1
|
Anderson KR, Rogu PJ, Palumbo TB, Miwa JM. Abnormal response to chronic social defeat stress and fear extinction in a mouse model of Lynx2-based cholinergic dysregulation. Front Neurosci 2025; 19:1466166. [PMID: 40236946 PMCID: PMC11998120 DOI: 10.3389/fnins.2025.1466166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/27/2025] [Indexed: 04/17/2025] Open
Abstract
Nicotinic receptor signaling is influential in modulating appropriate responses to salient stimuli within a complex environment. The cholinergic neurotransmitter system drives attention to salient stimuli such as stressors, and aids in orchestrating the proper neural and behavioral responses. Dysregulation of this system, however, has been implicated in altered anxiety regulation and mood disorders. Among the multiple layers of regulation are protein modulators such as Lynx2/Lypd1, which provides negative nicotinic acetylcholine receptor regulation within anxiety-related circuits, such as the amygdala and medial prefrontal cortex, among other brain regions. Mice null for Lynx2/Lypd1 (Lynx2 KO) show elevated basal anxiety-like behavior in tests such as elevated plus maze, light-dark box and social interaction assays. Here, we queried how a line predisposed to basal anxiety-like behavior would respond to specific stressors, using validated models of experiential-based affective disorders such as fear extinction, acute and chronic social defeat stress assays. We discovered that Lynx2 KO mice demonstrate an inability to extinguish learned fear during fear extinction tests even during milder stress conditions. In social defeat studies, contrary to our predictions, the Lynx2 KO mice switched from a socially avoidant phenotype (which could be considered susceptible) before defeat to a social approach/resilient phenotype after defeat. Consistent with reports of the inverse relationship between resilience and BDNF levels, we observed reduced BDNF levels in the VTA of Lynx2 KO mice. Furthermore, we provide evidence for the functional role of α7 nicotinic receptor subtypes by phenotypic rescue of fear extinction and social defeat phenotypes by MLA antagonism of α7 nicotinic acetylcholine receptors, or by crossing with α7 nicotinic acetylcholine receptor null mutant mice. A stable physical interaction between LYNX2 and α7 nAChRs was observed by co-immunoprecipitation of complexes from mouse amygdalae extracts. Together, these data indicate that responses to specific stressors can become aberrant when baseline genetic factors predispose animals to anxiety dysregulation. These studies underscore the critical nature of well-regulated nicotinic receptor function in the adaptive response to environmental stressors.
Collapse
Affiliation(s)
| | | | | | - Julie M. Miwa
- Department of Biological and Chemical Sciences, Bethlehem, PA, United States
| |
Collapse
|
2
|
Vincent CJ, Aguilar-Alvarez R, Vanderhoof SO, Mott DD, Jasnow AM. An amygdala-cortical circuit for encoding generalized fear memories. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633190. [PMID: 39868237 PMCID: PMC11761744 DOI: 10.1101/2025.01.15.633190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Generalized learning is a fundamental process observed across species, contexts, and sensory modalities that enables animals to use past experiences to adapt to changing conditions. Evidence suggests that the prefrontal cortex (PFC) extracts general features of an experience that can be used across multiple situations. The anterior cingulate cortex (ACC), a region of the PFC, is implicated in generalized fear responses to novel contexts. However, the ACC's role in encoding contextual information is poorly understood, especially under increased threat intensity that promotes generalization. Here, we show that synaptic plasticity within the ACC and signaling from amygdala inputs during fear learning are necessary for generalized fear responses to novel encountered contexts. The ACC did not encode specific fear to the training context, suggesting this region extracts general features of a threatening experience rather than specific contextual information. Together with our previous work, our results demonstrate that generalized learning about threatening contexts is encoded, in part, within an ascending amygdala-cortical circuit, whereas descending ACC projections to the amygdala drive generalized fear responses during exposure to novel contexts. Our results further demonstrate that schematic learning can occur in the PFC after single-trial learning, a process typically attributed to learning over many repeated learning episodes.
Collapse
|
3
|
Satao KS, Doshi GM. Anxiety and the brain: Neuropeptides as emerging factors. Pharmacol Biochem Behav 2024; 245:173878. [PMID: 39284499 DOI: 10.1016/j.pbb.2024.173878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Anxiety disorders are characterized by intense feelings of worry and fear, which can significantly interfere with daily functioning. Current treatment options primarily include selective serotonin reuptake inhibitors, benzodiazepines, non-benzodiazepine anxiolytics, gabapentinoids, and beta-blockers. Neuropeptides have shown an important role in the regulation of complex behaviours, such as psychopathology and anxiety-related reactions. Neuropeptides have a great deal of promise to advance our understanding of and ability to help people with anxiety disorders. This review focuses on the expanding role of neuropeptides in anxiety management, particularly examining the impact of substance P, neuropeptide Y, corticotropin-releasing hormone, arginine-vasopressin, pituitary adenylate cyclase-activating polypeptide, and cholecystokinin. Furthermore, the paper discusses the neuropeptides that are becoming more and more recognized for their impact on anxiety-related reactions and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kiran S Satao
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India.
| |
Collapse
|
4
|
McCann KE, Rosenhauer AM, Jones GM, Norvelle A, Choi DC, Huhman KL. Histone deacetylase and acetyltransferase inhibitors modulate behavioral responses to social stress. Psychoneuroendocrinology 2017; 75:100-109. [PMID: 27810703 PMCID: PMC5135625 DOI: 10.1016/j.psyneuen.2016.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 11/25/2022]
Abstract
Histone acetylation has emerged as a critical factor regulating learning and memory both during and after exposure to stressful stimuli. There are drugs that we now know affect histone acetylation that are already in use in clinical populations. The current study uses these drugs to examine the consequences of acutely increasing or decreasing histone acetylation during exposure to social stress. Using an acute model of social defeat in Syrian hamsters, we systemically and site-specifically administered drugs that alter histone acetylation and measured subsequent behavior and immediate-early gene activity. We found that systemic administration of a histone deacetylase inhibitor enhances social stress-induced behavioral responses in males and females. We also found that systemic administration completely blocks defeat-induced neuronal activation, as measured by Fos-immunoreactivity, in the infralimbic cortex, but not in the amygdala, after a mild social defeat stressor. Lastly, we demonstrated that site-specific administration of histone deacetylase inhibitors in the infralimbic region of the prefrontal cortex, but not in the basolateral amygdala, mimics the systemic effect. Conversely, decreasing acetylation by inhibiting histone acetyltransferases in the infralimbic cortex reduces behavioral responses to defeat. This is the first demonstration that acute pharmacological manipulation of histone acetylation during social defeat alters subsequent behavioral responses in both males and females. These results reveal that even systemic administration of drugs that alter histone acetylation can significantly alter behavioral responses to social stress and highlight the importance of the infralimbic cortex in mediating this effect.
Collapse
Affiliation(s)
| | | | | | - Alisa Norvelle
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA 30303, USA.
| | | | | |
Collapse
|
5
|
Latsko MS, Farnbauch LA, Gilman TL, Lynch JF, Jasnow AM. Corticosterone may interact with peripubertal development to shape adult resistance to social defeat. Horm Behav 2016; 82:38-45. [PMID: 27108196 DOI: 10.1016/j.yhbeh.2016.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 01/06/2023]
Abstract
Studies of social stress in adult mice have revealed two distinct defeat-responsive behavioral phenotypes; "susceptible" and "resistant," characterized by social avoidance and social interaction, respectively. Typically, these phenotypes are observed at least 1day after the last defeat in adults, but may extend up to 30days later. The current study examined the impact of peripubertal social defeat on immediate (1day) and adult (30day) social stress phenotypes and neuroendocrine function in male C57BL/6 mice. Initially, peripubertal (P32) mice were resistant to social defeat. When the same mice were tested for social interaction again as adults (P62), two phenotypes emerged; a group of mice were characterized as susceptible evidenced by significantly lower social interaction, whereas the remaining mice exhibited normal social interaction, characteristic of resistance. A repeated analysis of corticosterone revealed that the adult (P62) resistant mice had elevated corticosterone following the social interaction test as juveniles. This was when all mice, regardless of adult phenotype, displayed equivalent levels of social interaction. Peripubertal corticosterone was positively correlated with adult social interaction levels in defeated mice, suggesting early life stress responsiveness impacts adult social behavior. In addition, adult corticotropin-releasing factor (CRF) mRNA in the paraventricular nucleus of the hypothalamus (PVN) was elevated in all defeated mice, but there were no differences in CRF mRNA expression between the phenotypes. Thus, there is a delayed appearance of social stress-responsive phenotypes suggesting that early life stress exposure, combined with the resultant physiological responses, may interact with pubertal development to influence adult social behavior.
Collapse
Affiliation(s)
- Maeson S Latsko
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, United States
| | - Laure A Farnbauch
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, United States
| | - T Lee Gilman
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, United States
| | - Joseph F Lynch
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, United States
| | - Aaron M Jasnow
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, United States.
| |
Collapse
|
6
|
Perusini JN, Meyer EM, Long VA, Rau V, Nocera N, Avershal J, Maksymetz J, Spigelman I, Fanselow MS. Induction and Expression of Fear Sensitization Caused by Acute Traumatic Stress. Neuropsychopharmacology 2016; 41:45-57. [PMID: 26329286 PMCID: PMC4677128 DOI: 10.1038/npp.2015.224] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 02/08/2023]
Abstract
Fear promotes adaptive responses to threats. However, when the level of fear is not proportional to the level of threat, maladaptive fear-related behaviors characteristic of anxiety disorders result. Post-traumatic stress disorder develops in response to a traumatic event, and patients often show sensitized reactions to mild stressors associated with the trauma. Stress-enhanced fear learning (SEFL) is a rodent model of this sensitized responding, in which exposure to a 15-shock stressor nonassociatively enhances subsequent fear conditioning training with only a single trial. We examined the role of corticosterone (CORT) in SEFL. Administration of the CORT synthesis blocker metyrapone prior to the stressor, but not at time points after, attenuated SEFL. Moreover, CORT co-administered with metyrapone rescued SEFL. However, CORT alone without the stressor was not sufficient to produce SEFL. In these same animals, we then looked for correlates of SEFL in terms of changes in excitatory receptor expression. Western blot analysis of the basolateral amygdala (BLA) revealed an increase in the GluA1 AMPA receptor subunit that correlated with SEFL. Thus, CORT is permissive to trauma-induced changes in BLA function.
Collapse
Affiliation(s)
- Jennifer N Perusini
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Edward M Meyer
- Division of Oral Biology & Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Virginia A Long
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Vinuta Rau
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Nathaniel Nocera
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jacob Avershal
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - James Maksymetz
- Division of Oral Biology & Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Igor Spigelman
- Division of Oral Biology & Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Michael S Fanselow
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Gilman TL, DaMert JP, Meduri JD, Jasnow AM. Grin1 deletion in CRF neurons sex-dependently enhances fear, sociability, and social stress responsivity. Psychoneuroendocrinology 2015; 58:33-45. [PMID: 25938741 DOI: 10.1016/j.psyneuen.2015.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 12/20/2022]
Abstract
The corticotropin releasing factor (CRF) system plays a critical role in responses to stressful stimuli, and is expressed in many areas of the brain involved in processing fear, anxiety, and social behaviors. To better understand the mechanisms by which the CRF system modulates responses to stressful events and social stimuli, we employed a mouse model that selectively disrupts NMDA receptor function via NMDA receptor subunit NR1 (Grin1) knockout specifically in Cre-expressing CRF neurons. These animals (Cre+/(fGrin1+)) were compared with littermates lacking Cre expression (Cre-/(fGrin1+)). Following cue discrimination fear conditioning, male Cre+/(fGrin1+) mice showed increased fear expression to the tone paired with a foot shock (CS+) while still discriminating the CS+ from a tone never paired with a foot shock (CS-). In contrast to males, female mice learned and discriminated fear cues equivalently across the genotypes. Similarly, no genotype differences in sociability or social novelty were observed in female mice, but Cre+/(fGrin1+) males displayed greater naive sociability and preference for social novelty than Cre-/(fGrin1+) littermates. Furthermore, the level of social withdrawal exhibited by male Cre+/(fGrin1+) mice susceptible to social defeat stress relative to same genotype controls was significantly more pronounced than that displayed by susceptible Cre-/(fGrin1+) mice compared to control Cre-/(fGrin1+) mice. Together, these results demonstrate increased fear, social, and stress responsiveness specifically in male Cre+/(fGrin1+) mice. Our findings indicate that NMDA-mediated glutamatergic regulation of CRF neurons is important for appropriately regulating fear and social responses, likely functioning to promote survival under aversive circumstances.
Collapse
Affiliation(s)
- T Lee Gilman
- Department of Psychological Sciences, Kent State University, Kent, 44242, OH, USA.
| | - Jeffrey P DaMert
- Department of Psychological Sciences, Kent State University, Kent, 44242, OH, USA.
| | - Jeremy D Meduri
- Department of Psychological Sciences, Kent State University, Kent, 44242, OH, USA.
| | - Aaron M Jasnow
- Department of Psychological Sciences, Kent State University, Kent, 44242, OH, USA.
| |
Collapse
|
8
|
Gray CL, Norvelle A, Larkin T, Huhman KL. Dopamine in the nucleus accumbens modulates the memory of social defeat in Syrian hamsters (Mesocricetus auratus). Behav Brain Res 2015; 286:22-8. [PMID: 25721736 DOI: 10.1016/j.bbr.2015.02.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 11/17/2022]
Abstract
Conditioned defeat (CD) is a behavioral response that occurs in Syrian hamsters after they experience social defeat. Subsequently, defeated hamsters no longer produce territorial aggression but instead exhibit heightened levels of avoidance and submission, even when confronted with a smaller, non-aggressive intruder. Dopamine in the nucleus accumbens is hypothesized to act as a signal of salience for both rewarding and aversive stimuli to promote memory formation and appropriate behavioral responses to significant events. The purpose of the present study was to test the hypothesis that dopamine in the nucleus accumbens modulates the acquisition and expression of behavioral responses to social defeat. In Experiment 1, bilateral infusion of the non-specific D1/D2 receptor antagonist cis(z)flupenthixol (3.75 μg/150 nl saline) into the nucleus accumbens 5 min prior to defeat training significantly reduced submissive and defensive behavior expressed 24h later in response to a non-aggressive intruder. In Experiment 2, infusion of 3.75 μg cis-(Z)-flupenthixol 5 min before conditioned defeat testing with a non-aggressive intruder significantly increased aggressive behavior in drug-infused subjects. In Experiment 3, we found that the effect of cis-(Z)-flupenthixol on aggression was specific to defeated animals as infusion of drug into the nucleus accumbens of non-defeated animals did not significantly alter their behavior in response to a non-aggressive intruder. These data demonstrate that dopamine in the nucleus accumbens modulates both acquisition and expression of social stress-induced behavioral changes and suggest that the nucleus accumbens plays an important role in the suppression of aggression that is observed after social defeat.
Collapse
Affiliation(s)
- C L Gray
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - A Norvelle
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - T Larkin
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - K L Huhman
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
9
|
Activation of 5-HT2a receptors in the basolateral amygdala promotes defeat-induced anxiety and the acquisition of conditioned defeat in Syrian hamsters. Neuropharmacology 2014; 90:102-12. [PMID: 25458113 DOI: 10.1016/j.neuropharm.2014.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/11/2014] [Accepted: 11/22/2014] [Indexed: 01/14/2023]
Abstract
Conditioned defeat is a model in Syrian hamsters (Mesocricetus auratus) in which normal territorial aggression is replaced by increased submissive and defensive behavior following acute social defeat. The conditioned defeat response involves both a fear-related memory for a specific opponent as well as anxiety-like behavior indicated by avoidance of novel conspecifics. We have previously shown that systemic injection of a 5-HT2a receptor antagonist reduces the acquisition of conditioned defeat. Because neural activity in the basolateral amygdala (BLA) is critical for the acquisition of conditioned defeat and BLA 5-HT2a receptors can modulate anxiety but have a limited effect on emotional memories, we investigated whether 5-HT2a receptor modulation alters defeat-induced anxiety but not defeat-related memories. We injected the 5-HT2a receptor antagonist MDL 11,939 (0 mM, 1.7 mM or 17 mM) or the 5-HT2a receptor agonist TCB-2 (0 mM, 8 mM or 80 mM) into the BLA prior to social defeat. We found that injection of MDL 11,939 into the BLA impaired acquisition of the conditioned defeat response and blocked defeat-induced anxiety in the open field, but did not significantly impair avoidance of former opponents in the Y-maze. Furthermore, we found that injection of TCB-2 into the BLA increased the acquisition of conditioned defeat and increased anxiety-like behavior in the open field, but did not alter avoidance of former opponents. Our data suggest that 5-HT2a receptor signaling in the BLA is both necessary and sufficient for the development of conditioned defeat, likely via modulation of defeat-induced anxiety.
Collapse
|
10
|
Holubova K, Nekovarova T, Pistovcakova J, Sulcova A, Stuchlík A, Vales K. Pregnanolone Glutamate, a Novel Use-Dependent NMDA Receptor Inhibitor, Exerts Antidepressant-Like Properties in Animal Models. Front Behav Neurosci 2014; 8:130. [PMID: 24795582 PMCID: PMC3997017 DOI: 10.3389/fnbeh.2014.00130] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/29/2014] [Indexed: 01/28/2023] Open
Abstract
A number of studies demonstrated a rapid onset of an antidepressant effect of non-competitive N-methyl-d-aspartic acid receptor (NMDAR) antagonists. Nonetheless, its therapeutic potential is rather limited, due to a high coincidence of negative side-effects. Therefore, the challenge seems to be in the development of NMDAR antagonists displaying antidepressant properties, and at the same time maintaining regular physiological function of the NMDAR. Previous results demonstrated that naturally occurring neurosteroid 3α5β-pregnanolone sulfate shows pronounced inhibitory action by a use-dependent mechanism on the tonically active NMDAR. The aim of the present experiments is to find out whether the treatment with pregnanolone 3αC derivatives affects behavioral response to chronic and acute stress in an animal model of depression. Adult male mice were used throughout the study. Repeated social defeat and forced swimming tests were used as animal models of depression. The effect of the drugs on the locomotor/exploratory activity in the open-field test was also tested together with an effect on anxiety in the elevated plus maze. Results showed that pregnanolone glutamate (PG) did not induce hyperlocomotion, whereas both dizocilpine and ketamine significantly increased spontaneous locomotor activity in the open field. In the elevated plus maze, PG displayed anxiolytic-like properties. In forced swimming, PG prolonged time to the first floating. Acute treatment of PG disinhibited suppressed locomotor activity in the repeatedly defeated group-housed mice. Aggressive behavior of isolated mice was reduced after the chronic 30-day administration of PG. PG showed antidepressant-like and anxiolytic-like properties in the used tests, with minimal side-effects. Since PG combines GABAA receptor potentiation and use-dependent NMDAR inhibition, synthetic derivatives of neuroactive steroids present a promising strategy for the treatment of mood disorders. Highlights:
3α5β-pregnanolone glutamate (PG) is a use-dependent antagonist of NMDA receptors. We demonstrated that PG did not induce significant hyperlocomotion. We showed that PG displayed anxiolytic-like and antidepressant-like properties.
Collapse
Affiliation(s)
- Kristina Holubova
- Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Tereza Nekovarova
- Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Jana Pistovcakova
- Faculty of Medicine, Department of Pharmacology, Masaryk University , Brno , Czech Republic
| | - Alexandra Sulcova
- Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Ales Stuchlík
- Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Karel Vales
- Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| |
Collapse
|
11
|
A low-cost automated apparatus for investigating the effects of social defeat in Syrian hamsters. Behav Res Methods 2014; 46:1013-22. [PMID: 24519494 DOI: 10.3758/s13428-013-0427-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe an automated apparatus that can be used to investigate the effects of defeat in hamsters. It consists of a covered alleyway that leads to a box, or arena, where hamsters can be kept separate or allowed to fight. The alleyway is divided into seven equal-sized chambers. Low-power lasers and laser detectors are used to keep track of a hamster's position in the alleyway. A CFL flood lamp placed over the chamber farthest from the arena generates a light gradient in the alleyway that engenders in the subjects a preference for the darker chambers near the arena. A computer automatically records the interruption of the laser beams and yields three measures: average position, the frequency of visits to each chamber, and the frequency of changes in direction of travel in each chamber. The results of a pilot study indicated that when a dominant hamster was placed behind a screened gate in the arena and a subordinate hamster was placed in the alleyway, the subordinate maintained a significantly greater distance from the dominant than did a nondefeated hamster. The subordinate hamster also changed its direction of travel more frequently than did the nondefeated hamster. The results suggest that conditioned fear was elicited in the defeated hamster by proximity to the dominant hamster, an effect that is consistent with published results in which the data were recorded manually or by using commercially available event-tracking software.
Collapse
|
12
|
Meduri JD, Farnbauch LA, Jasnow AM. Paradoxical enhancement of fear expression and extinction deficits in mice resilient to social defeat. Behav Brain Res 2013; 256:580-90. [PMID: 24029700 DOI: 10.1016/j.bbr.2013.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/07/2013] [Accepted: 09/02/2013] [Indexed: 01/19/2023]
Abstract
The exposure to stress has been associated with increased depressive and anxiety symptoms, yet not all individuals respond negatively to the experience of stress. Recent rodent social defeat models demonstrate similar individual differences in response to social stress. In particular, mice subjected to chronic social defeat have been characterized as being either "susceptible" or "resilient" by the level of social interaction following social defeat. Susceptibility is associated with lasting social avoidance as well as increased anxiety-like behavior, and depressive-like symptoms. Resilient animals, however, do not show social avoidance or increased depressive-like symptoms, but retain increased anxiety-like behavior. Thus, it is unclear what "resilience" as measured by social interaction represents in terms of an overall behavioral and physiological phenotype. Here, we use an acute social defeat procedure, which produces distinct behavioral phenotypes in social interaction with no apparent changes in anxiety-like behavior. Susceptible mice display lasting social avoidance, whereas resilient mice display normal social interaction. Susceptible mice also displayed deficits in fear extinction retention but had normal within-session extinction. Paradoxically, resilience was associated with enhanced fear expression, and severe deficits in fear extinction and extinction retention beyond that observed in susceptible mice. These effects in resilient mice were only apparent after the experience of social stress and were not due to impaired behavioral flexibility. These data suggest that mechanisms controlling resilience to acute social defeat as characterized by social interaction leave animals vulnerable to maladaptive fear behavior.
Collapse
Affiliation(s)
- Jeremy D Meduri
- Department of Psychology, Kent State University, 230 Kent Hall, Kent, OH 44242, USA.
| | | | | |
Collapse
|
13
|
Bangasser DA, Lee CS, Cook PA, Gee JC, Bhatnagar S, Valentino RJ. Manganese-enhanced magnetic resonance imaging (MEMRI) reveals brain circuitry involved in responding to an acute novel stress in rats with a history of repeated social stress. Physiol Behav 2013; 122:228-36. [PMID: 23643825 DOI: 10.1016/j.physbeh.2013.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 12/29/2022]
Abstract
Responses to acute stressors are determined in part by stress history. For example, a history of chronic stress results in facilitated responses to a novel stressor and this facilitation is considered to be adaptive. We previously demonstrated that repeated exposure of rats to the resident-intruder model of social stress results in the emergence of two subpopulations that are characterized by different coping responses to stress. The submissive subpopulation failed to show facilitation to a novel stressor and developed a passive strategy in the Porsolt forced swim test. Because a passive stress coping response has been implicated in the propensity to develop certain psychiatric disorders, understanding the unique circuitry engaged by exposure to a novel stressor in these subpopulations would advance our understanding of the etiology of stress-related pathology. An ex vivo functional imaging technique, manganese-enhanced magnetic resonance imaging (MEMRI), was used to identify and distinguish brain regions that are differentially activated by an acute swim stress (15 min) in rats with a history of social stress compared to controls. Specifically, Mn(2+) was administered intracerebroventricularly prior to swim stress and brains were later imaged ex vivo to reveal activated structures. When compared to controls, all rats with a history of social stress showed greater activation in specific striatal, hippocampal, hypothalamic, and midbrain regions. The submissive subpopulation of rats was further distinguished by significantly greater activation in amygdala, bed nucleus of the stria terminalis, and septum, suggesting that these regions may form a circuit mediating responses to novel stress in individuals that adopt passive coping strategies. The finding that different circuits are engaged by a novel stressor in the two subpopulations of rats exposed to social stress implicates a role for these circuits in determining individual strategies for responding to stressors. Finally, these data underscore the utility of ex vivo MEMRI to identify and distinguish circuits engaged in behavioral responses.
Collapse
Affiliation(s)
- Debra A Bangasser
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| | | | | | | | | | | |
Collapse
|
14
|
Morrison KE, Bader LR, McLaughlin CN, Cooper MA. Defeat-induced activation of the ventral medial prefrontal cortex is necessary for resistance to conditioned defeat. Behav Brain Res 2013; 243:158-64. [PMID: 23333400 DOI: 10.1016/j.bbr.2013.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 01/03/2013] [Accepted: 01/08/2013] [Indexed: 01/26/2023]
Abstract
The ventral medial prefrontal cortex (vmPFC) controls vulnerability to the negative effects of chronic or uncontrollable stress. Dominance status alters responses to social defeat in the conditioned defeat model, which is a model characterized by loss of territorial aggression and increased submissive and defensive behavior following an acute social defeat. We have previously shown that dominant individuals show a reduced conditioned defeat response and increased defeat-induced neural activation in the vmPFC compared to subordinates. Here, we tested the hypothesis that defeat-induced activation of the vmPFC is necessary to confer resistance to conditioned defeat in dominants. We paired weight-matched male Syrian hamsters (Mesocricetus auratus) in daily 5-min aggressive encounters for 2 weeks and identified dominants and subordinates. Twenty-four hours after the final pairing, animals were bilaterally injected with 200 nl of the GABAA receptor agonist muscimol (1.1 nmol) or 200 nl of saline vehicle 5 min prior to social defeat. Defeat consisted of 3, 5-min encounters with resident aggressor hamsters at 10-min intervals. Twenty-four hours following social defeat, animals received conditioned defeat testing which involved a 5-min social interaction test with a non-aggressive intruder. Muscimol injection prior to social defeat prevented the reduced conditioned defeat response observed in vehicle-treated dominants. Further, there was no effect of muscimol injection on the conditioned defeat response in subordinates or controls. These data support the conclusion that activation of the vmPFC during social defeat is necessary for the protective effects of dominant social status on the acquisition of conditioned defeat.
Collapse
Affiliation(s)
- Kathleen E Morrison
- Department of Psychology, University of Tennessee, Knoxville, TN, 37996, USA.
| | | | | | | |
Collapse
|
15
|
Harvey ML, Swallows CL, Cooper MA. A double dissociation in the effects of 5-HT2A and 5-HT2C receptors on the acquisition and expression of conditioned defeat in Syrian hamsters. Behav Neurosci 2012; 126:530-7. [PMID: 22708954 DOI: 10.1037/a0029047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous research indicates that serotonin enhances the development of stress-induced changes in behavior, although it is unclear which serotonin receptors mediate this effect. 5-HT2 receptors are potential candidates because activation at these receptors is associated with increased fear and anxiety. In this study, we investigated whether pharmacological treatments targeting 5-HT2 receptors would alter the acquisition and expression of conditioned defeat. Conditioned defeat is a social defeat model in Syrian hamsters in which individuals display increased submissive and defensive behavior and a loss of territorial aggression when tested with a novel intruder 24 hours after an acute social defeat. The nonselective 5-HT2 receptor agonist mCPP (0.0, 0.3, 1.0, or 3.0 mg/kg) was injected either prior to social defeat training or prior to conditioned defeat testing. Also, the 5-HT2A receptor antagonist MDL 11,939 (0.0, 0.5, or 2.0 mg/kg) was injected either prior to social defeat training or prior to conditioned defeat testing. Injection of mCPP prior to testing increased the expression of conditioned defeat, but injection of mCPP prior to training did not alter the acquisition of conditioned defeat. Conversely, injection of MDL 11,939 prior to training reduced the acquisition of conditioned defeat, but injection of MDL 11,939 prior to testing did not alter the expression of conditioned defeat. Our data suggest that mCPP activates 5-HT2C receptors during testing to enhance the display of submissive and defensive behavior, whereas MDL 11,939 blocks 5-HT2A receptors during social defeat to disrupt the development of the conditioned defeat response. In sum, these results suggest that serotonin acts at separate 5-HT2 receptors to facilitate the acquisition and expression of defeat-induced changes in social behavior.
Collapse
Affiliation(s)
- Marquinta L Harvey
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, USA. mail:
| | | | | |
Collapse
|
16
|
Arendt DH, Smith JP, Bastida CC, Prasad MS, Oliver KD, Eyster KM, Summers TR, Delville Y, Summers CH. Contrasting hippocampal and amygdalar expression of genes related to neural plasticity during escape from social aggression. Physiol Behav 2012; 107:670-9. [PMID: 22450262 DOI: 10.1016/j.physbeh.2012.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/01/2012] [Accepted: 03/05/2012] [Indexed: 01/03/2023]
Abstract
Social subjugation has widespread consequences affecting behavior and underlying neural systems. We hypothesized that individual differences in stress responsiveness were associated with differential expression of neurotrophin associated genes within the hippocampus and amygdala. To do this we examined the brains of hamsters placed in resident/intruder interactions, modified by the opportunity to escape from aggression. In the amygdala, aggressive social interaction stimulated increased BDNF receptor TrK(B) mRNA levels regardless of the ability to escape the aggressor. In contrast, the availability of escape limited the elevation of GluR(1) AMPA subunit mRNA. In the hippocampal CA(1), the glucocorticoid stress hormone, cortisol, was negatively correlated with BDNF and TrK(B) gene expression, but showed a positive correlation with BDNF expression in the DG. Latency to escape the aggressor was also negatively correlated with CA(1) BDNF expression. In contrast, the relationship between amygdalar TrK(B) and GluR(1) was positive with respect to escape latency. These results suggest that an interplay of stress and neurotrophic systems influences learned escape behavior. Animals which escape faster seem to have a more robust neurotrophic profile in the hippocampus, with the opposite of this pattern in the amygdala. We propose that changes in the equilibrium of hippocampal and amygdalar learning result in differing behavioral stress coping choices.
Collapse
Affiliation(s)
- David H Arendt
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Luckett C, Norvelle A, Huhman K. The role of the nucleus accumbens in the acquisition and expression of conditioned defeat. Behav Brain Res 2011; 227:208-14. [PMID: 22024431 DOI: 10.1016/j.bbr.2011.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 09/16/2011] [Accepted: 10/07/2011] [Indexed: 01/16/2023]
Abstract
When Syrian hamsters (Mesocricetus auratus) are defeated by a larger, more aggressive hamster, they subsequently exhibit submissive and defensive behavior, instead of their usual aggressive and social behavior, even toward a smaller, non-aggressive opponent. This change in behavior is termed conditioned defeat, and we have found that the amygdala, bed nucleus of the stria terminalis, and ventral hippocampus, among others, are crucial brain areas for either the acquisition and/or expression of this behavioral response to social stress. In the present study, we tested the hypothesis that the nucleus accumbens is also a necessary component of the circuit mediating the acquisition and expression of conditioned defeat. We found that infusion of the GABA(A) agonist muscimol into the nucleus accumbens prior to defeat training failed to affect acquisition of conditioned defeat, but infusion prior to testing significantly decreased submissive behavior and significantly increased aggressive behavior directed toward the non-aggressive intruder. These data indicate that, unlike the basolateral complex of the amygdala, the nucleus accumbens is not a critical site for the plasticity underlying conditioned defeat acquisition, but it does appear to be an important component of the circuit mediating the expression of the behavioral changes that are produced in response to a previous social defeat. Of note, this is the first component of the putative "conditioned defeat neural circuit" wherein we have found that pharmacological manipulations are effective in restoring the territorial aggressive response in previously defeated hamsters.
Collapse
Affiliation(s)
- Cloe Luckett
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA 30303, USA.
| | | | | |
Collapse
|
18
|
A role for 5-HT1A receptors in the basolateral amygdala in the development of conditioned defeat in Syrian hamsters. Pharmacol Biochem Behav 2011; 100:592-600. [PMID: 21967885 DOI: 10.1016/j.pbb.2011.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/12/2011] [Accepted: 09/16/2011] [Indexed: 11/22/2022]
Abstract
The basolateral nucleus of the amygdala (BLA) is a key brain region regulating behavioral changes following stressful events, including social defeat. Previous research has shown that activation of serotonin (5-HT) 1A receptors in the BLA reduces conditioned fear and anxiety-like behavior. The objective of this study was to test whether 5-HT1A receptors in the BLA contribute to conditioned defeat in male Syrian hamsters (Mesocricetus auratus). We tested whether injection of the selective 5-HT1A receptor agonist flesinoxan (400 ng, 800 ng, or 1200 ng in 200 nl saline) into the BLA prior to social defeat would reduce the acquisition of conditioned defeat, and whether a similar injection prior to testing would reduce the expression of conditioned defeat. We also tested whether injection of the selective 5-HT1A receptor antagonist WAY-100635 (400 ng or 1600 ng in 200 nl saline) into the BLA prior to social defeat would enhance the acquisition of conditioned defeat, and whether a similar injection prior to testing would enhance the expression of conditioned defeat. We found that injection of flesinoxan into the BLA decreased both the acquisition and expression of conditioned defeat. However, injection of WAY-100635 into the BLA did not alter the acquisition or expression of conditioned defeat. These data indicate that pharmacological activation of 5-HT1A receptors in the BLA is sufficient to impair the acquisition and expression of conditioned defeat. Our results suggest that pharmacological treatments that activate 5-HT1A receptors in the BLA are capable of reducing the development of stress-induced changes in behavior.
Collapse
|
19
|
Morrison KE, Swallows CL, Cooper MA. Effects of dominance status on conditioned defeat and expression of 5-HT1A and 5-HT2A receptors. Physiol Behav 2011; 104:283-90. [PMID: 21362435 PMCID: PMC3118936 DOI: 10.1016/j.physbeh.2011.02.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/22/2010] [Accepted: 02/22/2011] [Indexed: 12/26/2022]
Abstract
Past experience can alter how individuals respond to stressful events. The brain serotonin system is a key factor modulating stress-related behavior and may contribute to individual variation in coping styles. In this study we investigated whether dominant and subordinate hamsters respond differently to social defeat and whether their behavioral responses are associated with changes in 5-HT1A and 5-HT2A receptor immunoreactivity in several limbic brain regions. We paired weight-matched hamsters in daily aggressive encounters for two weeks so that they formed a stable dominance relationship. We also included controls that were exposed to an empty cage each day for two weeks. Twenty-four hours after the final pairing or empty cage exposure, subjects were socially defeated in 3, 5-min encounters with a more aggressive hamster. Twenty-four hours after social defeat, animals were tested for conditioned defeat in a 5-min social interaction test with a non-aggressive intruder. We collected brains following conditioned defeat testing and performed immunohistochemistry for 5-HT1A and 5-HT2A receptors. We found that dominants showed less submissive and defensive behavior at conditioned defeat testing compared to both subordinates and controls. Additionally, both dominants and subordinates had an increased number of 5-HT1A immunopositive cells in the basolateral amygdala compared to controls. Subordinates also had more 5-HT1A immunopositive cells in the dorsal medial amygdala than did controls. Finally, dominants had fewer 5-HT1A immunopositive cells in the paraventricular nucleus of the hypothalamus compared to controls. Our results indicate that dominant social status results in a blunted conditioned defeat response and a distinct pattern of 5-HT1A receptor expression, which may contribute to resistance to conditioned defeat.
Collapse
Affiliation(s)
- Kathleen E Morrison
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | |
Collapse
|
20
|
Riaza Bermudo-Soriano C, Perez-Rodriguez MM, Vaquero-Lorenzo C, Baca-Garcia E. New perspectives in glutamate and anxiety. Pharmacol Biochem Behav 2011; 100:752-74. [PMID: 21569789 DOI: 10.1016/j.pbb.2011.04.010] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 04/05/2011] [Accepted: 04/15/2011] [Indexed: 02/07/2023]
Abstract
Anxiety and stress-related disorders, namely posttraumatic stress disorder (PTSD), generalized anxiety disorder (GAD), obsessive-compulsive disorder (ODC), social and specific phobias, and panic disorder, are a major public health issue. A growing body of evidence suggests that glutamatergic neurotransmission may be involved in the biological mechanisms underlying stress response and anxiety-related disorders. The glutamatergic system mediates the acquisition and extinction of fear-conditioning. Thus, new drugs targeting glutamatergic neurotransmission may be promising candidates for new pharmacological treatments. In particular, N-methyl-d-aspartate receptors (NMDAR) antagonists (AP5, AP7, CGP37849, CGP39551, LY235959, NPC17742, and MK-801), NMDAR partial agonists (DCS, ACPC), α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs) antagonists (topiramate), and several allosteric modulators targeting metabotropic glutamate receptors (mGluRs) mGluR1, mGluR2/3, and mGluR5, have shown anxiolytic-like effects in several animal and human studies. Several studies have suggested that polyamines (agmatine, putrescine, spermidine, and spermine) may be involved in the neurobiological mechanisms underlying stress-response and anxiety-related disorders. This could mainly be attributed to their ability to modulate ionotropic glutamate receptors, especially NR2B subunits. The aim of this review is to establish that glutamate neurotransmission and polyaminergic system play a fundamental role in the onset of anxiety-related disorders. This may open the way for new drugs that may help to treat these conditions.
Collapse
|
21
|
Curley JP, Jensen CL, Mashoodh R, Champagne FA. Social influences on neurobiology and behavior: epigenetic effects during development. Psychoneuroendocrinology 2011; 36:352-71. [PMID: 20650569 PMCID: PMC2980807 DOI: 10.1016/j.psyneuen.2010.06.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 02/04/2023]
Abstract
The quality of the social environment can have profound influences on the development and activity of neural systems with implications for numerous behavioral and physiological responses, including the expression of emotionality. Though social experiences occurring early in development may be particularly influential on the developing brain, there is continued plasticity within these neural circuits amongst juveniles and into early adulthood. In this review, we explore the evidence derived from studies in rodents which illustrates the social modulation during development of neural systems, with a particular emphasis on those systems in which a long-term effect is observed. One possible explanation for the persistence of dynamic changes in these systems in response to the environment is the involvement of epigenetic mechanisms, and here we discuss recent studies which support the role of these mechanisms in mediating the link between social experiences, gene expression, neurobiological changes, and behavioral variation. This literature raises critical questions about the interaction between neural systems, the concordance between neural and behavioral changes, sexual dimorphism in effects, the importance of considering individual differences in response to the social environment, and the potential of an epigenetic perspective in advancing our understanding of the pathways leading to variations in mental health.
Collapse
Affiliation(s)
- J P Curley
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue, New York, NY 10027, USA
| | | | | | | |
Collapse
|
22
|
Litvin Y, Murakami G, Pfaff DW. Effects of chronic social defeat on behavioral and neural correlates of sociality: Vasopressin, oxytocin and the vasopressinergic V1b receptor. Physiol Behav 2011; 103:393-403. [PMID: 21397619 DOI: 10.1016/j.physbeh.2011.03.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/05/2011] [Accepted: 03/08/2011] [Indexed: 01/07/2023]
Abstract
Chronic social stress in rodents produces behavioral and neuroendocrine patterns analogous to symptoms associated with psychopathologies in humans. Chronic social defeat in mice has been used to study the genetic and epigenetic precursors of stress-related social disorders. The neuropeptides arginine vasopressin (AVP) and oxytocin (OT) are released in central targets to modulate anti- and pro-social behaviors, respectively. AVP binds to V1a and V1b receptors (V1bRs) in discrete brain regions related to anxiety, depression and affiliative behaviors. Recent evidence suggests that V1bRs are involved in stress and anxiety and may be an attractive target for the treatment of associated disorders. In the present series of experiments, we aimed to evaluate the effects of chronic social defeat stress on: 1) anxiety-related behaviors in a social investigation paradigm and their potential modulation by an acute dose of SSR149415, a V1bR antagonist; 2) AVP and Fos protein levels in the paraventricular nucleus of the hypothalamus (PVN) and; 3) AVP- and OT-receptor (OTR) mRNA levels in brain regions associated with sociality. When compared to undefeated animals, socially defeated mice exhibited an anxiogenic behavioral profile towards a novel male conspecific, with SSR149415 partly attenuating these effects. Histochemistry using immunofluorescence showed defeat produced significant elevations of Fos and double labeling of AVP and Fos proteins in the paraventricular nucleus of the hypothalamus (PVN). SSR149415 attenuated the effects of defeat on Fos and AVP/Fos double labeling, consistent with an anxiolytic effect. Defeated mice showed elevated levels of OTR mRNA levels in the lateral septum (LS) in addition to increased V1bR and OTR mRNA in the medial amygdala (MeA). We suggest the involvement of V1bRs and OTRs in a circuit involving the PVN, MeA and LS in the effects of defeat on sociality. SSR149415 attenuated anxiogenesis in the social investigation model and both Fos and AVP/Fos labeling, suggesting V1bRs are an attractive target for the treatment of anxiety in general and disorders of sociality in particular.
Collapse
Affiliation(s)
- Yoav Litvin
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States.
| | | | | |
Collapse
|
23
|
Paul ED, Hale MW, Lukkes JL, Valentine MJ, Sarchet DM, Lowry CA. Repeated social defeat increases reactive emotional coping behavior and alters functional responses in serotonergic neurons in the rat dorsal raphe nucleus. Physiol Behav 2011; 104:272-82. [PMID: 21238469 DOI: 10.1016/j.physbeh.2011.01.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/16/2010] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
Chronic stress is a vulnerability factor for a number of psychiatric disorders, including anxiety and affective disorders. Social defeat in rats has proven to be a useful paradigm to investigate the neural mechanisms underlying physiologic and behavioral adaptation to acute and chronic stress. Previous studies suggest that serotonergic systems may contribute to the physiologic and behavioral adaptation to chronic stress, including social defeat in rodent models. In order to test the hypothesis that repeated social defeat alters the emotional behavior and the excitability of brainstem serotonergic systems implicated in control of emotional behavior, we exposed adult male rats either to home cage control conditions, acute social defeat, or social defeat followed 24h later by a second social defeat encounter. We then assessed behavioral responses during social defeat as well as the excitability of serotonergic neurons within the dorsal raphe nucleus using immunohistochemical staining of tryptophan hydroxylase, a marker of serotonergic neurons, and the protein product of the immediate-early gene, c-fos. Repeated social defeat resulted in a shift away from proactive emotional coping behaviors, such as rearing (explorative escape behavior), and toward reactive emotional coping behaviors such as freezing. Both acute and repeated defeat led to widespread increases in c-Fos expression in serotonergic neurons in the dorsal raphe nucleus. Changes in behavior following a second exposure to social defeat, relative to acute defeat, were associated with decreased c-Fos expression in serotonergic neurons within the dorsal and ventral parts of the mid-rostrocaudal dorsal raphe nucleus, regions that have been implicated in 1) serotonergic modulation of fear- and anxiety-related behavior and 2) defensive behavior in conspecific aggressive encounters, respectively. These data support the hypothesis that serotonergic systems play a role in physiologic and behavioral responses to both acute and repeated social defeat.
Collapse
Affiliation(s)
- Evan D Paul
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, CO 80309-0354, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Parkes SL, Westbrook RF. Role of the basolateral amygdala and NMDA receptors in higher-order conditioned fear. Rev Neurosci 2011; 22:317-33. [DOI: 10.1515/rns.2011.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Cooper MA, Huhman KL. Blocking corticotropin-releasing factor-2 receptors, but not corticotropin-releasing factor-1 receptors or glucocorticoid feedback, disrupts the development of conditioned defeat. Physiol Behav 2010; 101:527-32. [PMID: 20705077 DOI: 10.1016/j.physbeh.2010.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/15/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
Abstract
Several neuroendocrine signals of the hypothalamic-pituitary-adrenal (HPA) axis are released following exposure to stressful events. It has long been proposed that the signals in this cascade each act to modify ongoing and future behavior. In this study we investigated whether blocking glucocorticoid synthesis, corticotropin-releasing factor (CRF)-1 receptors, or CRF-2 receptors during social defeat would alter subsequent behavioral responses. We used a conditioned defeat model in Syrian hamsters in which social defeat results in a dramatic shift from territorial aggression to increased submissive and defensive behavior in future social encounters. We found that intracerebroventricular administration of anti-sauvagine-30, a CRF-2 receptor antagonist, prior to social defeat training reduced the acquisition of conditioned defeat. In contrast, the acquisition of conditioned defeat was not altered by the CRF-1 receptor antagonist CP-154,526 or the glucocorticoid synthesis inhibitor metyrapone. Our results suggest that CRF, and perhaps related neuropeptides such as urocortins, act at CRF-2 receptors to promote the development of defeat-induced changes in social behavior, whereas signaling at CRF-1 and glucocorticoid receptors plays a negligible role in this process.
Collapse
Affiliation(s)
- Matthew A Cooper
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, USA.
| | | |
Collapse
|
26
|
Cooper MA, Grober MS, Nicholas CR, Huhman KL. Aggressive encounters alter the activation of serotonergic neurons and the expression of 5-HT1A mRNA in the hamster dorsal raphe nucleus. Neuroscience 2009; 161:680-90. [PMID: 19362123 DOI: 10.1016/j.neuroscience.2009.03.084] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
Abstract
Serotonergic (5-HT) neurons in the dorsal raphe nucleus (DRN) have been implicated in stress-induced changes in behavior. Previous research indicates that stressful stimuli activate 5-HT neurons in select subregions of the DRN. Uncontrollable stress is thought to sensitize 5-HT neurons in the DRN and allow for an exaggerated 5-HT response to future stimuli. In the current study, we tested the hypothesis that following aggressive encounters, losing male Syrian hamsters would exhibit increased c-Fos immunoreactivity in 5-HT DRN neurons compared to winners or controls. In addition, we tested the hypothesis that losers would have decreased 5-HT1A mRNA levels in the DRN compared to winners or controls. We found that a single 15-min aggressive encounter increased c-Fos expression in 5-HT and non-5-HT neurons in losers compared to winners and controls. The increased c-Fos expression in losers was restricted to ventral regions of the rostral DRN. We also found that four 5-min aggressive encounters reduced total 5-HT1A mRNA levels in the DRN in losers compared to winners and controls, and that differences in mRNA levels were not restricted to specific DRN subregions. These results suggest that social defeat activates neurons in select subregions of the DRN and reduces message for DRN 5-HT1A autoreceptors. Our results support the hypothesis that social stress can activate 5-HT neurons in the DRN, reduce 5-HT1A autoreceptor-mediated inhibition, and lead to hyperactivity of 5-HT neurons.
Collapse
Affiliation(s)
- M A Cooper
- Department of Psychology, University of Tennessee, Knoxville, TN 37996-0900, USA.
| | | | | | | |
Collapse
|
27
|
Infusion of the NMDA receptor antagonist, DL-APV, into the basolateral amygdala disrupts learning to fear a novel and a familiar context as well as relearning to fear an extinguished context. Learn Mem 2009; 16:96-105. [PMID: 19141468 DOI: 10.1101/lm.1218709] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ample evidence suggests that activation of NMDA receptors (NMDAr) in the basolateral complex of the amygdala (BLA) is necessary for context fear conditioning. The present series of experiments examined whether this activation was still required when the to-be-shocked context had a history. We found that BLA infusion of the selective NMDAr antagonist DL-APV impaired the acquisition of fear responses to a novel context, a moderately familiar context, or a highly familiar context. The same treatment also impaired the reacquisition of fear responses to a dangerous context, a context extinguished to criterion, or a context massively extinguished. Importantly, DL-APV persistently suppressed fear responses, suggesting that the NMDAr antagonist disrupted basal synaptic transmission in the BLA. Therefore, we conclude that neuronal activity in the BLA is critical for learning and relearning context-conditioned fear. This finding is consistent with current neural models that attribute context fear conditioning to interactions among several brain regions, most notably the hippocampus and the BLA.
Collapse
|
28
|
Cooper MA, McIntyre KE, Huhman KL. Activation of 5-HT1A autoreceptors in the dorsal raphe nucleus reduces the behavioral consequences of social defeat. Psychoneuroendocrinology 2008; 33:1236-47. [PMID: 18692968 PMCID: PMC2572256 DOI: 10.1016/j.psyneuen.2008.06.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 05/20/2008] [Accepted: 06/24/2008] [Indexed: 11/17/2022]
Abstract
In animal models, serotonin (5-HT) activity contributes to stress-induced changes in behavior. Syrian hamsters (Mesocricetus auratus) exhibit a stress-induced change in behavior in which social defeat results in increased submissive and defensive behavior and a complete loss of normal territorial aggression directed toward a novel, non-aggressive opponent. We refer to this defeat-induced change in agonistic behavior as conditioned defeat. In this study we tested the hypothesis that 5-HT activity in the dorsal raphe nucleus (DRN) contributes to the acquisition and expression of conditioned defeat. We investigated whether injection of the selective 5-HT1A agonist flesinoxan (200 ng, 400 ng, or 800 ng in 200 nl saline) into the DRN would reduce the acquisition and expression of conditioned defeat. Additionally, we investigated whether injection of the selective 5-HT1A antagonist WAY 100635 (400 ng in 200 nl saline) into the DRN would enhance the acquisition and expression of conditioned defeat following a sub-optimal social defeat experience. We found that injection of flesinoxan into the DRN before exposure to a 15-min social defeat reduced the amount of submissive and defensive behavior shown at testing. We also found that injection of flesinoxan into the DRN before testing similarly reduced submissive and defensive behavior. In addition, we found that WAY 100635 enhanced conditioned defeat when injected either before social defeat or before testing. These data support the hypothesis that the activity of 5-HT cells in the DRN, as regulated by 5-HT1A autoreceptors, contributes to the formation and display of conditioned defeat. Further, our results suggest that 5-HT release in DRN projection regions augments defeat-induced changes in social behavior.
Collapse
Affiliation(s)
- Matthew A. Cooper
- Department of Psychology, University of Tennessee, Knoxville TN, 37996-0900, USA,corresponding author: Department of Psychology, Austin Peay Building, University of Tennessee, Knoxville, TN 37996-0900, Phone: 865-974-8458, Fax: 865-974-3330,
| | - Kathleen E. McIntyre
- Department of Psychology, University of Tennessee, Knoxville TN, 37996-0900, USA
| | - Kim L. Huhman
- Department of Psychology, Center for Behavioral Neuroscience, Georgia State University, Atlanta GA, 30302-3966, USA
| |
Collapse
|
29
|
Walker DL, Davis M. Amygdala infusions of an NR2B-selective or an NR2A-preferring NMDA receptor antagonist differentially influence fear conditioning and expression in the fear-potentiated startle test. Learn Mem 2008; 15:67-74. [PMID: 18230675 PMCID: PMC2216678 DOI: 10.1101/lm.798908] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 12/02/2007] [Indexed: 11/24/2022]
Abstract
Within the amygdala, most N-methyl-D-aspartic acid (NMDA) receptors consist of NR1 subunits in combination with either NR2A or NR2B subunits. Because the particular subunit composition greatly influences the receptors' properties, we investigated the contribution of both subtypes to fear conditioning and expression. To do so, we infused the NR1/NR2B receptor antagonist CP101,606 (0.5, 1.5, or 4.5 microg/amygdala) or the NR1/NR2A-preferring antagonist NVP-AAM077 (0.075, 0.25, 0.75, or 2.5 microg/amygdala) into the amygdala prior to either fear conditioning (i.e., light-shock pairings) or fear-potentiated startle testing. CP101,606 nonmonotonically disrupted fear conditioning but did not disrupt fear expression. NVP-AAM077 dose-dependently disrupted fear conditioning as well as fear expression. The results suggest that amygdala NR1/NR2B receptors play a special role in fear memory formation, whereas NR1/NR2A receptors participate more generally in synaptic transmission.
Collapse
Affiliation(s)
- David L Walker
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, Georgia 30329, USA.
| | | |
Collapse
|
30
|
Cooper MA, Huhman KL. Corticotropin-releasing factor receptors in the dorsal raphe nucleus modulate social behavior in Syrian hamsters. Psychopharmacology (Berl) 2007; 194:297-307. [PMID: 17581742 PMCID: PMC2714987 DOI: 10.1007/s00213-007-0849-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 06/01/2007] [Indexed: 10/23/2022]
Abstract
RATIONALE In Syrian hamsters (Mesocricetus auratus), social defeat produces a prolonged change in subsequent agonistic behavior termed conditioned defeat. This stress-induced change in behavior is marked by increased submissive and defensive behavior toward a novel, nonaggressive opponent and a complete loss of normal territorial aggression. Corticotropin-releasing factor (CRF) has been shown to affect serotonergic neurons in the dorsal raphe nucleus (DRN) and to modulate learned helplessness via a CRF type-2 receptor (CRF-R2) mechanism. OBJECTIVES In this study, we tested the hypothesis that a nonselective CRF receptor antagonist (experiment 1: 250 or 500 ng D: -Phe CRF in 200 nl saline), or a selective CRF-R2 antagonist (experiment 2: 500 ng anti-Svg-30 in 200 nl saline), injected into the DRN would reduce the acquisition of conditioned defeat in male hamsters. We also tested similar hypotheses for the expression of conditioned defeat (experiments 3 and 4). RESULTS Infusion of D: -Phe CRF into the DRN significantly reduced both the acquisition and expression of conditioned defeat compared to vehicle controls, whereas infusion of anti-Svg-30 into the DRN reduced expression but not acquisition. In particular, CRF antagonism in the DRN decreased fleeing from novel opponents but did not reinstate normal territorial aggression after social defeat. CONCLUSIONS Our results suggest that the increased flight associated with conditioned defeat is modulated by CRF-R2 activation within the DRN. Overall, social defeat is an ethologically relevant stressor that appears to activate at least some of the same neural substrates that have been implicated in the control of learned helplessness.
Collapse
Affiliation(s)
- Matthew A Cooper
- Department of Psychology, Austin Peay Building, University of Tennessee, Knoxville, TN 37996-0900, USA.
| | | |
Collapse
|
31
|
Solomon MB, Karom MC, Huhman KL. Sex and estrous cycle differences in the display of conditioned defeat in Syrian hamsters. Horm Behav 2007; 52:211-9. [PMID: 17555756 DOI: 10.1016/j.yhbeh.2007.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 04/12/2007] [Accepted: 04/13/2007] [Indexed: 11/17/2022]
Abstract
We have reported that there is a sex difference in the behavioral response to social defeat in hamsters. While previously defeated male hamsters fail to display normal territorial aggression and instead produce submissive/defensive behavior, a phenomenon that we have termed conditioned defeat (CD), only a small portion of previously defeated females exhibit CD. In Experiment 1, we tested the hypothesis that CD varies over the estrous cycle and found that previously defeated female hamsters tested on diestrus 2 and proestrus were more likely to exhibit CD than were females tested on diestrus 1 and estrus. In Experiment 2, we found that regardless of hormonal status, non-defeated females displayed normal territorial aggression, indicating that the behavioral changes observed in Experiment 1 were not due to a cyclic variation in submissive behavior independent of a previous defeat encounter. In Experiment 3, we found that females tested 4 days after defeat responded similarly to those tested 1 day after defeat suggesting that the hormonal status of females on the day of testing is a more important determinant of the behavioral response to defeat than is the hormonal status on the day of defeat training. Finally, in Experiment 4, we monitored anxiety-like behaviors in diestrous 1 and proestrous females in an open field arena and found that there was no effect of cycle on any of the observed behavioral measures, suggesting that the observed differences in CD are not the result of differences in generalized anxiety-like behaviors across the estrous cycle.
Collapse
Affiliation(s)
- Matia B Solomon
- Department of Psychology, Georgia State University, Atlanta, GA 30302-4010, USA
| | | | | |
Collapse
|
32
|
Camera K, Mello CF, Ceretta APC, Rubin MA. Systemic administration of polyaminergic agents modulate fear conditioning in rats. Psychopharmacology (Berl) 2007; 192:457-64. [PMID: 17318505 DOI: 10.1007/s00213-007-0734-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 02/03/2007] [Indexed: 10/23/2022]
Abstract
RATIONALE The polyamines putrescine, spermine, and spermidine are a group of aliphatic amines that physiologically modulate the N-methyl-D-aspartate (NMDA) receptor, a glutamate receptor implicated in memory formation. OBJECTIVES Given the potential application of these drugs in the treatment of memory disorders, we investigated whether agonists and/or antagonists of the NMDA receptor polyamine binding site alters the memory of fear conditioning and determined the time window in which fear conditioning is modulated by polyaminergic agents given by the systemic route. RESULTS Post-training intraperitoneal administration of spermidine (10-100 mg/kg) immediately after training increased, whereas arcaine (10 mg/kg) and MK-801 (0.01-0.1 mg/kg) decreased contextual and auditory fear conditioning. Arcaine and MK-801, at doses that had no effect per se, reversed the facilitatory effect of spermidine. Memory of fear conditioning was impaired by polyaminergic blockade up to 180 min but not at 360 min after training. CONCLUSION These results provide evidence that systemic administration of polyamine binding site ligands modulate early consolidation of fear conditioning.
Collapse
Affiliation(s)
- Keli Camera
- Laboratório de Neurotoxicidade e Psicofarmacologia, Centro de Ciências Naturais e Exatas, Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, 97105-900 RS, Brazil
| | | | | | | |
Collapse
|
33
|
Huhman KL. Social conflict models: can they inform us about human psychopathology? Horm Behav 2006; 50:640-6. [PMID: 16870189 DOI: 10.1016/j.yhbeh.2006.06.022] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 06/22/2006] [Accepted: 06/23/2006] [Indexed: 12/30/2022]
Abstract
Social conflict models have been proposed as a powerful way to investigate basic questions of how brain and behavior are altered by social experience. Social defeat, in particular, appears to be a major stressor for most species, and in humans, this stressor is thought to play an important role in the onset of a variety of psychiatric disorders including depression and post-traumatic stress disorder. Aggressive experience, on the other hand, may promote disorders involving inappropriate aggression and violence. Current research using animal models of social conflict involves multiple levels of analysis from genetic and molecular to systems and overt behavior. This review briefly examines a variety of these animal models of social conflict in order to assess whether they are useful for advancing our understanding of how experience can shape brain and behavior and for translating this information so that we have the potential to improve the quality of life of individuals with mental illness and behavioral disorders.
Collapse
Affiliation(s)
- Kim L Huhman
- Department of Psychology, P.O. Box 3966, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-3966, USA.
| |
Collapse
|
34
|
Razzoli M, Roncari E, Guidi A, Carboni L, Arban R, Gerrard P, Bacchi F. Conditioning properties of social subordination in rats: behavioral and biochemical correlates of anxiety. Horm Behav 2006; 50:245-51. [PMID: 16631758 DOI: 10.1016/j.yhbeh.2006.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 03/15/2006] [Accepted: 03/15/2006] [Indexed: 10/24/2022]
Abstract
To develop a socially based model of anxiety, the contextual fear conditioning properties of social defeat were examined in rats. Social threat consisted of exposing intruders to aggressive residents in resident home cage, separated by a partition. During 3 daily encounters, intruders were either defeated or threatened by residents, providing the defeated-threatened (DT) and threatened-threatened (TT) groups respectively. On Day 4, both DT and TT animals were subjected to a social threat only. Additional animals received a 4-day exposure to a novel empty cage (EC group). Further DT, TT, and EC rats were confronted to a different context on Day 4. DT rats exhibited a robust and context-specific anxiety-like response, characterized by significant behavioral and biochemical alterations. DT rats showed increased risk assessment and decreased exploration compared to TT and EC rats that in turn were not different towards each other. DT and TT rats exhibited increased ACTH levels, while only DT rats showed enhanced corticosterone and decreased testosterone levels compared to EC. These differences were context-specific since they were absent confronting animals to a different context and since they were not long lasting. Overall, these data demonstrate the induction of an anxiety-like state in rats through a context conditioning process based upon social factors. The social basis of this paradigm offers good face validity with anxiety disorders, which in humans are mainly related to social factors and associated with HPA axis deregulations. The present procedure may provide a useful experimental model to further investigate the neurobiological mechanisms underlying anxiety-related disorders.
Collapse
Affiliation(s)
- Maria Razzoli
- Behavioural Neuroscience Department, GlaxoSmithKline S.p.A, Psychiatry CEDD, Via Alessandro Fleming 4, 37135 Verona, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Powell KR, Albers HE. Center for Behavioral Neuroscience: a prototype multi-institutional collaborative research center. JOURNAL OF BIOMEDICAL DISCOVERY AND COLLABORATION 2006; 1:9. [PMID: 16846500 PMCID: PMC1557540 DOI: 10.1186/1747-5333-1-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 07/17/2006] [Indexed: 11/24/2022]
Abstract
The Center for Behavioral Neuroscience was launched in the fall of 1999 with support from the National Science Foundation, the Georgia Research Alliance, and our eight participating institutions (Georgia State University, Emory University, Georgia Institute of Technology, Morehouse School of Medicine, Clark-Atlanta University, Spelman College, Morehouse College, Morris Brown College). The CBN provides the resources to foster innovative research in behavioral neuroscience, with a specific focus on the neurobiology of social behavior. Center faculty working in collaboratories use diverse model systems from invertebrates to humans to investigate fear, aggression, affiliation, and reproductive behaviors. The addition of new research foci in reward and reinforcement, memory and cognition, and sex differences has expanded the potential for collaborations among Center investigators. Technology core laboratories develop the molecular, cellular, systems, behavioral, and imaging tools essential for investigating how the brain influences complex social behavior and, in turn, how social experience influences brain function. In addition to scientific discovery, a major goal of the CBN is to train the next generation of behavioral neuroscientists and to increase the number of women and under-represented minorities in neuroscience. Educational programs are offered for K-12 students to spark an interest in science. Undergraduate and graduate initiatives encourage students to participate in interdisciplinary and inter-institutional programs, while postdoctoral programs provide a bridge between laboratories and allow the interdisciplinary research and educational ventures to flourish. Finally, the CBN is committed to knowledge transfer, partnering with community organizations to bring neuroscience to the public. This multifaceted approach through research, education, and knowledge transfer will have a major impact on how we study interactions between the brain and behavior, as well as how the public views brain function and neuroscience.
Collapse
Affiliation(s)
- Kelly R Powell
- Center for Behavioral Neuroscience, Georgia State University, P.O. Box 3966, Atlanta, Georgia 30302-3966, USA
| | - H Elliott Albers
- Center for Behavioral Neuroscience, Georgia State University, P.O. Box 3966, Atlanta, Georgia 30302-3966, USA
| |
Collapse
|
36
|
Jasnow AM, Shi C, Israel JE, Davis M, Huhman KL. Memory of social defeat is facilitated by cAMP response element-binding protein overexpression in the amygdala. Behav Neurosci 2005; 119:1125-30. [PMID: 16187840 DOI: 10.1037/0735-7044.119.4.1125] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cAMP-responsive element binding protein (CREB) is a transcription factor that regulates synaptic plasticity and memory formation. Studies that have used conditioned fear models have established that CREB is important for the acquisition and consolidation of fear learning. The authors demonstrate that overexpression of CREB within the basolateral amygdala (BLA) of animals that are exposed to social defeat enhances subsequent defeat-induced changes in social behavior. This effect is specific to the acquisition of defeat-induced behaviors; overexpression of CREB has no effect on the expression of these behaviors if the overexpression occurs after the initial defeat. These data demonstrate that CREB is important for regulating learning not only to explicit cues but also for mediating behavioral plasticity in ethologically relevant social contexts.
Collapse
|
37
|
Jasnow AM, Davis M, Huhman KL. Involvement of central amygdalar and bed nucleus of the stria terminalis corticotropin-releasing factor in behavioral responses to social defeat. Behav Neurosci 2005; 118:1052-61. [PMID: 15506887 DOI: 10.1037/0735-7044.118.5.1052] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The authors investigated whether corticotropin-releasing factor (CRF) within the central nucleus of the amygdala (CeA) and bed nucleus of the stria terminalis (BNST) is a critical component of the neural circuitry mediating conditioned defeat. In this model, hamsters that have experienced social defeat subsequently display only submissive-defensive agonistic behavior instead of territorial aggression. Conditioned defeat was significantly reduced following infusion of the CRF receptor antagonist D-Phe CRF((12-41)) into the BNST but not into the CeA. In another experiment, hamsters given unilateral lesions of the CeA and infusions of D-Phe CRF((12-41)) into the contralateral BNST displayed significantly less submissive behavior than did controls. These data suggest that CRF acts within a neural circuit that includes the amygdala and the BNST to modulate agonistic behavior following social defeat.
Collapse
Affiliation(s)
- Aaron M Jasnow
- Center for Behavioral Neuroscience and Georgia State University, Atlanta, GA 30303, USA.
| | | | | |
Collapse
|
38
|
Cooper MA, Huhman KL. Corticotropin-releasing factor type II (CRF₂) receptors in the bed nucleus of the stria terminalis modulate conditioned defeat in Syrian hamsters (Mesocricetus auratus). Behav Neurosci 2005; 119:1042-51. [PMID: 16187832 DOI: 10.1037/0735-7044.119.4.1042] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In Syrian hamsters (Mesocricetus auratus), social defeat produces a subsequent increase in submissive and defensive behavior and a loss of normal territorial aggression, which the authors have called conditioned defeat. In this study, the authors investigated the effect of blocking corticotropin-releasing factor (CRF) Type I and Type II receptors on conditioned defeat. Intracerebroventricular infusion of the CRF-sub-2 receptor antagonist antisauvagine-30 prior to testing significantly reduced conditioned defeat compared with vehicle controls, whereas the CRF-sub-1 receptor antagonist CP-154,526 had no effect. Also, infusion of antisauvagine-30 into the bed nucleus of the stria terminalis (BNST) 15 min, but not immediately, prior to testing reduced conditioned defeat in a dose-dependent manner. The authors' results provide evidence that CRF-sub-2 receptors in the BNST, but not CRF-sub-1 receptors, are an important component in the neural circuitry regulating conditioned defeat.
Collapse
Affiliation(s)
- Matthew A Cooper
- Department of Psychology and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-3966, USA.
| | | |
Collapse
|