1
|
Lindquist BE, Timbie C, Voskobiynyk Y, Paz JT. Thalamocortical circuits in generalized epilepsy: Pathophysiologic mechanisms and therapeutic targets. Neurobiol Dis 2023; 181:106094. [PMID: 36990364 PMCID: PMC10192143 DOI: 10.1016/j.nbd.2023.106094] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Generalized epilepsy affects 24 million people globally; at least 25% of cases remain medically refractory. The thalamus, with widespread connections throughout the brain, plays a critical role in generalized epilepsy. The intrinsic properties of thalamic neurons and the synaptic connections between populations of neurons in the nucleus reticularis thalami and thalamocortical relay nuclei help generate different firing patterns that influence brain states. In particular, transitions from tonic firing to highly synchronized burst firing mode in thalamic neurons can cause seizures that rapidly generalize and cause altered awareness and unconsciousness. Here, we review the most recent advances in our understanding of how thalamic activity is regulated and discuss the gaps in our understanding of the mechanisms of generalized epilepsy syndromes. Elucidating the role of the thalamus in generalized epilepsy syndromes may lead to new opportunities to better treat pharmaco-resistant generalized epilepsy by thalamic modulation and dietary therapy.
Collapse
Affiliation(s)
- Britta E Lindquist
- UCSF Department of Neurology, Division of Neurocritical Care, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Clare Timbie
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Yuliya Voskobiynyk
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America
| | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America; Kavli Institute for Fundamental Neuroscience, UCSF, United States of America.
| |
Collapse
|
2
|
Colombo S, Reddy HP, Petri S, Williams DJ, Shalomov B, Dhindsa RS, Gelfman S, Krizay D, Bera AK, Yang M, Peng Y, Makinson CD, Boland MJ, Frankel WN, Goldstein DB, Dascal N. Epilepsy in a mouse model of GNB1 encephalopathy arises from altered potassium (GIRK) channel signaling and is alleviated by a GIRK inhibitor. Front Cell Neurosci 2023; 17:1175895. [PMID: 37275776 PMCID: PMC10232839 DOI: 10.3389/fncel.2023.1175895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/12/2023] [Indexed: 06/07/2023] Open
Abstract
De novo mutations in GNB1, encoding the Gβ1 subunit of G proteins, cause a neurodevelopmental disorder with global developmental delay and epilepsy, GNB1 encephalopathy. Here, we show that mice carrying a pathogenic mutation, K78R, recapitulate aspects of the disorder, including developmental delay and generalized seizures. Cultured mutant cortical neurons also display aberrant bursting activity on multi-electrode arrays. Strikingly, the antiepileptic drug ethosuximide (ETX) restores normal neuronal network behavior in vitro and suppresses spike-and-wave discharges (SWD) in vivo. ETX is a known blocker of T-type voltage-gated Ca2+ channels and G protein-coupled potassium (GIRK) channels. Accordingly, we present evidence that K78R results in a gain-of-function (GoF) effect by increasing the activation of GIRK channels in cultured neurons and a heterologous model (Xenopus oocytes)-an effect we show can be potently inhibited by ETX. This work implicates a GoF mechanism for GIRK channels in epilepsy, identifies a new mechanism of action for ETX in preventing seizures, and establishes this mouse model as a pre-clinical tool for translational research with predicative value for GNB1 encephalopathy.
Collapse
Affiliation(s)
- Sophie Colombo
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Haritha P. Reddy
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sabrina Petri
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Damian J. Williams
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Boris Shalomov
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ryan S. Dhindsa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Sahar Gelfman
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Daniel Krizay
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Amal K. Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Mu Yang
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Mouse NeuroBehavior Core Facility, Columbia University Irving Medical Center, New York, NY, United States
| | - Yueqing Peng
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Christopher D. Makinson
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
- Department of Neuroscience, Columbia University, New York, NY, United States
| | - Michael J. Boland
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Wayne N. Frankel
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Nathan Dascal
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Intrathecal application of ethosuximide is highly efficient in suppressing seizures in a genetic model of absence epilepsy. Epilepsy Res 2022; 184:106967. [DOI: 10.1016/j.eplepsyres.2022.106967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/29/2022] [Accepted: 06/11/2022] [Indexed: 11/21/2022]
|
4
|
Salvati KA, Ritger ML, Davoudian PA, O’Dell F, Wyskiel DR, Souza GMPR, Lu AC, Perez-Reyes E, Drake JC, Yan Z, Beenhakker MP. OUP accepted manuscript. Brain 2022; 145:2332-2346. [PMID: 35134125 PMCID: PMC9337815 DOI: 10.1093/brain/awac037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 11/21/2022] Open
Abstract
Metabolism regulates neuronal activity and modulates the occurrence of epileptic seizures. Here, using two rodent models of absence epilepsy, we show that hypoglycaemia increases the occurrence of spike-wave seizures. We then show that selectively disrupting glycolysis in the thalamus, a structure implicated in absence epilepsy, is sufficient to increase spike-wave seizures. We propose that activation of thalamic AMP-activated protein kinase, a sensor of cellular energetic stress and potentiator of metabotropic GABAB-receptor function, is a significant driver of hypoglycaemia-induced spike-wave seizures. We show that AMP-activated protein kinase augments postsynaptic GABAB-receptor-mediated currents in thalamocortical neurons and strengthens epileptiform network activity evoked in thalamic brain slices. Selective thalamic AMP-activated protein kinase activation also increases spike-wave seizures. Finally, systemic administration of metformin, an AMP-activated protein kinase agonist and common diabetes treatment, profoundly increased spike-wave seizures. These results advance the decades-old observation that glucose metabolism regulates thalamocortical circuit excitability by demonstrating that AMP-activated protein kinase and GABAB-receptor cooperativity is sufficient to provoke spike-wave seizures.
Collapse
Affiliation(s)
- Kathryn A Salvati
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Epilepsy Research Laboratory and Weil Institute for Neurosciences, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew L Ritger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Pasha A Davoudian
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- MD-PhD Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Finnegan O’Dell
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Daniel R Wyskiel
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - George M P R Souza
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Adam C Lu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joshua C Drake
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- The Robert M. Berne Center for Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Zhen Yan
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- The Robert M. Berne Center for Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mark P Beenhakker
- Correspondence to: Mark P. Beenhakker Department of Pharmacology University of Virginia School of Medicine Charlottesville, VA, 22908, USA E-mail:
| |
Collapse
|
5
|
Gobbo D, Scheller A, Kirchhoff F. From Physiology to Pathology of Cortico-Thalamo-Cortical Oscillations: Astroglia as a Target for Further Research. Front Neurol 2021; 12:661408. [PMID: 34177766 PMCID: PMC8219957 DOI: 10.3389/fneur.2021.661408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
The electrographic hallmark of childhood absence epilepsy (CAE) and other idiopathic forms of epilepsy are 2.5-4 Hz spike and wave discharges (SWDs) originating from abnormal electrical oscillations of the cortico-thalamo-cortical network. SWDs are generally associated with sudden and brief non-convulsive epileptic events mostly generating impairment of consciousness and correlating with attention and learning as well as cognitive deficits. To date, SWDs are known to arise from locally restricted imbalances of excitation and inhibition in the deep layers of the primary somatosensory cortex. SWDs propagate to the mostly GABAergic nucleus reticularis thalami (NRT) and the somatosensory thalamic nuclei that project back to the cortex, leading to the typical generalized spike and wave oscillations. Given their shared anatomical basis, SWDs have been originally considered the pathological transition of 11-16 Hz bursts of neural oscillatory activity (the so-called sleep spindles) occurring during Non-Rapid Eye Movement (NREM) sleep, but more recent research revealed fundamental functional differences between sleep spindles and SWDs, suggesting the latter could be more closely related to the slow (<1 Hz) oscillations alternating active (Up) and silent (Down) cortical activity and concomitantly occurring during NREM. Indeed, several lines of evidence support the fact that SWDs impair sleep architecture as well as sleep/wake cycles and sleep pressure, which, in turn, affect seizure circadian frequency and distribution. Given the accumulating evidence on the role of astroglia in the field of epilepsy in the modulation of excitation and inhibition in the brain as well as on the development of aberrant synchronous network activity, we aim at pointing at putative contributions of astrocytes to the physiology of slow-wave sleep and to the pathology of SWDs. Particularly, we will address the astroglial functions known to be involved in the control of network excitability and synchronicity and so far mainly addressed in the context of convulsive seizures, namely (i) interstitial fluid homeostasis, (ii) K+ clearance and neurotransmitter uptake from the extracellular space and the synaptic cleft, (iii) gap junction mechanical and functional coupling as well as hemichannel function, (iv) gliotransmission, (v) astroglial Ca2+ signaling and downstream effectors, (vi) reactive astrogliosis and cytokine release.
Collapse
Affiliation(s)
- Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| |
Collapse
|
6
|
Maganti RK, Jones MV. Untangling a Web: Basic Mechanisms of the Complex Interactions Between Sleep, Circadian Rhythms, and Epilepsy. Epilepsy Curr 2021; 21:105-110. [PMID: 33541118 PMCID: PMC8010879 DOI: 10.1177/1535759721989674] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Seizures have sleep–wake and circadian patterns in various epilepsies and, in turn, disrupt sleep and circadian rhythms. The resultant sleep deprivation (SD) is an exacerbating factor for seizures that sets up a vicious cycle that can potentially lead to disease progression and even to epilepsy-related mortality. A variety of cellular or network electrophysiological changes and changes in expression of clock-controlled genes or other transcription factors underlie sleep–wake and circadian distribution of seizures, as well as the disruptions seen in both. A broad understanding of these mechanisms may help in designing better treatments to prevent SD-induced seizure exacerbation, disrupt the vicious cycle of disease progression, and reduce epilepsy-related mortality.
Collapse
Affiliation(s)
- Rama K Maganti
- Department of Neurology, 5228University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mathew V Jones
- Department of Neuroscience, 5228University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
7
|
Crunelli V, Lőrincz ML, McCafferty C, Lambert RC, Leresche N, Di Giovanni G, David F. Clinical and experimental insight into pathophysiology, comorbidity and therapy of absence seizures. Brain 2020; 143:2341-2368. [PMID: 32437558 PMCID: PMC7447525 DOI: 10.1093/brain/awaa072] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/19/2019] [Accepted: 01/31/2020] [Indexed: 12/24/2022] Open
Abstract
Absence seizures in children and teenagers are generally considered relatively benign because of their non-convulsive nature and the large incidence of remittance in early adulthood. Recent studies, however, show that 30% of children with absence seizures are pharmaco-resistant and 60% are affected by severe neuropsychiatric comorbid conditions, including impairments in attention, cognition, memory and mood. In particular, attention deficits can be detected before the epilepsy diagnosis, may persist even when seizures are pharmacologically controlled and are aggravated by valproic acid monotherapy. New functional MRI-magnetoencephalography and functional MRI-EEG studies provide conclusive evidence that changes in blood oxygenation level-dependent signal amplitude and frequency in children with absence seizures can be detected in specific cortical networks at least 1 min before the start of a seizure, spike-wave discharges are not generalized at seizure onset and abnormal cortical network states remain during interictal periods. From a neurobiological perspective, recent electrical recordings and imaging of large neuronal ensembles with single-cell resolution in non-anaesthetized models show that, in contrast to the predominant opinion, cortical mechanisms, rather than an exclusively thalamic rhythmogenesis, are key in driving seizure ictogenesis and determining spike-wave frequency. Though synchronous ictal firing characterizes cortical and thalamic activity at the population level, individual cortico-thalamic and thalamocortical neurons are sparsely recruited to successive seizures and consecutive paroxysmal cycles within a seizure. New evidence strengthens previous findings on the essential role for basal ganglia networks in absence seizures, in particular the ictal increase in firing of substantia nigra GABAergic neurons. Thus, a key feature of thalamic ictogenesis is the powerful increase in the inhibition of thalamocortical neurons that originates at least from two sources, substantia nigra and thalamic reticular nucleus. This undoubtedly provides a major contribution to the ictal decrease in total firing and the ictal increase of T-type calcium channel-mediated burst firing of thalamocortical neurons, though the latter is not essential for seizure expression. Moreover, in some children and animal models with absence seizures, the ictal increase in thalamic inhibition is enhanced by the loss-of-function of the astrocytic GABA transporter GAT-1 that does not necessarily derive from a mutation in its gene. Together, these novel clinical and experimental findings bring about paradigm-shifting views of our understanding of absence seizures and demand careful choice of initial monotherapy and continuous neuropsychiatric evaluation of affected children. These issues are discussed here to focus future clinical and experimental research and help to identify novel therapeutic targets for treating both absence seizures and their comorbidities.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK
| | - Magor L Lőrincz
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Cian McCafferty
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Régis C Lambert
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine and Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | - Nathalie Leresche
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine and Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK
| | - François David
- Cerebral dynamics, learning and plasticity, Integrative Neuroscience and Cognition Center - UMR 8002, Paris, France
| |
Collapse
|
8
|
Spike-and-Wave Discharges Are Not Pathological Sleep Spindles, Network-Level Aspects of Age-Dependent Absence Seizure Development in Rats. eNeuro 2020; 7:ENEURO.0253-19.2019. [PMID: 31862790 PMCID: PMC6944477 DOI: 10.1523/eneuro.0253-19.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/04/2019] [Accepted: 12/11/2019] [Indexed: 12/28/2022] Open
Abstract
Spike-and-wave discharges (SWDs) of absence epilepsy are considered as pathologic alterations of sleep spindles; however, their network-level relationship has never been convincingly revealed. In order to observe the development and generalization of the thalamocortical SWDs and the concomitant alterations of sleep related oscillations, we performed local field potential (LFP) and single unit recordings in rats for three months during their maturation. We found that while SWDs and spindles look similar in young, they become different with maturation and shift to appear in different brain states. Thus, despite being generated by the same network, they are likely two distinct manifestations of the thalamocortical activity. We show that while spindles are already mainly global oscillations, SWDs appear mainly only focally in young. They become capable to generalize later with maturation, when the out-of-focus brain regions develop a decreased inhibitory/excitatory balance. These results suggest that a hyperexcitable focus is not sufficient alone to drive generalized absence seizures. Importantly, we also found the gradual age dependent disappearance of sleep spindles coinciding with the simultaneous gradual emergence of spike and waves, which both could be reversed by the proper dosing of ethosuximide (ETX). Based on these observations we conclude that the absence seizure development might be a multi-step process, which might involve the functional impairment of cortical interneurons and network-level changes that negatively affect sleep quality.
Collapse
|
9
|
Lee S, Hwang E, Lee M, Choi JH. Distinct Topographical Patterns of Spike-Wave Discharge in Transgenic and Pharmacologically Induced Absence Seizure Models. Exp Neurobiol 2019; 28:474-484. [PMID: 31495076 PMCID: PMC6751861 DOI: 10.5607/en.2019.28.4.474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/18/2019] [Accepted: 07/29/2019] [Indexed: 01/21/2023] Open
Abstract
Absence seizures (AS) are generalized non-convulsive seizures characterized by a brief loss of consciousness and spike-and-wave discharges (SWD) in an electroencephalogram (EEG). A number of animal models have been developed to explain the mechanisms of AS, and thalamo-cortical networks are considered to be involved. However, the cortical foci have not been well described in mouse models of AS. This study aims to use a high density EEG in pathophysiologically different AS models to compare the spatiotemporal patterns of SWDs. We used two AS models: a pharmacologically induced model (gamma-hydroxybutyric acid, GHB model) and a transgenic model (phospholipase beta4 knock-out, PLCβ4 model). The occurrences of SWDs were confirmed by thalamic recordings. The topographical analysis of SWDs showed that the onset and propagation patterns were markedly distinguishable between the two models. In the PLCβ4 model, the foci were located within the somatosensory cortex followed by propagation to the frontal cortex, whereas in the GHB model, a majority of SWDs was initiated in the prefrontal cortex followed by propagation to the posterior cortex. In addition, in the GHB model, foci were also observed in other cortical areas. This observation indicates that different cortical networks are involved in the generation of SWDs across the two models.
Collapse
Affiliation(s)
- Soojung Lee
- Department of Oral Physiology, Faculty of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Eunjin Hwang
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Mina Lee
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea.,Department of Neuroscience, University of Science and Technology, Daejeon 34113, Korea
| | - Jee Hyun Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea.,Department of Neuroscience, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
10
|
Ding L, Satish S, Zhou C, Gallagher MJ. Cortical activation in generalized seizures. Epilepsia 2019; 60:1932-1941. [PMID: 31368118 DOI: 10.1111/epi.16306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Patients with generalized epilepsy exhibit different epileptiform events including asymptomatic interictal spikes (IS), absence seizures with spike-wave discharges (SWDs), and myoclonic seizures (MS). Our objective was to determine the spatiotemporal patterns of cortical activation in SWDs, IS, and MS in the Gabra1+/A322D juvenile myoclonic epilepsy mouse. METHODS We fabricated affordable, flexible high-density electroencephalography (HdEEG) arrays and recorded spontaneous SWD, IS, and MS with video/HdEEG. We determined differences among the events in amplitude spectral density (ASD) in the δ/θ/α/β/γ frequency bands at baseline (3.5-4.0 seconds before the first spike time, t0 ) and the prespike period (0.1-0.5 seconds before t0 ), and we elucidated the spatiotemporal activation during the t0 spike. RESULTS All three events had an increase in ASD between baseline and prespike in at least one frequency band. During prespike, MS had the largest δ-band ASD, but SWD had the greatest α/β/γ band ASD. For all three events, the ASD was largest in the anterior regions. The t0 spike voltage was also greatest in the anterior regions for all three events and IS and MS had larger voltages than SWD. From 7.5 to 17.5 msec after t0 , MS had greater voltage than IS and SWD, and maximal voltage was in the posterior parietal region. SIGNIFICANCE Changes in spectral density from baseline to prespike indicate that none of these generalized events are instantaneous or entirely unpredictable. Prominent engagement of anterior cortical regions during prespike and at t0 suggest that common anterior neural circuits participate in each event. Differences in prespike ASD signify that although the events may engage similar brain regions, they may arise from distinct proictal states with different neuronal activity or connectivity. Prolonged activation of the posterior parietal area in MS suggests that posterior circuits contribute to the myoclonic jerk. Together, these findings identify brain regions and processes that could be specifically targeted for further recording and modulation.
Collapse
Affiliation(s)
- Li Ding
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sanjana Satish
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chengwen Zhou
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Martin J Gallagher
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
11
|
Swimming exercise decreases the absence-like epileptic activity in WAG/Rij rats. Behav Brain Res 2019; 363:145-148. [DOI: 10.1016/j.bbr.2019.01.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/03/2019] [Accepted: 01/31/2019] [Indexed: 12/15/2022]
|
12
|
Miyamoto H, Tatsukawa T, Shimohata A, Yamagata T, Suzuki T, Amano K, Mazaki E, Raveau M, Ogiwara I, Oba-Asaka A, Hensch TK, Itohara S, Sakimura K, Kobayashi K, Kobayashi K, Yamakawa K. Impaired cortico-striatal excitatory transmission triggers epilepsy. Nat Commun 2019; 10:1917. [PMID: 31015467 PMCID: PMC6478892 DOI: 10.1038/s41467-019-09954-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/10/2019] [Indexed: 11/10/2022] Open
Abstract
STXBP1 and SCN2A gene mutations are observed in patients with epilepsies, although the circuit basis remains elusive. Here, we show that mice with haplodeficiency for these genes exhibit absence seizures with spike-and-wave discharges (SWDs) initiated by reduced cortical excitatory transmission into the striatum. Mice deficient for Stxbp1 or Scn2a in cortico-striatal but not cortico-thalamic neurons reproduce SWDs. In Stxbp1 haplodeficient mice, there is a reduction in excitatory transmission from the neocortex to striatal fast-spiking interneurons (FSIs). FSI activity transiently decreases at SWD onset, and pharmacological potentiation of AMPA receptors in the striatum but not in the thalamus suppresses SWDs. Furthermore, in wild-type mice, pharmacological inhibition of cortico-striatal FSI excitatory transmission triggers absence and convulsive seizures in a dose-dependent manner. These findings suggest that impaired cortico-striatal excitatory transmission is a plausible mechanism that triggers epilepsy in Stxbp1 and Scn2a haplodeficient mice. Spike and wave discharge (SWD) activity is seen during absence seizures and is thought to be thalamocortical in origin. Here, the authors show that SWDs are initiated through the impaired corticostriatal excitatory transmissions onto striatal fast spiking interneurons.
Collapse
Affiliation(s)
- Hiroyuki Miyamoto
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan.,International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, 113-0033, Japan
| | - Tetsuya Tatsukawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Atsushi Shimohata
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Tetsushi Yamagata
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Toshimitsu Suzuki
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Kenji Amano
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Emi Mazaki
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Matthieu Raveau
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Ikuo Ogiwara
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,Department of Physiology, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Atsuko Oba-Asaka
- International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, 113-0033, Japan.,Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Takao K Hensch
- International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, 113-0033, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,FIRST, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan.,Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
13
|
Halász P, Bódizs R, Ujma PP, Fabó D, Szűcs A. Strong relationship between NREM sleep, epilepsy and plastic functions - A conceptual review on the neurophysiology background. Epilepsy Res 2019; 150:95-105. [PMID: 30712997 DOI: 10.1016/j.eplepsyres.2018.11.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/08/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
The aim of this review is to summarize and discuss the strong bond between NREM sleep and epilepsy underlain by the shared link and effect on brain plasticity. Beyond the seizure occurrence rate, sleep relatedness may manifest in the enhancement of interictal epileptic discharges (spikes and pathological ripples). The number of the discharges as well as their propagation increase during NREM sleep, unmasking the epileptic network that is hidden during wakefulness. The interictal epileptic discharges associate with different sleep constituents (sleep slow waves, spindling and high frequency oscillations); known to play essential role in memory and learning. We highlight three major groups of epilepsies, in which sleep-related plastic functions suffer an epileptic derailment. In absence epilepsy mainly involving the thalamo-cortical system, sleep spindles transform to generalized spike-wave activity. In mesio-temporal epilepsy affecting the hippocampal declarative memory system, the sharp wave ripples derail to dysfunctional epileptic oscillations (spikes and pathological ripples). Idiopathic childhood epilepsies affecting the perisylvian network may progress to catastrophic status electricus during NREM sleep. In these major epilepsies, NREM sleep has a pivotal role in the development and course of the disorder. Epilepsy is born in-, and exhibits its pathological properties during NREM sleep. Interictal discharges are important causative agents in this process.
Collapse
Affiliation(s)
- Péter Halász
- National Institute of Clinical Neuroscience, Amerikai út 57. Budapest, H-1145, Hungary.
| | - Róbert Bódizs
- Semmelweis University, Institute of Behavioral Sciences, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Péter Przemyslaw Ujma
- Semmelweis University, Institute of Behavioral Sciences, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Dániel Fabó
- National Institute of Clinical Neuroscience, Amerikai út 57. Budapest, H-1145, Hungary
| | - Anna Szűcs
- National Institute of Clinical Neuroscience, Amerikai út 57. Budapest, H-1145, Hungary
| |
Collapse
|
14
|
Celli R, Santolini I, Guiducci M, van Luijtelaar G, Parisi P, Striano P, Gradini R, Battaglia G, Ngomba RT, Nicoletti F. The α2δ Subunit and Absence Epilepsy: Beyond Calcium Channels? Curr Neuropharmacol 2018; 15:918-925. [PMID: 28290248 PMCID: PMC5652034 DOI: 10.2174/1570159x15666170309105451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/16/2017] [Accepted: 03/06/2017] [Indexed: 02/08/2023] Open
Abstract
Background: Spike-wave discharges, underlying absence seizures, are generated within a cortico-thalamo-cortical network that involves the somatosensory cortex, the reticular thalamic nucleus, and the ventrobasal thalamic nuclei. Activation of T-type voltage-sensitive calcium channels (VSCCs) contributes to the pathological oscillatory activity of this network, and some of the first-line drugs used in the treatment of absence epilepsy inhibit T-type calcium channels. The α2δ subunit is a component of high voltage-activated VSCCs (i.e., L-, N-, P/Q-, and R channels) and studies carried out in heterologous expression systems suggest that it may also associate with T channels. The α2δ subunit is also targeted by thrombospondins, which regulate synaptogenesis in the central nervous system. Objective: To discuss the potential role for the thrombospondin/α2δ axis in the pathophysiology of absence epilepsy. Methods: We searched PubMed articles for the terms “absence epilepsy”, “T-type voltage-sensitive calcium channels”, “α2δ subunit”, “ducky mice”, “pregabalin”, “gabapentin”, “thrombospondins”, and included papers focusing this Review's scope. Results: We moved from the evidence that mice lacking the α2δ-2 subunit show absence seizures and α2δ ligands (gabapentin and pregabalin) are detrimental in the treatment of absence epilepsy. This suggests that α2δ may be protective against absence epilepsy via a mechanism that does not involve T channels. We discuss the interaction between thrombospondins and α2δ and its potential relevance in the regulation of excitatory synaptic formation in the cortico-thalamo-cortical network. Conclusion: We speculate on the possibility that the thrombospondin/α2δ axis is critical for the correct functioning of the cortico-thalamo-cortical network, and that abnormalities in this axis may play a role in the pathophysiology of absence epilepsy.
Collapse
Affiliation(s)
- Roberta Celli
- I.R.C.C.S. Neuromed, Neuropharmacology Unit, Pozzilli, (IS), Italy
| | - Ines Santolini
- I.R.C.C.S. Neuromed, Neuropharmacology Unit, Pozzilli, (IS), Italy
| | - Michela Guiducci
- Departments of Neurosciences, Mental Health and Sensory Organs, Experimental Medicine, and Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Gilles van Luijtelaar
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen. Netherlands
| | - Pasquale Parisi
- Departments of Neurosciences, Mental Health and Sensory Organs, Experimental Medicine, and Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute, Genova, Italy
| | - Roberto Gradini
- I.R.C.C.S. Neuromed, Neuropharmacology Unit, Pozzilli, (IS), Italy
| | | | - Richard T Ngomba
- University of Lincoln, School of Pharmacy, Lincoln, United Kingdom
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University Sapienza, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
15
|
Tenney JR, Kadis DS, Agler W, Rozhkov L, Altaye M, Xiang J, Vannest J, Glauser TA. Ictal connectivity in childhood absence epilepsy: Associations with outcome. Epilepsia 2018; 59:971-981. [PMID: 29633248 DOI: 10.1111/epi.14067] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The understanding of childhood absence epilepsy (CAE) has been revolutionized over the past decade, but the biological mechanisms responsible for variable treatment outcomes are unknown. Our purpose in this prospective observational study was to determine how pretreatment ictal network pathways, defined using a combined electroencephalography (EEG)-functional magnetic resonance imaging (EEG-fMRI) and magnetoencephalography (MEG) effective connectivity analysis, were related to treatment response. METHODS Sixteen children with newly diagnosed and drug-naive CAE had 31 typical absence seizures during EEG-fMRI and 74 during MEG. The spatial extent of the pretreatment ictal network was defined using fMRI hemodynamic response with an event-related independent component analysis (eICA). This spatially defined pretreatment ictal network supplied prior information for MEG-effective connectivity analysis calculated using phase slope index (PSI). Treatment outcome was assessed 2 years following diagnosis and dichotomized to ethosuximide (ETX)-treatment responders (N = 11) or nonresponders (N = 5). Effective connectivity of the pretreatment ictal network was compared to the treatment response. RESULTS Patterns of pretreatment connectivity demonstrated strongest connections in the thalamus and posterior brain regions (parietal, posterior cingulate, angular gyrus, precuneus, and occipital) at delta frequencies and the frontal cortices at gamma frequencies (P < .05). ETX treatment nonresponders had pretreatment connectivity, which was decreased in the precuneus region and increased in the frontal cortex compared to ETX responders (P < .05). SIGNIFICANCE Pretreatment ictal connectivity differences in children with CAE were associated with response to antiepileptic treatment. This is a possible mechanism for the variable treatment response seen in patients sharing the same epilepsy syndrome.
Collapse
Affiliation(s)
- Jeffrey R Tenney
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Darren S Kadis
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - William Agler
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leonid Rozhkov
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mekibib Altaye
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jing Xiang
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jennifer Vannest
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tracy A Glauser
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
16
|
Pathophysiology of absence epilepsy: Insights from genetic models. Neurosci Lett 2018; 667:53-65. [DOI: 10.1016/j.neulet.2017.02.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/08/2017] [Accepted: 02/12/2017] [Indexed: 11/21/2022]
|
17
|
Габова А, Саркисова К, Федосова Е, Шацкова АБ, Морозов А. ВОЗРАСТНЫЕ ИЗМЕНЕНИЯ ПИК-ВОЛНОВЫХ РАЗРЯДОВ У КРЫС ЛИНИИ WAG/Rij С ГЕНЕТИЧЕСКОЙ АБСАНСНОЙ ЭПИЛЕПСИЕЙ, "Российский физиологический журнал им. И.М. Сеченова". ACTA ACUST UNITED AC 2018. [DOI: 10.7868/s0869813918100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Крысы линии WAG/Rij являются моделью генетической абсансной эпилепсии, характеризующейся наличием пик-волновых разрядов (ПВР) на ЭЭГ. Известно, что первые ПВР у крыс линии WAG/Rij возникают в возрасте 2-3 месяцев, а в дальнейшем их число и длительность увеличиваются. Однако эволюция ПВР в процессе прогрессивного развития абсансной эпилепсии у крыс линии WAG/Rij остается неисследованной. Цель настоящей работы - выяснить возрастные изменения частотно-временной динамики, частотного спектра и морфологических характеристик ПВР у крыс линии WAG/Rij. Для достижения этой цели у одних и тех же крыс в возрасте от 2 до 12 месяцев исследовали эволюцию ПВР. Установлено, что ПВР формируются в возрасте 2-4 месяцев, в дальнейшем наблюдают морфологические изменения ПВР. Показано, что в процессе прогрессивного развития абсансной эпилепсии ПВР проходят 3 стадии «созревания». Предполагается, что связанная с возрастом эволюция ПВР у крыс линии WAG/Rij является отражением прогрессивных электрофизиологических изменений в соматосенсорной коре - области мозга, с которой связывают генерацию и генерализацию ПВР.
Collapse
Affiliation(s)
- А.В. Габова
- Институт высшей нервной деятельности и нейрофизиологии РАН Российская Федерация, 117485, Москва, ул. Бутлерова, 5а
| | - К.Ю. Саркисова
- Институт высшей нервной деятельности и нейрофизиологии Российской Академии наук, Москва
| | - Е.А. Федосова
- Институт высшей нервной деятельности и нейрофизиологии РАН,
| | - А. Б. Шацкова
- Институт высшей нервной деятельности и нейрофизиологии РАН
| | | |
Collapse
|
18
|
González-Trujano ME, Domínguez F, Pérez-Ortega G, Aguillón M, Martínez-Vargas D, Almazán-Alvarado S, Martínez A. Justicia spicigera Schltdl. and kaempferitrin as potential anticonvulsant natural products. Biomed Pharmacother 2017; 92:240-248. [PMID: 28551543 DOI: 10.1016/j.biopha.2017.05.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 01/18/2023] Open
|
19
|
Fogerson PM, Huguenard JR. Tapping the Brakes: Cellular and Synaptic Mechanisms that Regulate Thalamic Oscillations. Neuron 2017; 92:687-704. [PMID: 27883901 DOI: 10.1016/j.neuron.2016.10.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 12/26/2022]
Abstract
Thalamic oscillators contribute to both normal rhythms associated with sleep and anesthesia and abnormal, hypersynchronous oscillations that manifest behaviorally as absence seizures. In this review, we highlight new findings that refine thalamic contributions to cortical rhythms and suggest that thalamic oscillators may be subject to both local and global control. We describe endogenous thalamic mechanisms that limit network synchrony and discuss how these protective brakes might be restored to prevent absence seizures. Finally, we describe how intrinsic and circuit-level specializations among thalamocortical loops may determine their involvement in widespread oscillations and render subsets of thalamic nuclei especially vulnerable to pathological synchrony.
Collapse
Affiliation(s)
- P Michelle Fogerson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Currie SP, Luz LL, Booker SA, Wyllie DJA, Kind PC, Daw MI. Reduced local input to fast-spiking interneurons in the somatosensory cortex in the GABA A γ2 R43Q mouse model of absence epilepsy. Epilepsia 2017; 58:597-607. [PMID: 28195311 PMCID: PMC5412680 DOI: 10.1111/epi.13693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2017] [Indexed: 02/04/2023]
Abstract
Objective Absence seizures in childhood absence epilepsy are initiated in the thalamocortical (TC) system. We investigated if these seizures result from altered development of the TC system before the appearance of seizures in mice containing a point mutation in γ‐aminobutyric acid A (GABAA) receptor γ2 subunits linked to childhood absence epilepsy (R43Q). Findings from conditional mutant mice indicate that expression of normal γ2 subunits during preseizure ages protect from later seizures. This indicates that altered development in the presence of the R43Q mutation is a key contributor to the R43Q phenotype. We sought to identify the cellular processes affected by the R43Q mutation during these preseizure ages. Methods We examined landmarks of synaptic development at the end of the critical period for somatosensory TC plasticity using electrophysiologic recordings in TC brain slices from wild‐type mice and R43Q mice. Results We found that the level of TC connectivity to layer 4 (L4) principal cells and the properties of TC synapses were unaltered in R43Q mice. Furthermore, we show that, although TC feedforward inhibition and the total level of GABAergic inhibition were normal, there was a reduction in the local connectivity to cortical interneurons. This reduction leads to altered inhibition during bursts of cortical activity. Significance This altered inhibition demonstrates that alterations in cortical circuitry precede the onset of seizures by more than a week.
Collapse
Affiliation(s)
- Stephen P Currie
- Muir Maxwell Epilepsy Centre, Patrick Wild Centre, Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Liliana L Luz
- Muir Maxwell Epilepsy Centre, Patrick Wild Centre, Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Sam A Booker
- Muir Maxwell Epilepsy Centre, Patrick Wild Centre, Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - David J A Wyllie
- Muir Maxwell Epilepsy Centre, Patrick Wild Centre, Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Brain Development and Repair, InStem, Bangalore, India
| | - Peter C Kind
- Muir Maxwell Epilepsy Centre, Patrick Wild Centre, Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Brain Development and Repair, InStem, Bangalore, India
| | - Michael I Daw
- Muir Maxwell Epilepsy Centre, Patrick Wild Centre, Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Bidirectional Control of Generalized Epilepsy Networks via Rapid Real-Time Switching of Firing Mode. Neuron 2016; 93:194-210. [PMID: 27989462 DOI: 10.1016/j.neuron.2016.11.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/18/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022]
Abstract
Thalamic relay neurons have well-characterized dual firing modes: bursting and tonic spiking. Studies in brain slices have led to a model in which rhythmic synchronized spiking (phasic firing) in a population of relay neurons leads to hyper-synchronous oscillatory cortico-thalamo-cortical rhythms that result in absence seizures. This model suggests that blocking thalamocortical phasic firing would treat absence seizures. However, recent in vivo studies in anesthetized animals have questioned this simple model. Here we resolve this issue by developing a real-time, mode-switching approach to drive thalamocortical neurons into or out of a phasic firing mode in two freely behaving genetic rodent models of absence epilepsy. Toggling between phasic and tonic firing in thalamocortical neurons launched and aborted absence seizures, respectively. Thus, a synchronous thalamocortical phasic firing state is required for absence seizures, and switching to tonic firing rapidly halts absences. This approach should be useful for modulating other networks that have mode-dependent behaviors.
Collapse
|
22
|
Chrobok L, Palus K, Lewandowski MH. Two distinct subpopulations of neurons in the thalamic intergeniculate leaflet identified by subthreshold currents. Neuroscience 2016; 329:306-17. [DOI: 10.1016/j.neuroscience.2016.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/04/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
|
23
|
Identification of Focal Epileptogenic Networks in Generalized Epilepsy Using Brain Functional Connectivity Analysis of Bilateral Intracranial EEG Signals. Brain Topogr 2016; 29:728-37. [DOI: 10.1007/s10548-016-0493-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
|
24
|
Ghamkhari Nejad G, Shahabi P, Alipoor MR, Ghaderi Pakdel F, Asghari M, Sadighi Alvandi M. Ethosuximide Affects Paired-Pulse Facilitation in Somatosensory Cortex of WAG\Rij Rats as a Model of Absence Seizure. Adv Pharm Bull 2016; 5:483-9. [PMID: 26819920 DOI: 10.15171/apb.2015.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/28/2015] [Accepted: 07/27/2015] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The interaction between somatosensory cortex and thalamus via a thalamocortical loop is a theory behind induction of absence epilepsy. Inside peri-oral somatosensory (S1po) and primary somatosensory forelimb (S1fl) regions, excitatory and inhibitory systems are not balanced and GABAergic inhibitory synapses seem to play a fundamental role in short-term plasticity alterations. METHODS We investigated the effects of Ethosuximide on presynaptic changes by utilizing paired-pulse stimulation that was recorded from somatosensory cortex in 18 WAG\Rij rats during epileptic activity. A twisted tripolar electrode including two stimulating electrodes and one recording electrode was implanted into the S1po and S1FL according to stereotaxic landmarks. Paired-pulses (200 µs, 100-1000 µA, 0.1 Hz) were applied to somatosensory cortex at 50, 100, 400, 500 ms inter-pulse intervals for 50 min period. RESULTS The results showed that paired-pulse facilitation was significantly reduced at all intervals in all times, but compared to the control group of epileptic WAG/Rij rats (p<0.05), it was exceptional about the first 10 minutes after the injection. At the intervals of 50 and 100 ms, a remarkable PPD was found in second, third, fourth and fifth 10-min post injection. CONCLUSION These experiments indicate that Ethosuximide has effects on presynaptic facilitation in somatosensory cortex inhibitory loops by alteration in GABA levels that leads to a markedly diminished PPF in paired-pulse stimulation.
Collapse
Affiliation(s)
| | - Parviz Shahabi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Reza Alipoor
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Firouz Ghaderi Pakdel
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Asghari
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Sadighi Alvandi
- Drug Applied Research Center, Tabriz University of Medical Sciences,Tabriz, Iran
| |
Collapse
|
25
|
Abstract
The current experiment investigated the ability of coaxial electrospun poly(D,L-lactide-co-glycolide) (PLGA) biodegradable polymer implants loaded with the antiepileptic drugs (AED) lacosamide to reduce seizures following implantation above the motor cortex in the Genetic Absence Epilepsy Rat from Strasbourg (GAERS). In this prospective, randomized, masked experiments, GAERS underwent surgery for implantation of skull electrodes (n=6), skull electrodes and blank polymers (n=6), or skull electrodes and lacosamide loaded polymers (n=6). Thirty-minute electroencephalogram (EEG) recordings were started at day 7 after surgery and continued for eight weeks. The number of SWDs and mean duration of one SWD were compared week-by-week between the three groups. There was no difference in the number of SWDs between any of the groups. However, the mean duration of one SWD was significantly lower in the lacosamide polymer group for up to 7 weeks when compared to the control group (0.004<p<0.038). The mean duration of one seizure was also lower at weeks 3, 5, 6, and 7 when compared to the blank polymer group (p= 0.016, 0.037, 0.025, and 0.025, resp.). We have demonstrated that AED loaded PLGA polymer sheets implanted on the surface of the cortex could affect seizure activity in GAERS for a sustained period.
Collapse
|
26
|
Scicchitano F, van Rijn CM, van Luijtelaar G. Unilateral and Bilateral Cortical Resection: Effects on Spike-Wave Discharges in a Genetic Absence Epilepsy Model. PLoS One 2015; 10:e0133594. [PMID: 26262879 PMCID: PMC4532477 DOI: 10.1371/journal.pone.0133594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 06/29/2015] [Indexed: 12/28/2022] Open
Abstract
Research Question Recent discoveries have challenged the traditional view that the thalamus is the primary source driving spike-and-wave discharges (SWDs). At odds, SWDs in genetic absence models have a cortical focal origin in the deep layers of the perioral region of the somatosensory cortex. The present study examines the effect of unilateral and bilateral surgical resection of the assumed focal cortical region on the occurrence of SWDs in anesthetized WAG/Rij rats, a well described and validated genetic absence model. Methods Male WAG/Rij rats were used: 9 in the resected and 6 in the control group. EEG recordings were made before and after craniectomy, after unilateral and after bilateral removal of the focal region. Results SWDs decreased after unilateral cortical resection, while SWDs were no longer noticed after bilateral resection. This was also the case when the resected areas were restricted to layers I-IV with layers V and VI intact. Conclusions These results suggest that SWDs are completely abolished after bilateral removal of the focal region, most likely by interference with an intracortical columnar circuit. The evidence suggests that absence epilepsy is a network type of epilepsy since interference with only the local cortical network abolishes all seizures.
Collapse
Affiliation(s)
- Francesca Scicchitano
- Department of Health Science, School of Medicine and Surgery, University “Magna Graecia” of Catanzaro, Viale Europa—Germaneto, 88100, Catanzaro, Italy
| | - Clementina M. van Rijn
- Department of Biological Psychology, Donders Centre for Cognition, Donders Institution of Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Gilles van Luijtelaar
- Department of Biological Psychology, Donders Centre for Cognition, Donders Institution of Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
27
|
Depaulis A, David O, Charpier S. The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies. J Neurosci Methods 2015; 260:159-74. [PMID: 26068173 DOI: 10.1016/j.jneumeth.2015.05.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/28/2015] [Accepted: 05/28/2015] [Indexed: 12/31/2022]
Abstract
First characterized in 1982, the genetic absence epilepsy rat from Strasbourg (GAERS) has emerged as an animal model highly reminiscent of a specific form of idiopathic generalized epilepsy. Both its electrophysiological (spike-and-wave discharges) and behavioral (behavioral arrest) features fit well with those observed in human patients with typical absence epilepsy and required by clinicians for diagnostic purposes. In addition, its sensitivity to antiepileptic drugs closely matches what has been described in the clinic, making this model one of the most predictive. Here, we report how the GAERS, thanks to its spontaneous, highly recurrent and easily recognizable seizures on electroencephalographic recordings, allows to address several key-questions about the pathophysiology and genetics of absence epilepsy. In particular, it offers the unique possibility to explore simultaneously the neural circuits involved in the generation of seizures at different levels of integration, using multiscale methodologies, from intracellular recording to functional magnetic resonance imaging. In addition, it has recently allowed to perform proofs of concept for innovative therapeutic strategies such as responsive deep brain stimulation or synchrotron-generated irradiation based radiosurgery.
Collapse
Affiliation(s)
- Antoine Depaulis
- Inserm, U836, F-38000 Grenoble, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, F-38000 Grenoble, France; CHU de Grenoble, Hôpital Michallon, F-38000 Grenoble, France.
| | - Olivier David
- Inserm, U836, F-38000 Grenoble, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, F-38000 Grenoble, France
| | - Stéphane Charpier
- Brain and Spine Institute, Pitié-Salpêtrière Hospital, Paris, France; Pierre and Marie Curie University, Paris, France
| |
Collapse
|
28
|
Pittau F, Mégevand P, Sheybani L, Abela E, Grouiller F, Spinelli L, Michel CM, Seeck M, Vulliemoz S. Mapping epileptic activity: sources or networks for the clinicians? Front Neurol 2014; 5:218. [PMID: 25414692 PMCID: PMC4220689 DOI: 10.3389/fneur.2014.00218] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/08/2014] [Indexed: 01/03/2023] Open
Abstract
Epileptic seizures of focal origin are classically considered to arise from a focal epileptogenic zone and then spread to other brain regions. This is a key concept for semiological electro-clinical correlations, localization of relevant structural lesions, and selection of patients for epilepsy surgery. Recent development in neuro-imaging and electro-physiology and combinations, thereof, have been validated as contributory tools for focus localization. In parallel, these techniques have revealed that widespread networks of brain regions, rather than a single epileptogenic region, are implicated in focal epileptic activity. Sophisticated multimodal imaging and analysis strategies of brain connectivity patterns have been developed to characterize the spatio-temporal relationships within these networks by combining the strength of both techniques to optimize spatial and temporal resolution with whole-brain coverage and directional connectivity. In this paper, we review the potential clinical contribution of these functional mapping techniques as well as invasive electrophysiology in human beings and animal models for characterizing network connectivity.
Collapse
Affiliation(s)
- Francesca Pittau
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Pierre Mégevand
- Laboratory for Multimodal Human Brain Mapping, Hofstra North Shore LIJ School of Medicine , Manhasset, NY , USA
| | - Laurent Sheybani
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Eugenio Abela
- Support Center of Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital , Bern , Switzerland
| | - Frédéric Grouiller
- Radiology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Laurent Spinelli
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| |
Collapse
|
29
|
Early molecular and behavioral response to lipopolysaccharide in the WAG/Rij rat model of absence epilepsy and depressive-like behavior, involves interplay between AMPK, AKT/mTOR pathways and neuroinflammatory cytokine release. Brain Behav Immun 2014; 42:157-68. [PMID: 24998197 DOI: 10.1016/j.bbi.2014.06.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 12/20/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway has been recently indicated as a suitable drug target for the prevention of epileptogenesis. The mTOR pathway is known for its involvement in the control of the immune system. Since neuroinflammation is recognized as a major contributor to epileptogenesis, we wished to examine whether the neuroprotective effects of mTOR modulation could involve a suppression of the neuroinflammatory process in epileptic brain. We have investigated the early molecular mechanisms involved in the effects of intracerebral administration of the lipopolysaccharide (LPS) in the WAG/Rij rat model of absence epilepsy, in relation to seizure generation and depressive-like behavior; we also tested whether the effects of LPS could be modulated by treatment with rapamycin (RAP), a specific mTOR inhibitor. We determined, in specific rat brain areas, levels of p-mTOR/p-p70S6K and also p-AKT/p-AMPK as downstream or upstream indicators of mTOR activity and tested the effects of LPS and RAP co-administration. Changes in the brain levels of pro-inflammatory cytokines IL-1β and TNF-α and their relative mRNA expression levels were measured, and the involvement of nuclear factor-κB (NF-κB) was also examined in vitro. We confirmed that RAP inhibits the aggravation of absence seizures and depressive-like/sickness behavior induced by LPS in the WAG/Rij rats through the activation of mTOR and show that this effect is correlated with the ability of RAP to dampen and delay LPS increases in neuroinflammatory cytokines IL-1β and TNF-α, most likely through inhibition of the activation of NF-κB. Our results suggest that such a mechanism could contribute to the antiseizure, antiepileptogenic and behavioral effects of RAP and further highlight the potential therapeutic usefulness of mTOR inhibition in the management of human epilepsy and other neurological disorders. Furthermore, we show that LPS-dependent neuroinflammatory effects are also mediated by a complex interplay between AKT, AMPK and mTOR with specificity to selective brain areas. In conclusion, neuroinflammation appears to be a highly coordinated phenomenon, where timing of intervention may be carefully evaluated in order to identify the best suitable target.
Collapse
|
30
|
Jacobs-Brichford E, Horn PS, Tenney JR. Mapping preictal networks preceding childhood absence seizures using magnetoencephalography. J Child Neurol 2014; 29:1312-9. [PMID: 24532809 DOI: 10.1177/0883073813518107] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The electrographic hallmark of childhood absence seizures is 3 Hz generalized spike and wave discharges; however, there is likely a focal thalamic or cortical onset that cannot be detected using scalp electroencephalography (EEG). The purpose of this study was to study the earliest preictal changes in children with absence epilepsy. In this report, magnetoencephalography recordings of 44 absence seizures recorded from 12 children with drug-naïve childhood absence seizures were used to perform time frequency analysis and source localization prior to the onset of the seizures. Evidence of preictal magnetoencephalography frequency changes were detected a mean of 694 ms before the initial spike on the EEG. A consistent pattern of focal sources was present in the frontal cortex and thalamus during this preictal period, but source localization occurred synchronously so that independent activity between the 2 structures could not be distinguished.
Collapse
Affiliation(s)
| | - Paul S Horn
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Jeffrey R Tenney
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
31
|
Tenney JR, Fujiwara H, Horn PS, Vannest J, Xiang J, Glauser TA, Rose DF. Low- and high-frequency oscillations reveal distinct absence seizure networks. Ann Neurol 2014; 76:558-67. [PMID: 25042348 DOI: 10.1002/ana.24231] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The aim of this study was to determine the frequency-dependent, spatiotemporal involvement of corticothalamic networks to the generation of absence seizures. METHODS Magnetoencephalography recordings were obtained in 12 subjects (44 seizures) with untreated childhood absence seizures. Time-frequency analysis of each seizure was performed to determine bandwidths with significant power at ictal onset. Source localization was then completed to determine brain regions contributing to generalized spike and wave discharges seen on electroencephalogram. RESULTS Significant power in the time-frequency analysis was seen within 1 to 20Hz, 20 to 70Hz, and 70 to 150Hz bandwidths. Source localization revealed that sources localized to the frontal cortex similarly for the low- and gamma-frequency bandwidths, whereas at the low-frequency bandwidth (3-20Hz) significantly more sources localized to the parietal cortex (odds ratio [OR] = 16.7). Cortical sources within the high-frequency oscillation (HFO) bandwidth (70-150Hz) localized primarily to the frontal region compared to the parietal (OR = 7.32) or temporal (OR = 2.78) areas. INTERPRETATION Neuromagnetic activity within frontal and parietal cortical regions provides further confirmation of hemodynamic changes reported using functional magnetic resonance imaging that have been associated with absence seizures. The frequency-dependent nature of these networks has not previously been reported, and the presence of HFOs during absence seizures is a novel finding. Co-occurring frontal and parietal corticothalamic networks may interact to produce a pathological state that contributes to the generation of spike and wave discharges. The clinical and pathophysiological implications of HFOs within the frontal cortical region are unclear and should be further investigated.
Collapse
Affiliation(s)
- Jeffrey R Tenney
- Division of Neurology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH; Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH
| | | | | | | | | | | | | |
Collapse
|
32
|
Rebound burst firing in the reticular thalamus is not essential for pharmacological absence seizures in mice. Proc Natl Acad Sci U S A 2014; 111:11828-33. [PMID: 25071191 DOI: 10.1073/pnas.1408609111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Intrinsic burst and rhythmic burst discharges (RBDs) are elicited by activation of T-type Ca(2+) channels in the thalamic reticular nucleus (TRN). TRN bursts are believed to be critical for generation and maintenance of thalamocortical oscillations, leading to the spike-and-wave discharges (SWDs), which are the hallmarks of absence seizures. We observed that the RBDs were completely abolished, whereas tonic firing was significantly increased, in TRN neurons from mice in which the gene for the T-type Ca(2+) channel, CaV3.3, was deleted (CaV3.3(-/-)). Contrary to expectations, there was an increased susceptibility to drug-induced SWDs both in CaV3.3(-/-) mice and in mice in which the CaV3.3 gene was silenced predominantly in the TRN. CaV3.3(-/-) mice also showed enhanced inhibitory synaptic drive onto TC neurons. Finally, a double knockout of both CaV3.3 and CaV3.2, which showed complete elimination of burst firing and RBDs in TRN neurons, also displayed enhanced drug-induced SWDs and absence seizures. On the other hand, tonic firing in the TRN was increased in these mice, suggesting that increased tonic firing in the TRN may be sufficient for drug-induced SWD generation in the absence of burst firing. These results call into question the role of burst firing in TRN neurons in the genesis of SWDs, calling for a rethinking of the mechanism for absence seizure induction.
Collapse
|
33
|
Seneviratne U, Cook M, D'Souza W. Focal abnormalities in idiopathic generalized epilepsy: A critical review of the literature. Epilepsia 2014; 55:1157-69. [PMID: 24938654 DOI: 10.1111/epi.12688] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Udaya Seneviratne
- Department of Medicine; St. Vincent's Hospital; University of Melbourne; Melbourne Victoria Australia
- Department of Neuroscience; Monash Medical Centre; Melbourne Victoria Australia
| | - Mark Cook
- Department of Medicine; St. Vincent's Hospital; University of Melbourne; Melbourne Victoria Australia
| | - Wendyl D'Souza
- Department of Medicine; St. Vincent's Hospital; University of Melbourne; Melbourne Victoria Australia
| |
Collapse
|
34
|
T-type Ca2+ channels in absence epilepsy. Pflugers Arch 2014; 466:719-34. [DOI: 10.1007/s00424-014-1461-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/22/2014] [Indexed: 11/25/2022]
|
35
|
van Luijtelaar G, Behr C, Avoli M. Is there such a thing as "generalized" epilepsy? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:81-91. [PMID: 25012369 DOI: 10.1007/978-94-017-8914-1_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The distinction between generalized and partial epilepsies is probably one, if not the most, pregnant assertions in modern epileptology. Both absence and generalized tonic-clonic seizures, the prototypic seizures found in generalized epilepsies, are classically seen as the result of a rapid, synchronous recruitment of neuronal networks resulting in impairment of consciousness and/or convulsive semiology. The term generalized also refers to electroencephalographic presentation, with bilateral, synchronous activity, such as the classical 3 Hz spike and wave discharges of typical absence epilepsy. However, findings obtained from electrophysiological and functional imaging studies over the last few years, contradict this view, showing a rather focal onset for most of the so-called generalized seizure types. Therefore, we ask here the question whether "generalized epilepsy" does indeed exist.
Collapse
Affiliation(s)
- Gilles van Luijtelaar
- Donders Centre for Cognition, Radboud University Nijmegen, Montessorilaan 3, 6525 HR, Nijmegen, The Netherlands
| | | | | |
Collapse
|
36
|
Abstract
Low-voltage-activated T-type Ca(2+) channels are widely expressed in various types of neurons. Once deinactivated by hyperpolarization, T-type channels are ready to be activated by a small depolarization near the resting membrane potential and, therefore, are optimal for regulating the excitability and electroresponsiveness of neurons under physiological conditions near resting states. Ca(2+) influx through T-type channels engenders low-threshold Ca(2+) spikes, which in turn trigger a burst of action potentials. Low-threshold burst firing has been implicated in the synchronization of the thalamocortical circuit during sleep and in absence seizures. It also has been suggested that T-type channels play an important role in pain signal transmission, based on their abundant expression in pain-processing pathways in peripheral and central neurons. In this review, we will describe studies on the role of T-type Ca(2+) channels in the physiological as well as pathological generation of brain rhythms in sleep, absence epilepsy, and pain signal transmission. Recent advances in studies of T-type channels in the control of cognition will also be briefly discussed.
Collapse
Affiliation(s)
- Eunji Cheong
- Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | | |
Collapse
|
37
|
Sadighi M, Shahabi P, Oryan S, Pakdel FG, Asghari M, Pshapour A. Effect of low frequency electrical stimulation on spike and wave discharges of perioral somatosensory cortex in WAG/Rij rats. ACTA ACUST UNITED AC 2013; 20:171-6. [PMID: 24074524 DOI: 10.1016/j.pathophys.2013.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/19/2013] [Accepted: 08/29/2013] [Indexed: 11/16/2022]
Abstract
Low frequency electrical stimulation has been revealed that as a potential cure in patient with drug resistant to epilepsy. This study tries to evaluate the effect of low frequency electrical stimulation (LFS) on absence seizure of perioral region primary somatosensory cortex (S1po). Eighteen male WAG/Rij rats were received LFS (3Hz, square wave, monophasic, 200μs, and 400μA) for 25min into S1po for a period of five days. There is 6 animals per group .The stimulating electrodes were implanted according to stereotaxic landmarks and EEG recording was obtained 30min before and after LFS to analyse frequency, number and duration of spike-wave discharges (SWD). The results showed that in animals with unilateral stimulating electrodes (Exp1) in first and second days and also in animals with bilateral stimulating electrodes (Exp2) in days 3rd and 4th. LFS had significant decrease effects (p<0.05) on mean number of SWD between pre-LFS. In comparison pre-LFS to post-LFS, mean of duration in Exp2 decreased significantly. In continuous application of LFS (5 days) only the data of first day was differently significant (p<0.05) but data of other days had no difference. Comparison of data between Exp1, Exp2 and control groups showed that the mean number of Exp1 was significantly different (p<0.05) and mean pick frequency in Exp2 was significantly decreased in comparison with Exp1 group (p<0.05). The LFS of S1po produces significant antiepileptic effect on absence seizure but it was not persistent till the next day and shows a short time effect.
Collapse
Affiliation(s)
- Mina Sadighi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | |
Collapse
|
38
|
Sadighi M, Shahabi P, Gorji A, Pakdel FG, Nejad GG, Ghorbanzade A. Role of L- and T-Type Calcium Channels in Regulation of Absence Seizures in Wag/Rij Rats. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9374-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Citraro R, Russo E, Ngomba RT, Nicoletti F, Scicchitano F, Whalley BJ, Calignano A, De Sarro G. CB1 agonists, locally applied to the cortico-thalamic circuit of rats with genetic absence epilepsy, reduce epileptic manifestations. Epilepsy Res 2013; 106:74-82. [PMID: 23860329 DOI: 10.1016/j.eplepsyres.2013.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/04/2013] [Accepted: 06/18/2013] [Indexed: 12/22/2022]
Abstract
Drugs that modulate the endocannabinoid system and endocannabinoids typically play an anticonvulsant role although some proconvulsant effects have been reported both in humans and animal models. Moreover, no evidence for a role of the cannabinoid system in human absence epilepsy has been found although limited evidence of efficacy in relevant experimental animal models has been documented. This study aims to characterize the role of cannabinoids in specific areas of the cortico-thalamic network involved in oscillations that underlie seizures in a genetic animal model of absence epilepsy, the WAG/Rij rat. We assessed the effects of focal injection of the endogenous cannabinoid, anandamide (AEA), a non-selective CB receptor agonist (WIN55,212) and a selective CB1 receptor antagonist/inverse agonist (SR141716A) into thalamic nuclei and primary somatosensory cortex (S1po) of the cortico-thalamic network. AEA and WIN both reduced absence seizures independently from the brain focal site of infusion while, conversely, rimonabant increased absence seizures but only when focally administered to the ventroposteromedial thalamic nucleus (VPM). These results, together with previous reports, support therapeutic potential for endocannabinoid system modulators in absence epilepsy and highlight that attenuated endocannabinergic function may contribute to the generation and maintenance of seizures. Furthermore, the entire cortico-thalamic network responds to cannabinoid treatment, indicating that in all areas considered, CB receptor activation inhibits the pathological synchronization that subserves absence seizures. In conclusion, our result might be useful for the identification of future drug therapies in absence epilepsy.
Collapse
Affiliation(s)
- Rita Citraro
- Chair of Pharmacology, Department of Health Science, School of Medicine and Surgery, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bazyan AS, van Luijtelaar G. Neurochemical and behavioral features in genetic absence epilepsy and in acutely induced absence seizures. ISRN NEUROLOGY 2013; 2013:875834. [PMID: 23738145 PMCID: PMC3664506 DOI: 10.1155/2013/875834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 02/08/2023]
Abstract
The absence epilepsy typical electroencephalographic pattern of sharp spikes and slow waves (SWDs) is considered to be due to an interaction of an initiation site in the cortex and a resonant circuit in the thalamus. The hyperpolarization-activated cyclic nucleotide-gated cationic I h pacemaker channels (HCN) play an important role in the enhanced cortical excitability. The role of thalamic HCN in SWD occurrence is less clear. Absence epilepsy in the WAG/Rij strain is accompanied by deficiency of the activity of dopaminergic system, which weakens the formation of an emotional positive state, causes depression-like symptoms, and counteracts learning and memory processes. It also enhances GABAA receptor activity in the striatum, globus pallidus, and reticular thalamic nucleus, causing a rise of SWD activity in the cortico-thalamo-cortical networks. One of the reasons for the occurrence of absences is that several genes coding of GABAA receptors are mutated. The question arises: what the role of DA receptors is. Two mechanisms that cause an infringement of the function of DA receptors in this genetic absence epilepsy model are proposed.
Collapse
Affiliation(s)
- A. S. Bazyan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Russian Federation, 5A Butlerov Street, Moscow 117485, Russia
| | - G. van Luijtelaar
- Biological Psychology, Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands
| |
Collapse
|
41
|
Chipaux M, Vercueil L, Kaminska A, Mahon S, Charpier S. Persistence of cortical sensory processing during absence seizures in human and an animal model: evidence from EEG and intracellular recordings. PLoS One 2013; 8:e58180. [PMID: 23483991 PMCID: PMC3587418 DOI: 10.1371/journal.pone.0058180] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/31/2013] [Indexed: 11/19/2022] Open
Abstract
Absence seizures are caused by brief periods of abnormal synchronized oscillations in the thalamocortical loops, resulting in widespread spike-and-wave discharges (SWDs) in the electroencephalogram (EEG). SWDs are concomitant with a complete or partial impairment of consciousness, notably expressed by an interruption of ongoing behaviour together with a lack of conscious perception of external stimuli. It is largely considered that the paroxysmal synchronizations during the epileptic episode transiently render the thalamocortical system incapable of transmitting primary sensory information to the cortex. Here, we examined in young patients and in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well-established genetic model of absence epilepsy, how sensory inputs are processed in the related cortical areas during SWDs. In epileptic patients, visual event-related potentials (ERPs) were still present in the occipital EEG when the stimuli were delivered during seizures, with a significant increase in amplitude compared to interictal periods and a decrease in latency compared to that measured from non-epileptic subjects. Using simultaneous in vivo EEG and intracellular recordings from the primary somatosensory cortex of GAERS and non-epileptic rats, we found that ERPs and firing responses of related pyramidal neurons to whisker deflection were not significantly modified during SWDs. However, the intracellular subthreshold synaptic responses in somatosensory cortical neurons during seizures had larger amplitude compared to quiescent situations. These convergent findings from human patients and a rodent genetic model show the persistence of cortical responses to sensory stimulations during SWDs, indicating that the brain can still process external stimuli during absence seizures. They also demonstrate that the disruption of conscious perception during absences is not due to an obliteration of information transfer in the thalamocortical system. The possible mechanisms rendering the cortical operation ineffective for conscious perception are discussed, but their definite elucidation will require further investigations.
Collapse
Affiliation(s)
- Mathilde Chipaux
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UPMC/INSERM UMR-S 975; CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
- Pediatric Neurosurgery Unit, Fondation Ophtalmologique A. de Rothschild, Paris, France
| | - Laurent Vercueil
- Grenoble Institute of Neurosciences, Centre de Recherche INSERM U 836-UJF-CEA-CHU, Equipe 9, Grenoble, France
| | - Anna Kaminska
- AP-HP, Service d'explorations fonctionnelles, laboratoire de neurophysiologie clinique, Hôpital Necker Enfants Malades, Paris, France
| | - Séverine Mahon
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UPMC/INSERM UMR-S 975; CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Charpier
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UPMC/INSERM UMR-S 975; CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
- UPMC University Paris 06, Paris, France
- * E-mail:
| |
Collapse
|
42
|
Shaw FZ, Liao YF, Chen RF, Huang YH, Lin RCS. The zona incerta modulates spontaneous spike-wave discharges in the rat. J Neurophysiol 2013; 109:2505-16. [PMID: 23446687 DOI: 10.1152/jn.00750.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The contribution of the zona incerta (ZI) of the thalamus on spike-wave discharges (SWDs) was investigated. Chronic recordings of bilateral cortices, bilateral vibrissa muscle, and unilateral ZI were performed in Long-Evans rats to examine the functional role of SWDs. Rhythmic ZI activity appeared at the beginning of SWD and was accompanied by higher-oscillation frequencies and larger spike magnitudes. Bilateral lidocaine injections into the mystacial pads led to a decreased oscillation frequency of SWDs, but the phenomenon of ZI-related spike magnitude enhancement was preserved. Moreover, 800-Hz ZI microstimulation terminates most of the SWDs and whisker twitching (WT; >80%). In contrast, 200-Hz ZI microstimulation selectively stops WTs but not SWDs. Stimulation of the thalamic ventroposteriomedial nucleus showed no obvious effect on terminating SWDs. A unilateral ZI lesion resulted in a significant reduction of 7- to 12-Hz power of both the ipsilateral cortical and contralateral vibrissae muscle activities during SWDs. Intraincertal microinfusion of muscimol showed a significant inhibition on SWDs. Our present data suggest that the ZI actively modulates the SWD magnitude and WT behavior.
Collapse
Affiliation(s)
- Fu-Zen Shaw
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan.
| | | | | | | | | |
Collapse
|
43
|
Cheong E, Shin HS. T-type Ca²⁺ channels in absence epilepsy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1560-71. [PMID: 23416255 DOI: 10.1016/j.bbamem.2013.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/15/2013] [Accepted: 02/01/2013] [Indexed: 11/28/2022]
Abstract
Low-voltage-activated T-type Ca²⁺ channels are highly expressed in the thalamocortical circuit, suggesting that they play a role in this brain circuit. Indeed, low-threshold burst firing mediated by T-type Ca²⁺ channels has long been implicated in the synchronization of the thalamocortical circuit. Over the past few decades, the conventional view has been that rhythmic burst firing mediated by T-type channels in both thalamic reticular nuclie (TRN) and thalamocortical (TC) neurons are equally critical in the generation of thalamocortical oscillations during sleep rhythms and spike-wave-discharges (SWDs). This review broadly investigates recent studies indicating that even though both TRN and TC nuclei are required for thalamocortical oscillations, the contributions of T-type channels to TRN and TC neurons are not equal in the genesis of sleep spindles and SWDs. T-type channels in TC neurons are an essential component of SWD generation, whereas the requirement for TRN T-type channels in SWD generation remains controversial at least in the GBL model of absence seizures. Therefore, a deeper understanding of the functional consequences of modulating each T-type channel subtype could guide the development of therapeutic tools for absence seizures while minimizing side effects on physiological thalamocortical oscillations. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Eunji Cheong
- Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | | |
Collapse
|
44
|
Pouyatos B, Serduc R, Chipaux M, Chabrol T, Bräuer-Krisch E, Nemoz C, Mathieu H, David O, Renaud L, Prezado Y, Laissue JA, Estève F, Charpier S, Depaulis A. Synchrotron X-ray interlaced microbeams suppress paroxysmal oscillations in neuronal networks initiating generalized epilepsy. Neurobiol Dis 2012; 51:152-60. [PMID: 23159741 DOI: 10.1016/j.nbd.2012.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/17/2012] [Accepted: 11/02/2012] [Indexed: 10/27/2022] Open
Abstract
Radiotherapy has shown some efficacy for epilepsies but the insufficient confinement of the radiation dose to the pathological target reduces its indications. Synchrotron-generated X-rays overcome this limitation and allow the delivery of focalized radiation doses to discrete brain volumes via interlaced arrays of microbeams (IntMRT). Here, we used IntMRT to target brain structures involved in seizure generation in a rat model of absence epilepsy (GAERS). We addressed the issue of whether and how synchrotron radiotherapeutic treatment suppresses epileptic activities in neuronal networks. IntMRT was used to target the somatosensory cortex (S1Cx), a region involved in seizure generation in the GAERS. The antiepileptic mechanisms were investigated by recording multisite local-field potentials and the intracellular activity of irradiated S1Cx pyramidal neurons in vivo. MRI and histopathological images displayed precise and sharp dose deposition and revealed no impairment of surrounding tissues. Local-field potentials from behaving animals demonstrated a quasi-total abolition of epileptiform activities within the target. The irradiated S1Cx was unable to initiate seizures, whereas neighboring non-irradiated cortical and thalamic regions could still produce pathological oscillations. In vivo intracellular recordings showed that irradiated pyramidal neurons were strongly hyperpolarized and displayed a decreased excitability and a reduction of spontaneous synaptic activities. These functional alterations explain the suppression of large-scale synchronization within irradiated cortical networks. Our work provides the first post-irradiation electrophysiological recordings of individual neurons. Altogether, our data are a critical step towards understanding how X-ray radiation impacts neuronal physiology and epileptogenic processes.
Collapse
Affiliation(s)
- Benoît Pouyatos
- Grenoble Institut des Neurosciences, Inserm U836, Université Joseph Fourier, Grenoble, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pirttimaki T, Parri HR, Crunelli V. Astrocytic GABA transporter GAT-1 dysfunction in experimental absence seizures. J Physiol 2012; 591:823-33. [PMID: 23090943 DOI: 10.1113/jphysiol.2012.242016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
An enhanced tonic GABA(A) inhibition in the thalamus plays a crucial role in experimental absence seizures and has been attributed, on the basis of indirect evidence, to a dysfunction of the astrocytic GABA transporter-1 (GAT-1). Here, the GABA transporter current was directly investigated in thalamic astrocytes from a well-established genetic model of absence seizures, the genetic absence epilepsy rats from Strasbourg (GAERS), and its non-epileptic control (NEC) strain. We also characterized the novel form of GABAergic and glutamatergic astrocyte-to-neuron signalling by recording slow outward currents (SOCs) and slow inward currents (SICs), respectively, in thalamocortical (TC) neurons of both strains. In patch-clamped astrocytes, the GABA transporter current was abolished by combined application of the selective GAT-1 and GAT-3 blocker, NO711 (30 μm) and SNAP5114 (60 μm), respectively, to GAERS and NEC thalamic slices. NO711 alone significantly reduced (41%) the transporter current in NEC, but had no effect in GAERS. SNAP5114 alone reduced by half the GABA transporter current in NEC, whilst it abolished it in GAERS. SIC properties did not differ between GAERS and NEC TC neurons, whilst moderate changes in SOC amplitude and kinetics were observed. These data provide the first direct demonstration of a malfunction of the astrocytic thalamic GAT-1 transporter in absence epilepsy and support an abnormal astrocytic modulation of thalamic ambient GABA levels. Moreover, while the glutamatergic astrocyte-neuron signalling is unaltered in the GAERS thalamus, the changes in some properties of the GABAergic astrocyte-neuron signalling in this epileptic strain may contribute to the generation of absence seizures.
Collapse
Affiliation(s)
- Tiina Pirttimaki
- Neuroscience Division, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | | | | |
Collapse
|
46
|
Huang HY, Lee HW, Chen SD, Shaw FZ. Lamotrigine ameliorates seizures and psychiatric comorbidity in a rat model of spontaneous absence epilepsy. Epilepsia 2012; 53:2005-14. [DOI: 10.1111/j.1528-1167.2012.03664.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
T-type calcium channels in burst-firing, network synchrony, and epilepsy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1572-8. [PMID: 22885138 DOI: 10.1016/j.bbamem.2012.07.028] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 11/23/2022]
Abstract
Low voltage-activated (LVA) T-type calcium channels are well regarded as a key mechanism underlying the generation of neuronal burst-firing. Their low threshold for activation combined with a rapid and transient calcium conductance generates low-threshold calcium potentials (LTCPs), upon the crest of which high frequency action potentials fire for a brief period. Experiments using simultaneous electroencephalography (EEG) and intracellular recordings demonstrate that neuronal burst-firing is a likely causative component in the generation of normal sleep patterns as well as some pathophysiological conditions, such as epileptic seizures. However, less is known as to how these neuronal bursts impact brain behavior, in particular network synchronization. In this review we summarize recent findings concerning the role of T-type calcium channels in burst-firing and discuss how they likely contribute to the generation of network synchrony. We further outline the function of burst-firing and network synchrony in terms of epileptic seizures. This article is part of a Special Issue entitled: Calcium channels.
Collapse
|
48
|
Tringham E, Powell KL, Cain SM, Kuplast K, Mezeyova J, Weerapura M, Eduljee C, Jiang X, Smith P, Morrison JL, Jones NC, Braine E, Rind G, Fee-Maki M, Parker D, Pajouhesh H, Parmar M, O'Brien TJ, Snutch TP. T-type calcium channel blockers that attenuate thalamic burst firing and suppress absence seizures. Sci Transl Med 2012; 4:121ra19. [PMID: 22344687 DOI: 10.1126/scitranslmed.3003120] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Absence seizures are a common seizure type in children with genetic generalized epilepsy and are characterized by a temporary loss of awareness, arrest of physical activity, and accompanying spike-and-wave discharges on an electroencephalogram. They arise from abnormal, hypersynchronous neuronal firing in brain thalamocortical circuits. Currently available therapeutic agents are only partially effective and act on multiple molecular targets, including γ-aminobutyric acid (GABA) transaminase, sodium channels, and calcium (Ca(2+)) channels. We sought to develop high-affinity T-type specific Ca(2+) channel antagonists and to assess their efficacy against absence seizures in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model. Using a rational drug design strategy that used knowledge from a previous N-type Ca(2+) channel pharmacophore and a high-throughput fluorometric Ca(2+) influx assay, we identified the T-type Ca(2+) channel blockers Z941 and Z944 as candidate agents and showed in thalamic slices that they attenuated burst firing of thalamic reticular nucleus neurons in GAERS. Upon administration to GAERS animals, Z941 and Z944 potently suppressed absence seizures by 85 to 90% via a mechanism distinct from the effects of ethosuximide and valproate, two first-line clinical drugs for absence seizures. The ability of the T-type Ca(2+) channel antagonists to inhibit absence seizures and to reduce the duration and cycle frequency of spike-and-wave discharges suggests that these agents have a unique mechanism of action on pathological thalamocortical oscillatory activity distinct from current drugs used in clinical practice.
Collapse
Affiliation(s)
- Elizabeth Tringham
- Zalicus Pharmaceuticals Ltd., Suite 301, 2389 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lüttjohann A, van Luijtelaar G. The dynamics of cortico-thalamo-cortical interactions at the transition from pre-ictal to ictal LFPs in absence epilepsy. Neurobiol Dis 2012; 47:49-60. [PMID: 22465080 DOI: 10.1016/j.nbd.2012.03.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Generalized spike and wave discharges (SWD) are generated within the cortico-thalamo-cortical system. However the exact interactions between cortex and different thalamic nuclei needed for the generation and maintenance of SWD are still to be elucidated. This study aims to shed more light on these interactions via multisite cortical and thalamic local-field-potential recordings. METHODS WAG/Rij rats were equipped with multiple electrodes targeting layers 4 to 6 of the somatosensory-cortex, rostral and caudal RTN, VPM, anterior (ATN)- and posterior (Po) thalamic nucleus. The maximal-association-strength between signals was calculated for pre-ictal→ictal transition periods and in control periods using non-linear-association-analysis. Dynamics of changes in coupling-direction and time-delays between channels were analyzed. RESULTS Earliest and strongest increases in coupling-strength were seen between cortical layers 5/6 and Po. Other thalamic nuclei became later involved in SWD activity. During the first 500ms of SWDs the cortex guided most thalamic nuclei while cortex and Po kept a bidirectional crosstalk. Most thalamic nuclei started to guide the Po until the end of the SWD. While the rostral RTN showed increased coupling with Po, the caudal RTN decoupled. Instead, it directed its activity to the rostral RTN. CONCLUSIONS Next to the focal cortical instigator zone of SWDs, the Po seems crucial for their occurrence. This nucleus shows early increases in coupling and is the only nucleus which keeps a bidirectional crosstalk to the cortex within the first 500ms of SWDs. Other thalamic nuclei seem to have only a function in SWD maintenance. Rostral and caudal-RTN have opposite roles in SWD occurrence.
Collapse
Affiliation(s)
- Annika Lüttjohann
- Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognition, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | |
Collapse
|
50
|
Abstract
This review summarizes the findings obtained over the past 70 years on the fundamental mechanisms underlying generalized spike-wave (SW) discharges associated with absence seizures. Thalamus and cerebral cortex are the brain areas that have attracted most of the attention from both clinical and experimental researchers. However, these studies have often favored either one or the other structure in playing a major role, thus leading to conflicting interpretations. Beginning with Jasper and Penfield's topistic view of absence seizures as the result of abnormal functions in the so-called centrencephalon, we witness the naissance of a broader concept that considered both thalamus and cortex as equal players in the process of SW discharge generation. Furthermore, we discuss how recent studies have identified fine changes in cortical and thalamic excitability that may account for the expression of absence seizures in naturally occurring genetic rodent models and knockout mice. The end of this fascinating tale is presumably far from being written. However, I can confidently conclude that in the unfolding of this "novel," we have discovered several molecular, cellular, and pharmacologic mechanisms that govern forebrain excitability, and thus consciousness, during the awake state and sleep.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|