1
|
Eyck GRT, Regen EM, Ten Eyck SE, Korzan WJ, Summers CH. Monoamine neurochemistry, behavior, and microhabitat contribute to male coquí frog modes: silent, territorial, and paternal. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:293-309. [PMID: 39909908 DOI: 10.1007/s00359-025-01732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
Monoaminergic neurotransmitters are essential for a multitude of physiological and behavioral functions including territoriality and parental care. The Puerto Rican coquí frog, Eleutherodactylus coqui, possesses an intriguing multi-modal male behavioral organization whereby males can be territorial, paternal, and silent (non-calling). The objective of this study was to quantify central monoamines in the three male modes and integrate this neurochemistry with data from microhabitat shelter selection and male social structure. Males were assessed for monoamines and metabolites using high performance liquid chromatography with electrochemical detection. Results indicated that there are distinct and significant differences among the three male behavioral modes based on male social structure, microhabitat shelter selection, and neurochemistry. Silent males are non-combative, quiescent, occur nocturnally in relatively open locations with sparser vegetation, and are characterized by high levels of epinephrine and norepinephrine in several forebrain nuclei. Territorial males emit vocalizations, are typically surrounded by more vegetation than silent males, may have a silent male within their territory, and are denoted by significantly higher levels of norepinephrine in the preoptic area and ventral hypothalamus and dopamine in the amygdala responsible male territorial behaviors. Paternal males brood and guard developing embryos in secluded nest sites that are surrounded by vegetation, not within territories of residential males, and typically not in close proximity of silent males. Paternal brains have significantly higher levels epinephrine and serotonin in the raphe and reticular nuclei indicating the necessity to regulate metabolic processes and stress during the period of prolong paternal care.
Collapse
Affiliation(s)
- Gary R Ten Eyck
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, 11501, USA.
| | - Erin M Regen
- Biopsychology Area, Department of Psychology, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sarah E Ten Eyck
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, 11501, USA
| | - Wayne J Korzan
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, 33470, USA
| | - Cliff H Summers
- Department of Biology, The University of South Dakota, Vermillion, SD, 57069, USA
- Neuroscience Group, Division of Basic Biomedical Sciences Sanford School of Medicine, The University of South Dakota, Vermillion, SD, 57069, USA
- Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| |
Collapse
|
2
|
Borland JM. A review of the effects of different types of social behaviors on the recruitment of neuropeptides and neurotransmitters in the nucleus accumbens. Front Neuroendocrinol 2025; 77:101175. [PMID: 39892577 DOI: 10.1016/j.yfrne.2025.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
There is a lack of understanding of the neural mechanisms regulating the rewarding effects of social interactions. A significant contributor to this lack of clarity is the diversity of social behaviors and animal models utilized to investigate mechanisms. Other sources of the lack of clarity are the diversity of brain regions that can regulate social reward and the diversity of signaling pathways that regulate reward. To provide some clarity into the mechanisms of social reward, this review focused on the brain region most implicated in reward for multiple stimuli, the nucleus accumbens, and surveyed (systematically reviewed) studies that investigated the relationship between social interaction and five signaling systems implicated in the regulation of reward and social behavior: oxytocin, vasopressin, serotonin, opioids and endocannabinoids. Moreover, all of these studies were organized by the type of social behavior studied: affiliative interactions, play behavior, aggression, social defeat, sex behavior, pair-bonding, parental behavior and social isolation. From this survey and organization, this review concludes that oxytocin, endocannabinoids and mu-opioid receptors in the nucleus accumbens positively regulate the rewarding social behaviors, and kappa-opioid receptors negatively regulate the rewarding social behaviors. The opposite profile is observed for these signaling systems for the aversive social behaviors. More studies are needed to investigate the directional role of the serotonin system in the nucleus accumbens in the regulation of many types of social behaviors, and vasopressin likely does not act in the nucleus accumbens in the regulation of the valence of social behaviors. Many of these different signaling systems are also interdependent of one another in the regulation of different types of social behaviors. Finally, the interaction of these signaling systems with dopamine in the nucleus accumbens is briefly discussed.
Collapse
|
3
|
Kabelik D, Julien AR, Waddell BR, Batschelett MA, O'Connell LA. Aggressive but not reproductive boldness in male green anole lizards correlates with baseline vasopressin activity. Horm Behav 2022; 140:105109. [PMID: 35066329 DOI: 10.1016/j.yhbeh.2022.105109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 11/18/2022]
Abstract
Across species, individuals within a population differ in their level of boldness in social encounters with conspecifics. This boldness phenotype is often stable across both time and social context (e.g., reproductive versus agonistic encounters). Various neural and hormonal mechanisms have been suggested as underlying these stable phenotypic differences, which are often also described as syndromes, personalities, and coping styles. Most studies examining the neuroendocrine mechanisms associated with boldness examine subjects after they have engaged in a social interaction, whereas baseline neural activity that may predispose behavioral variation is understudied. The present study tests the hypotheses that physical characteristics, steroid hormone levels, and baseline variation in Ile3-vasopressin (VP, a.k.a., Arg8-vasotocin) signaling predispose boldness during social encounters. Boldness in agonistic and reproductive contexts was extensively quantified in male green anole lizards (Anolis carolinensis), an established research organism for social behavior research that provides a crucial comparison group to investigations of birds and mammals. We found high stability of boldness across time, and between agonistic and reproductive contexts. Next, immunofluorescence was used to colocalize VP neurons with phosphorylated ribosomal protein S6 (pS6), a proxy marker of neural activity. Vasopressin-pS6 colocalization within the paraventricular and supraoptic nuclei of the hypothalamus was inversely correlated with boldness of aggressive behaviors, but not of reproductive behaviors. Our findings suggest that baseline vasopressin release, rather than solely context-dependent release, plays a role in predisposing individuals toward stable levels of displayed aggression toward conspecifics by inhibiting behavioral output in these contexts.
Collapse
Affiliation(s)
- David Kabelik
- Department of Biology & Program in Neuroscience, Rhodes College, Memphis, TN 38112, USA.
| | - Allison R Julien
- Department of Biology & Program in Neuroscience, Rhodes College, Memphis, TN 38112, USA
| | - Brandon R Waddell
- Department of Biology & Program in Neuroscience, Rhodes College, Memphis, TN 38112, USA
| | | | | |
Collapse
|
4
|
Kabelik D, Julien AR, Ramirez D, O'Connell LA. Social boldness correlates with brain gene expression in male green anoles. Horm Behav 2021; 133:105007. [PMID: 34102460 PMCID: PMC8277760 DOI: 10.1016/j.yhbeh.2021.105007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/01/2021] [Accepted: 05/22/2021] [Indexed: 11/27/2022]
Abstract
Within populations, some individuals tend to exhibit a bold or shy social behavior phenotype relative to the mean. The neural underpinnings of these differing phenotypes - also described as syndromes, personalities, and coping styles - is an area of ongoing investigation. Although a social decision-making network has been described across vertebrate taxa, most studies examining activity within this network do so in relation to exhibited differences in behavioral expression. Our study instead focuses on constitutive gene expression in bold and shy individuals by isolating baseline gene expression profiles that influence social boldness predisposition, rather than those reflecting the results of social interaction and behavioral execution. We performed this study on male green anole lizards (Anolis carolinensis), an established model organism for behavioral research, which provides a crucial comparison group to investigations of birds and mammals. After identifying subjects as bold or shy through repeated reproductive and agonistic behavior testing, we used RNA sequencing to compare gene expression profiles between these groups within various forebrain, midbrain, and hindbrain regions. The ventromedial hypothalamus had the largest group differences in gene expression, with bold males having increased expression of neuroendocrine and neurotransmitter receptor and calcium channel genes compared to shy males. Conversely, shy males express more integrin alpha-10 in the majority of examined regions. There were no significant group differences in physiology or hormone levels. Our results highlight the ventromedial hypothalamus as an important center of behavioral differences across individuals and provide novel candidates for investigations into the regulation of individual variation in social behavior phenotype.
Collapse
Affiliation(s)
- David Kabelik
- Department of Biology & Program in Neuroscience, Rhodes College, Memphis, TN 38112, USA.
| | - Allison R Julien
- Department of Biology & Program in Neuroscience, Rhodes College, Memphis, TN 38112, USA
| | - Dave Ramirez
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
5
|
Korzan WJ, Summers CH. Evolution of stress responses refine mechanisms of social rank. Neurobiol Stress 2021; 14:100328. [PMID: 33997153 PMCID: PMC8105687 DOI: 10.1016/j.ynstr.2021.100328] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Social rank functions to facilitate coping responses to socially stressful situations and conditions. The evolution of social status appears to be inseparably connected to the evolution of stress. Stress, aggression, reward, and decision-making neurocircuitries overlap and interact to produce status-linked relationships, which are common among both male and female populations. Behavioral consequences stemming from social status and rank relationships are molded by aggressive interactions, which are inherently stressful. It seems likely that the balance of regulatory elements in pro- and anti-stress neurocircuitries results in rapid but brief stress responses that are advantageous to social dominance. These systems further produce, in coordination with reward and aggression circuitries, rapid adaptive responding during opportunities that arise to acquire food, mates, perch sites, territorial space, shelter and other resources. Rapid acquisition of resources and aggressive postures produces dominant individuals, who temporarily have distinct fitness advantages. For these reasons also, change in social status can occur rapidly. Social subordination results in slower and more chronic neural and endocrine reactions, a suite of unique defensive behaviors, and an increased propensity for anxious and depressive behavior and affect. These two behavioral phenotypes are but distinct ends of a spectrum, however, they may give us insights into the troubling mechanisms underlying the myriad of stress-related disorders to which they appear to be evolutionarily linked.
Collapse
Affiliation(s)
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA.,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.,Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA
| |
Collapse
|
6
|
Korzan WJ, Summers TR, Summers CH. Neural and endocrine responses to social stress differ during actual and virtual aggressive interactions or physiological sign stimuli. Behav Processes 2021; 182:104294. [PMID: 33290833 PMCID: PMC7872145 DOI: 10.1016/j.beproc.2020.104294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/05/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022]
Abstract
Neural and endocrine responses provide quantitative measures that can be used for discriminating behavioral output analyses. Experimental design differences often make it difficult to compare results with respect to the mechanisms producing behavioral actions. We hypothesize that comparisons of distinctive behavioral paradigms or modification of social signals can aid in teasing apart the subtle differences in animal responses to social stress. Eyespots are a unique sympathetically activated sign stimulus of the lizard Anolis carolinensis that influence aggression and social dominance. Eyespot formation along with measurements of central and plasma monoamines enable comparison of paired male aggressive interactions with those provoked by a mirror image. The results suggest that experiments employing artificial application of sign stimuli in dyadic interactions amplify behavioral, neural and endocrine responses, and foreshorten behavioral interactions compared to those that develop among pairs naturally. While the use of mirrors to induce aggressive behavior produces simulated interactions that appear normal, some behavioral, neural, and endocrine responses are amplified in these experiments as well. In contrast, mirror image interactions also limit the level of certain behavioral and neuroendocrine responses. As true social communication does not occur during interaction with mirror images, rank relationships can never be established. Multiple experimental approaches, such as combining naturalistic social interactions with virtual exchanges and/or manipulation of sign stimuli, can often provide added depth to understanding the motivation, context, and mechanisms that produce specific behaviors. The addition of endocrine and neural measurements helps identify the contributions of specific behavioral elements to the social processes proceeding.
Collapse
Affiliation(s)
| | - Tangi R Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
7
|
Hartline JT, Smith AN, Kabelik D. Serotonergic activation during courtship and aggression in the brown anole, Anolis sagrei. PeerJ 2017; 5:e3331. [PMID: 28533977 PMCID: PMC5436558 DOI: 10.7717/peerj.3331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/19/2017] [Indexed: 11/20/2022] Open
Abstract
The role of serotonin (5-hydroxytryptamine, 5-HT) in social behavior regulation is not fully understood. While 5-HT release in nuclei of the social behavior network has generally been associated with inhibition of aggressive behavior across multiple classes of vertebrates, less is known about its effects on sexual, especially non-copulatory courtship display behaviors. Furthermore, most research has examined effects at 5-HT release sites, while studies examining the behavioral relevance of source cell populations have generated contradictory findings. This study utilized immunohistochemistry to examine the colocalization of 5-HT with Fos, an immediate early gene product and marker of neural activity, in the raphe and superior reticular nuclei of male brown anoles (Anolis sagrei) exposed to either aggression, courtship, or control social interactions. Supporting previous research, copulation was associated with a decrease in 5-HT activity, while a novel link between 5-HT activity and latency to non-copulatory courtship was also found. Within the aggression group, intensity and frequency of behavior were both associated with decreased 5-HT activity. An effect of social context was also seen, with anoles exposed to either courtship or aggression encounters showing decreased 5-HT activity in certain raphe and superior reticular nuclei populations compared to controls. Interestingly, context effects and behavioral effects were seen at separate brain nuclei, suggesting the presence of separate systems with distinct functional roles.
Collapse
Affiliation(s)
- Jacob T Hartline
- Department of Biology, Rhodes College, Memphis, TN, United States of America.,Program in Neuroscience, Rhodes College, Memphis, TN, United States of America
| | - Alexandra N Smith
- Department of Biology, Rhodes College, Memphis, TN, United States of America.,Program in Neuroscience, Rhodes College, Memphis, TN, United States of America
| | - David Kabelik
- Department of Biology, Rhodes College, Memphis, TN, United States of America.,Program in Neuroscience, Rhodes College, Memphis, TN, United States of America
| |
Collapse
|
8
|
Nest building is impaired in the Ts65Dn mouse model of Down syndrome and rescued by blocking 5HT2a receptors. Neurobiol Learn Mem 2014; 116:162-71. [PMID: 25463650 DOI: 10.1016/j.nlm.2014.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 12/14/2022]
Abstract
Down syndrome (DS) has an incidence of about 1/700 births, and is therefore the most common cause of cognitive and behavioral impairments in children. Recent studies on mouse models of DS indicate that a number of pharmacotherapies could be beneficial for restoring cognitive abilities in individuals with DS. Attention deficits that are present in DS account in part for learning and memory deficiencies yet have been scarcely studied in corresponding models. Investigations of this relevant group of behaviors is more difficult in mouse models because of the difficulty in homologizing mouse and human behaviors and because standard laboratory environments do not always elicit behaviors of interest. Here we characterize nest building as a goal-directed behavior that is seriously impaired in young Ts65Dn mice, a genetic model of DS. We believe this impairment may reflect in part attention deficits, and we investigate the physiological, genetic, and pharmacological factors influencing its expression. Nesting behavior in young Ts65Dn mice was severely impaired when the animals were placed in a novel environment. But this context-dependent impairment was transient and reversible. The genetic determinants of this deficiency are restricted to a ∼100 gene segment on the murine chromosome 16. Nest building behavior is a highly integrated phenotypic trait that relies in part on limbic circuitry and on the frontal cortex in relation to cognitive and attention processes. We show that both serotonin content and 5HT2a receptors are increased in the frontal cortex of Ts65Dn mice and that pharmacological blockage of 5HT2a receptors in Ts65Dn mice rescues their context dependent nest building impairment. We propose that the nest-building trait could represent a marker of attention related deficits in DS models and could be of value in designing pharmacotherapies for this specific aspect of DS. 5HT2a modulation may improve goal-directed behavior in DS.
Collapse
|
9
|
Hu L, Zhao X, Yang J, Wang L, Yang Y, Song T, Huang C. Chronic scream sound exposure alters memory and monoamine levels in female rat brain. Physiol Behav 2014; 137:53-9. [PMID: 24952268 DOI: 10.1016/j.physbeh.2014.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/04/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
Chronic scream sound alters the cognitive performance of male rats and their brain monoamine levels, these stress-induced alterations are sexually dimorphic. To determine the effects of sound stress on female rats, we examined their serum corticosterone levels and their adrenal, splenic, and thymic weights, their cognitive performance and the levels of monoamine neurotransmitters and their metabolites in the brain. Adult female Sprague-Dawley rats, with and without exposure to scream sound (4h/day for 21 day) were tested for spatial learning and memory using a Morris water maze. Stress decreased serum corticosterone levels, as well as splenic and adrenal weight. It also impaired spatial memory but did not affect the learning ability. Monoamines and metabolites were measured in the prefrontal cortex (PFC), striatum, hypothalamus, and hippocampus. The dopamine (DA) levels in the PFC decreased but the homovanillic acid/DA ratio increased. The decreased DA and the increased 5-hydroxyindoleacetic acid (5-HIAA) levels were observed in the striatum. Only the 5-HIAA level increased in the hypothalamus. In the hippocampus, stress did not affect the levels of monoamines and metabolites. The results suggest that scream sound stress influences most physiologic parameters, memory, and the levels of monoamine neurotransmitter and their metabolites in female rats.
Collapse
Affiliation(s)
- Lili Hu
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China; Basic Medical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Xiaoge Zhao
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Juan Yang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Lumin Wang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Yang Yang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Tusheng Song
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China.
| | - Chen Huang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China; Cardiovascular Research Center, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Toronchuk JA, Ellis GFR. Affective neuronal selection: the nature of the primordial emotion systems. Front Psychol 2013; 3:589. [PMID: 23316177 PMCID: PMC3540967 DOI: 10.3389/fpsyg.2012.00589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 12/12/2012] [Indexed: 11/13/2022] Open
Abstract
Based on studies in affective neuroscience and evolutionary psychiatry, a tentative new proposal is made here as to the nature and identification of primordial emotional systems. Our model stresses phylogenetic origins of emotional systems, which we believe is necessary for a full understanding of the functions of emotions and additionally suggests that emotional organizing systems play a role in sculpting the brain during ontogeny. Nascent emotional systems thus affect cognitive development. A second proposal concerns two additions to the affective systems identified by Panksepp. We suggest there is substantial evidence for a primary emotional organizing program dealing with power, rank, dominance, and subordination which instantiates competitive and territorial behavior and is an evolutionary contributor to self-esteem in humans. A program underlying disgust reactions which originally functioned in ancient vertebrates to protect against infection and toxins is also suggested.
Collapse
Affiliation(s)
- Judith A Toronchuk
- Department of Psychology, Trinity Western University Langley, BC, Canada ; Department of Biology, Trinity Western University Langley, BC, Canada
| | | |
Collapse
|
11
|
Elipot Y, Hinaux H, Callebert J, Rétaux S. Evolutionary shift from fighting to foraging in blind cavefish through changes in the serotonin network. Curr Biol 2012; 23:1-10. [PMID: 23159600 DOI: 10.1016/j.cub.2012.10.044] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/27/2012] [Accepted: 10/24/2012] [Indexed: 12/24/2022]
Abstract
BACKGROUND Within the species Astyanax mexicanus, there are several interfertile populations of river-dwelling sighted fish and cave-dwelling blind fish which have evolved morphological and behavioral adaptations, the origins of which are unknown. Here, we have investigated the neural, genetic, and developmental bases for the evolution of aggressive behavior in this teleost. RESULTS We used an intruder-resident behavioral assay to compare aggressiveness quantitatively (attack counts) and qualitatively (pattern and nature of attacks) between the surface and cave populations of Astyanax. Using this paradigm, we characterize aggressive behavior in surface fish, bring support for the genetic component of this trait, and show that it is controlled by raphe serotonergic neurons and that it corresponds to the establishment of dominance between fish. Cavefish have completely lost such aggressive/dominance behavior. The few attacks performed by cavefish during the behavioral test instead correspond to food-seeking behavior, driven by the developmental evolution of their hypothalamic serotonergic paraventricular neurons, itself due to increased Sonic Hedgehog signaling during early forebrain embryogenesis. CONCLUSIONS We propose that during evolution and adaptation to their cave habitat, cavefish have undergone a behavioral shift, due to modifications of their serotonergic neuronal network. They have lost the typical aggressive behavior of surface fish and evolved a food-seeking behavior that is probably more advantageous to surviving in the dark. We have therefore demonstrated a link between the development of a neuronal network and the likely adaptive behaviors it controls.
Collapse
Affiliation(s)
- Yannick Elipot
- Equipe Développement Evolution du Cerveau Antérieur, UPR3294 Neurobiologie et Développement, CNRS, Institut Alfred Fessard, 91198 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
12
|
Wood LS, Desjardins JK, Fernald RD. Effects of stress and motivation on performing a spatial task. Neurobiol Learn Mem 2010; 95:277-85. [PMID: 21145980 DOI: 10.1016/j.nlm.2010.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/21/2010] [Accepted: 12/06/2010] [Indexed: 11/29/2022]
Abstract
Learning is ubiquitous in the animal kingdom but has been studied extensively in only a handful of species. Moreover, learning studied under laboratory conditions is typically unrelated to the animal's natural environment or life history. Here, we designed a task relevant to the natural behavior of male African cichlid fish (Astatotilapia burtoni), to determine if they could be trained on a spatial task to gain access to females and shelter. We measured both how successfully animals completed this task over time and whether and how immediate early gene and hormone expression profiles were related to success. While training fish in a maze, we measured time to task completion, circulating levels of three key hormones (cortisol, 11-ketotestosterone, and testosterone) and mRNA abundance of seven target genes including three immediate early genes (that served proxies for brain activity) in nine brain regions. Data from our subjects fell naturally into three phenotypes: fish that could be trained (learners), fish that could not be trained (non-learners) and fish that never attempted the task (non-attempters). Learners and non-learners had lower levels of circulating cortisol compared to fish that never attempted the task. Learners had the highest immediate early gene mRNA levels in the homologue of the hippocampus (dorsolateral telencephalon; Dl), lower cortisol (stress) levels and were more motivated to accomplish the task as measured by behavioral observations. Fish that never attempted the task showed the lowest activity within the Dl, high stress levels and little to no apparent motivation. Data from non-learners fell between these two extremes in behavior, stress, and motivation.
Collapse
Affiliation(s)
- Lauren S Wood
- Department of Biology, Stanford University, Stanford, CA, USA.
| | | | | |
Collapse
|
13
|
Abstract
Females should be choosier than males about prospective mates because of the high costs of inappropriate mating decisions. Both theoretical and empirical studies have identified factors likely to influence female mate choices. However, male-male social interactions also can affect mating decisions, because information about a potential mate can trigger changes in female reproductive physiology. We asked how social information about a preferred male influenced neural activity in females, using immediate early gene (IEG) expression as a proxy for brain activity. A gravid female cichlid fish (Astatotilapia burtoni) chose between two socially equivalent males and then saw fights between these two males in which her preferred male either won or lost. We measured IEG expression levels in several brain nuclei including those in the vertebrate social behavior network (SBN), a collection of brain nuclei known to be important in social behavior. When the female saw her preferred male win a fight, SBN nuclei associated with reproduction were activated, but when she saw her preferred male lose a fight, the lateral septum, a nucleus associated with anxiety, was activated instead. Thus social information alone, independent of actual social interactions, activates specific brain regions that differ significantly depending on what the female sees. In female brains, reproductive centers are activated when she chooses a winner, and anxiety-like response centers are activated when she chooses a loser. These experiments assessing the role of mate-choice information on the brain using a paradigm of successive presentations of mate information suggest ways to understand the consequences of social information on animals using IEG expression.
Collapse
|
14
|
The effect of increased serotonergic neurotransmission on aggression: a critical meta-analytical review of preclinical studies. Psychopharmacology (Berl) 2009; 205:349-68. [PMID: 19404614 DOI: 10.1007/s00213-009-1543-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 04/08/2009] [Indexed: 12/28/2022]
Abstract
RATIONALE The role of serotonin (5-HT) on aggression has been extensively studied; nonetheless, the role of this neurotransmitter in aggression is still inconclusive. OBJECTIVES The current meta-analytical review investigated the role of increased 5-HT neurotransmission in aggression. METHODS Preclinical studies using serotonin reuptake inhibitors, 5-hydroxytryptophan, L-tryptophan, or serotonin (5-HT) to increase 5-HT levels were included in this meta-analysis. An overall effect of serotonin on aggression was calculated, and the role of several moderator variables was analyzed. RESULTS A total of 218 effect sizes revealed that increased 5-HT had an overall significant inhibitory effect on aggression (r = 0.3). The results showed that increased 5-HT had the strongest inhibitory effect on aggression when (1) a specific strain or species (e.g., Long Evans) was used; (2) aggression was offensive or predatory and/or induced by administration of 5,7-dihydroxytryptamine or p-chlorophenylalanine; (3) zimelidine, sertraline, L-tryptophan, citalopram, or 5-HT were used to increase 5-HT; (4) treatment was acute; (5) long chronic treatment durations were used; and (6) time between last injection and behavior testing was within 8 h before or after peak plasma concentration of drug. In contrast, the results revealed that increased-5-HT-facilitated aggression could be predicted when (1) Wistar rats, (2) social isolation or stress to induce aggression, and/or (3) animals treated for less than 3 weeks were used. CONCLUSIONS Although 5-HT has an overall inhibitory effect on aggression, the animal's genetic background, drug, treatment time, aggression inducing paradigm, and aggression type are critical variables that influence and modify this effect.
Collapse
|
15
|
Ling TJ, Forster GL, Watt MJ, Korzan WJ, Renner KJ, Summers CH. Social status differentiates rapid neuroendocrine responses to restraint stress. Physiol Behav 2009; 96:218-32. [DOI: 10.1016/j.physbeh.2008.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 11/25/2022]
|
16
|
Rodrigues SL, Maseko BC, Ihunwo AO, Fuxe K, Manger PR. Nuclear organization and morphology of serotonergic neurons in the brain of the Nile crocodile, Crocodylus niloticus. J Chem Neuroanat 2007; 35:133-45. [PMID: 17923387 DOI: 10.1016/j.jchemneu.2007.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/28/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
Abstract
The present study describes the location and nuclear organization of the serotonergic system in a representative of the order Crocodylia, the Nile crocodile (Crocodylus niloticus). We found evidence for serotonergic neurons in three regions of the brain, including the diencephalon, rostral and caudal brainstem, as previously reported in several other species of reptile. Within the diencephalon we found neurons in the periventricular organ of the hypothalamus, but not in the infundibular recess as noted in some other reptilian species. In addition we found serotonergic neurons in the pretectal nucleus, this being the first description of these neurons in any species. Within the rostral brainstem we found medial and lateral divisions of the superior raphe nucleus and a widely dispersed group of neurons in the tegmentum, the superior reticular nucleus. In the caudal brainstem we observed the inferior raphe nucleus and the inferior reticular nucleus. While much of the serotonergic system of the Nile crocodile is similar to that seen in other reptiles the entire suite of features appears to distinguish the crocodile studied from the members of the Squamate (lizards and snakes) and Testudine (turtles, tortoises and terrapins) reptiles previously studied. The observations are suggestive of order-specific patterns of nuclear organization of this system in the reptiles, reflecting potential evolutionary constraints in the mutability of the nuclear organization as seen for similar systems in mammals.
Collapse
Affiliation(s)
- Stacey-Lee Rodrigues
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, South Africa
| | | | | | | | | |
Collapse
|
17
|
Yang EJ, Wilczynski W. Social experience organizes parallel networks in sensory and limbic forebrain. Dev Neurobiol 2007; 67:285-303. [PMID: 17443788 DOI: 10.1002/dneu.20347] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Successful social behavior can directly influence an individual's reproductive success. Therefore, many organisms readily modify social behavior based on past experience. The neural changes induced by social experience, however, remain to be fully elucidated. We hypothesize that social modulation of neural systems not only occurs at the level of individual nuclei, but also of functional networks, and their relationships with behavior. We used the green anole lizard (Anolis carolinensis), which displays stereotyped, visually triggered social behaviors particularly suitable for comparisons of multiple functional networks in a social context, to test whether repeated aggressive interactions modify behavior and metabolic activity in limbic-hypothalamic and sensory forebrain regions, assessed by quantitative cytochrome oxidase (a slowly accumulating endogenous metabolic marker) histochemistry. We found that aggressive interactions potentiate aggressive behavior, induce changes in activities of individual nuclei, and organize context-specific functional neural networks. Surprisingly, this experiential effect is not only present in a limbic-hypothalamic network, but also extends to a sensory forebrain network directly relevant to the behavioral expression. Our results suggest that social experience modulates organisms' social behavior via modifying sensory and limbic neural systems in parallel both at the levels of individual regions and networks, potentially biasing perceptual as well as limbic processing.
Collapse
Affiliation(s)
- Eun-Jin Yang
- Department of Psychology, University of Texas at Austin, USA
| | | |
Collapse
|
18
|
Korzan WJ, Höglund E, Watt MJ, Forster GL, Øverli Ø, Lukkes JL, Summers CH. Memory of opponents is more potent than visual sign stimuli after social hierarchy has been established. Behav Brain Res 2007; 183:31-42. [PMID: 17602761 PMCID: PMC3889489 DOI: 10.1016/j.bbr.2007.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/27/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
During agonistic interactions between male Anolis carolinensis, perception of a visual sign stimulus (darkened eyespots) not only inhibits aggression and promotes initial attainment of dominant social status, but also evokes distinct neuroendocrine responses in each opponent. This study was designed to examine the effect of eyespot manipulation on behavior and social rank during a second interaction between opponents that had previously established a natural dyadic social hierarchy. Prior to a second interaction, eyespots of familiar size-matched combatants were manipulated to reverse information conveyed by this visual signal. Eyespots on the previously dominant male were masked with green paint to indicate low aggression and social status. Previously subordinate males had their eyespots permanently marked with black paint to convey high aggression and status. Opponents were then re-paired for a second 10 min interaction following either 1 or 3 days of separation. Aggression was generally decreased and social status between pairs remained reasonably consistent. Unlike rapidly activated monoaminergic activity that occurs following the initial pairing, most brain areas sampled were not affected when animals were re-introduced, regardless of visual signal reversal or length of separation between interactions. However in males with "normal" eyespot color, dominant males had reduced serotonergic activity in CA(3) and raphé, while subordinate males exhibited elevated CA(3) dopaminergic activity. Reversing eyespot color also reversed serotonergic activity in raphé and dopaminergic activity in CA(3) after 3 days of separation. The results suggest that males remember previous opponents, and respond appropriately to their previous social rank in spite of eyespot color.
Collapse
Affiliation(s)
- Wayne J. Korzan
- Biological Sciences, Stanford University, Stanford, CA 94305
| | - Erik Höglund
- Danish Institute for Fisheries Research, Department of Marine Ecology and Aquaculture, North Sea Center, Postbox 101, DK-9850 Hirtshals, Denmark
| | - Michael J. Watt
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - Gina L. Forster
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - Øyvind Øverli
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432 Ås, Norway
| | - Jodi L. Lukkes
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - Cliff H. Summers
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
- Department of Biology, University of South Dakota, Vermillion, SD 57069
- Address correspondence to: Cliff H. Summers, Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD 57069-2390, , 605 677 6177, fax 605 677 6557, url: http://www.usd.edu/~cliff/
| |
Collapse
|
19
|
Di-Poï C, Attia J, Bouchut C, Dutto G, Covès D, Beauchaud M. Behavioral and neurophysiological responses of European sea bass groups reared under food constraint. Physiol Behav 2006; 90:559-66. [PMID: 17188721 DOI: 10.1016/j.physbeh.2006.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 11/08/2006] [Accepted: 11/15/2006] [Indexed: 11/21/2022]
Abstract
The individual food-demand behavior of juvenile European sea bass (Dicentrarchus labrax, L.) reared in groups under self-feeding conditions was investigated. The triggering activity on self-feeder, i.e. index of the food-demand activity, agonistic interactions and territorial behavior were monitored for periods of 42 to 68 days in six groups of 50 fish. The specific growth rate was calculated and the brain serotonergic activity was used as a stable index of social stress. Inter-individual differences appeared in triggering activity and three groups were distinguished: 3-5 high-triggering fish, 17-30 low-triggering fish and the remaining individuals were null-triggering fish. There were no significant differences in specific growth rates calculated at the end of the experiment (day 42 or day 68) between individuals with high, low, and null food-demand (ANOVA, p>0.05). No territorial or agonistic behaviors were observed, however, there were significant differences in brain serotonergic activity between the three triggering groups (ANOVA, p=0.050 in telencephalon and p=0.004 in cerebellum). Specifically, high-triggering fish had lower serotonergic turnover than low or null-triggering fish. We put forth the hypothesis that fish with low or null-triggering activity could be stressed by the high activity of high-triggering individuals.
Collapse
Affiliation(s)
- C Di-Poï
- Laboratoire d'Ecologie et de Neuro-Ethologie Sensorielles (EA3988), Université Jean Monnet, 23 rue du Dr. Paul Michelon, F-42023 Saint-Etienne Cedex 02, France.
| | | | | | | | | | | |
Collapse
|
20
|
Watt MJ, Forster GL, Korzan WJ, Renner KJ, Summers CH. Rapid neuroendocrine responses evoked at the onset of social challenge. Physiol Behav 2006; 90:567-75. [PMID: 17187831 PMCID: PMC2698797 DOI: 10.1016/j.physbeh.2006.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 11/11/2006] [Accepted: 11/15/2006] [Indexed: 10/23/2022]
Abstract
At the onset of agonistic social challenge, individuals must assess the degree of threat the opponent represents in order to react appropriately. We aimed to characterize the neuroendocrine changes accompanying this period of initial social assessment using the lizard Anolis carolinensis. Conveyance of aggressive intent by male A. carolinensis is facilitated by rapid postorbital skin darkening (eyespot), whereas eyespot presence inhibits opponent aggression. By manipulating this visual signal, we also investigated whether differing neuroendocrine changes were evoked by initial presentation of varying levels of social threat. Subjects were painted postorbitally either with black paint (high threat level), green paint (low threat level) or water (controls). Painted animals were presented with a mirror and sampled immediately upon exhibiting aggressive intent towards the reflected simulated opponent, but before producing behaviors such as motor pattern-based displays. Control animals (blank surface presented) were sampled at times derived from averaging response times of painted subjects. Brains and plasma were analyzed for monoamine activity and catecholamine levels using electrochemical HPLC. Social threat evoked increases in plasma catecholamine levels indistinguishable from those caused by brief environmental disturbance. However, brief social challenge caused distinct rapid increases in amygdala and nucleus accumbens (NAc) dopamine and serotonin levels. Amygdalar changes were associated with general social threat presence, but NAc monoamines were affected by both threat level and subject motivation to engage in confrontation. This suggests that specific rapid activity changes in key forebrain limbic nuclei differ according to the degree of social threat perceived at the start of the interaction.
Collapse
Affiliation(s)
- Michael J Watt
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Korzan WJ, Forster GL, Watt MJ, Summers CH. Dopaminergic activity modulation via aggression, status, and a visual social signal. Behav Neurosci 2006; 120:93-102. [PMID: 16492120 DOI: 10.1037/0735-7044.120.1.93] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Social interaction may elicit aggression, establish social rank, and be influenced by changes in central dopaminergic activity. In the lizard Anolis carolinensis, a sign stimulus (darkening of postorbital skin or eyespots) inhibits aggressive response from opponents, in part because it forms more rapidly in dominant males. The authors report that artificially hiding or darkening eyespots influences central dopaminergic activity, social status, and aggression during dyadic social interaction. All males that viewed an opponent with eyespots painted black became subordinate and exhibited elevated dopamine in raphe, lateral amygdala, and medial amygdala but decreased dopamine in septum and locus ceruleus. In contrast, males that viewed opponents with hidden eyespots (painted green) became dominant and had increased dopamine in striatum, nucleus accumbens, hypothalamus, and combined substantia nigra/ventral tegmental area.
Collapse
Affiliation(s)
- Wayne J Korzan
- Department of Biological Sciences, Stanford University, Stanford, CA, USA
| | | | | | | |
Collapse
|
23
|
Summers CH, Watt MJ, Ling TL, Forster GL, Carpenter RE, Korzan WJ, Lukkes JL, Overli O. Glucocorticoid interaction with aggression in non-mammalian vertebrates: reciprocal action. Eur J Pharmacol 2005; 526:21-35. [PMID: 16298361 DOI: 10.1016/j.ejphar.2005.09.059] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2005] [Indexed: 11/29/2022]
Abstract
Socially aggressive interaction is stressful, and as such, glucocorticoids are typically secreted during aggressive interaction in a variety of vertebrates, which may both potentiate and inhibit aggression. The behavioral relationship between corticosterone and/or cortisol in non-mammalian (as well as mammalian) vertebrates is dependent on timing, magnitude, context, and coordination of physiological and behavioral responses. Chronically elevated plasma glucocorticoids reliably inhibit aggressive behavior, consistent with an evolutionarily adaptive behavioral strategy among subordinate and submissive individuals. Acute elevation of plasma glucocorticoids may either promote an actively aggressive response via action in specialized local regions of the brain such as the anterior hypothalamus, or is permissive to escalated aggression and/or activity. Although the permissive effect of glucocorticoids on aggression does not suggest an active role for the hormone, the corticosteroids may be necessary for full expression of aggressive behavior, as in the lizard Anolis carolinensis. These effects suggest that short-term stress may generally be best counteracted by an actively aggressive response, at least for socially dominant proactive individuals. An acute and active response may be evolutionarily maladaptive under chronic, uncontrollable and unpredictable circumstances. It appears that subordinate reactive individuals often produce compulsorily chronic responses that inhibit aggression and promote submissive behavior.
Collapse
Affiliation(s)
- Cliff H Summers
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, 57069-2390, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ten Eyck GR, Ronan PJ, Renner KJ, Summers CH. Serotonin metabolism in directly developing frog embryos during paternal care. Neurosci Lett 2005; 388:100-5. [PMID: 16039059 DOI: 10.1016/j.neulet.2005.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 06/20/2005] [Accepted: 06/22/2005] [Indexed: 10/25/2022]
Abstract
Central serotonin (5-HT) metabolism during embryogenesis and a 3-day post-hatching period was analyzed using high performance liquid chromatography in the directly developing frog, Eleutherodactylus coqui. This anuran bypasses the free-swimming larval stage and embryos hatch as miniature frogs in the adult phenotype. During embryogenesis and for a short time immediately after hatching, male E. coqui provide paternal care by brooding and guarding eggs/embryos to prevent desiccation and predation. Serotonin and its catabolite, 5-HIAA, were measured from whole brain during embryogenesis and at 3 days post-hatch to identify critical periods in 5-HT development and to determine the relationship between 5-HT and life history events such as hatching and frog dispersal from the nest site. Serotonergic activity was highest during the early-mid embryonic stages as indicated by the ratio of 5-HIAA/5-HT, a general indicator of turnover and metabolism. There were significant increases in tissue concentrations of 5-HT during the latest or terminal embryonic stage, just prior to hatching, and also at 3 days post-hatch, shortly before neonates disperse into the rainforest. These two increases probably represent different functional requirements during development. The first may occur as a result of the surge of development in the 5-HT system during late embryogenesis that occurs in E. coqui and the second may be from the increase demand in sensory and motor neural development required before dispersal from the nest site.
Collapse
Affiliation(s)
- Gary R Ten Eyck
- Department of Psychology, Biopsychology Area, The University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
25
|
Gilmour KM, Wilson RW, Sloman KA. The Integration of Behaviour into Comparative Physiology. Physiol Biochem Zool 2005; 78:669-78. [PMID: 16047293 DOI: 10.1086/432144] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2005] [Indexed: 11/03/2022]
Abstract
Comparative physiology has traditionally focused on the physiological responses of animals to their physicochemical environment. In recent years, awareness has increased among physiologists of the potential for behavioural factors, such as the social environment of the animal, to affect physiological condition and responses. This recognition has led to an emerging trend within the field toward using multidisciplinary approaches that incorporate both behavioural and physiological techniques. Research areas in which the integrated study of behaviour and physiology has been particularly fruitful include the physiology of the social environment, sensory physiology and behaviour, and physiological constraints on behavioural ecology. The manner in which incorporating behavioural considerations has informed the physiological data collected is discussed for each of these areas using specific examples.
Collapse
Affiliation(s)
- K M Gilmour
- Department of Biology, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada.
| | | | | |
Collapse
|
26
|
Summers CH, Korzan WJ, Lukkes JL, Watt MJ, Forster GL, Øverli Ø, Höglund E, Larson ET, Ronan PJ, Matter JM, Summers TR, Renner KJ, Greenberg N. Does Serotonin Influence Aggression? Comparing Regional Activity before and during Social Interaction. Physiol Biochem Zool 2005; 78:679-94. [PMID: 16059845 DOI: 10.1086/432139] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2004] [Indexed: 11/03/2022]
Abstract
Serotonin is widely believed to exert inhibitory control over aggressive behavior and intent. In addition, a number of studies of fish, reptiles, and mammals, including the lizard Anolis carolinensis, have demonstrated that serotonergic activity is stimulated by aggressive social interaction in both dominant and subordinate males. As serotonergic activity does not appear to inhibit agonistic behavior during combative social interaction, we investigated the possibility that the negative correlation between serotonergic activity and aggression exists before aggressive behavior begins. To do this, putatively dominant and more aggressive males were determined by their speed overcoming stress (latency to feeding after capture) and their celerity to court females. Serotonergic activities before aggression are differentiated by social rank in a region-specific manner. Among aggressive males baseline serotonergic activity is lower in the septum, nucleus accumbens, striatum, medial amygdala, anterior hypothalamus, raphe, and locus ceruleus but not in the hippocampus, lateral amygdala, preoptic area, substantia nigra, or ventral tegmental area. However, in regions such as the nucleus accumbens, where low serotonergic activity may help promote aggression, agonistic behavior also stimulates the greatest rise in serotonergic activity among the most aggressive males, most likely as a result of the stress associated with social interaction.
Collapse
Affiliation(s)
- Cliff H Summers
- Biology and Neuroscience, University of South Dakota, Vermillion, SD 57069, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Semsar K, Perreault HAN, Godwin J. Fluoxetine-treated male wrasses exhibit low AVT expression. Brain Res 2004; 1029:141-7. [PMID: 15542067 DOI: 10.1016/j.brainres.2004.09.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2004] [Indexed: 10/26/2022]
Abstract
In many species, increasing serotonergic activity can reduce aggression and reverse dominance relationships. These effects may in part be mediated through interactions with the arginine vasotocin/vasopressin (AVT/AVP) system. We tested this hypothesis in a territorial coral reef fish, the bluehead wrasse (Thalassoma bifasciatum), by experimentally enhancing serotonergic neurotransmission, using the selective serotonin re-uptake inhibitor (SSRI) fluoxetine. Terminal phase (TP) males received 2 weeks of nightly intraperitoneal fluoxetine injections (6 microg/g body weight) and were then tested for their aggressive response to an intruder and killed to examine AVT phenotype in the preoptic area of the hypothalamus (POA), an area important to social behavior in fishes. Our previously published study demonstrated that fluoxetine-treated males are less aggressive [H.A.N. Perreault, K. Semsar, J. Godwin, Fluoxetine treatment decreases territorial aggression in a coral reef fish, Physiol. and Behav. 79 (2003) 719-724.]. Here, further study of these same fluoxetine-treated males shows approximately twofold lower AVT mRNA expression relative to saline-treated controls in all regions of the POA (all p< or =0.05) without any changes in AVT-ir soma size (all p>0.4). This study experimentally supports the hypothesis that behavioral effects of SSRIs may be mediated in part through interactions with the AVT/AVP system. These results parallel findings from rodents and humans and are consistent with an indirect neurosteroidogenic rather than a solely direct serotonergic mechanism for SSRI effects on the AVT/AVP system. Furthermore, they suggest that SSRI effects on neuroendocrine function may be best modeled in animals with sensitive stress responses such as those found in nondomesticated animals.
Collapse
Affiliation(s)
- Katharine Semsar
- Department of Zoology, Center of Behavioral Biology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617, USA
| | | | | |
Collapse
|
28
|
Summers CH, Forster GL, Korzan WJ, Watt MJ, Larson ET, Overli O, Höglund E, Ronan PJ, Summers TR, Renner KJ, Greenberg N. Dynamics and mechanics of social rank reversal. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 191:241-52. [PMID: 15372303 DOI: 10.1007/s00359-004-0554-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 07/21/2004] [Accepted: 07/22/2004] [Indexed: 10/26/2022]
Abstract
Stable social relationships are rearranged over time as resources such as favored territorial positions change. We test the hypotheses that social rank relationships are relatively stable, and although social signals influence aggression and rank, they are not as important as memory of an opponent. In addition, we hypothesize that eyespots, aggression and corticosterone influence serotonin and N-methyl-D: -aspartate (NMDA) systems in limbic structures involved in learning and memory. In stable adult dominant-subordinate relationships in the lizard Anolis carolinensis, social rank can be reversed by pharmacological elevation of limbic serotonergic activity. Any pair of specific experiences: behaving aggressively, viewing aggression or perceiving sign stimuli indicative of dominant rank also elevate serotonergic activity. Differences in the extent of serotonergic activation may be a discriminating and consolidating factor in attaining superior rank. For instance, socially aggressive encounters lead to increases in plasma corticosterone that stimulate both serotonergic activity and expression of the NMDA receptor subunit 2B (NR(2B)) within the CA(3) region of the lizard hippocampus. Integration of these systems will regulate opponent recognition and memory, motivation to attack or retreat, and behavioral and physiological reactions to stressful social interactions. Contextually appropriate social responses provide a modifiable basis for coping with the flexibility of social relationships.
Collapse
Affiliation(s)
- Cliff H Summers
- Biology and Neuroscience, University of South Dakota, 414 East Clark Street, Vermillion, SD 57069-2390, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|