests of the two types of fluency were identified. Both types of fluency relied on the corpus callosum and ventral stream fibers, semantic fluency relied on the hippocampal-related fibers, and phonological fluency relied on the dorsal stream and frontal-striatal fibers. The involvement of bilateral tracts of interest as well as the association with the corpus callosum indicate the uniqueness of Chinese-language fluency processing. Dynamic associations were noted between white matter tract involvement and performance on the two fluency tests in four time blocks. Overall, our findings suggest the clinical utility of verbal fluency tests in geriatric populations, and they elucidate both task-specific and language-specific brain-behavior associations.
Collapse
|
7
|
Brain volumes and dual-task performance correlates among individuals with cognitive impairment: a retrospective analysis. J Neural Transm (Vienna) 2020; 127:1057-1071. [PMID: 32350624 PMCID: PMC7293667 DOI: 10.1007/s00702-020-02199-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/21/2020] [Indexed: 10/26/2022]
Abstract
Cognitive impairment (CI) is a prevalent condition characterized by loss of brain volume and changes in cognition, motor function, and dual-tasking ability. To examine associations between brain volumes, dual-task performance, and gait and balance in those with CI to elucidate the mechanisms underlying loss of function. We performed a retrospective analysis of medical records of patients with CI and compared brain volumes, dual-task performance, and measures of gait and balance. Greater cognitive and combined dual-task effects (DTE) are associated with smaller brain volumes. In contrast, motor DTE is not associated with distinct pattern of brain volumes. As brain volumes decrease, dual-task performance becomes more motor prioritized. Cognitive DTE is more strongly associated with decreased performance on measures of gait and balance than motor DTE. Decreased gait and balance performance are also associated with increased motor task prioritization. Cognitive DTE appears to be more strongly associated with decreased automaticity and gait and balance ability than motor DTE and should be utilized as a clinical and research outcome measure in this population. The increased motor task prioritization associated with decreased brain volume and function indicates a potential for accommodative strategies to maximize function in those with CI. Counterintuitive correlations between motor brain volumes and motor DTE in our study suggest a complicated interaction between brain pathology and function.
Collapse
|