1
|
Huang J, Liu X, Qiu Q, Tan W, Li R, Xi H, Peng C, Zhou L, Zhou X, Wang Y, Jiang H. Blockade of mesenteric and omental adipose tissue sensory neurons improves cardiac remodeling through sympathetic pathway. iScience 2024; 27:110245. [PMID: 39055939 PMCID: PMC11269788 DOI: 10.1016/j.isci.2024.110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/01/2024] [Accepted: 06/07/2024] [Indexed: 07/28/2024] Open
Abstract
Mesenteric and omental adipose tissue (MOAT) communicates directly with the heart through the secretion of bioactive molecules and indirectly through afferent signaling to the central nervous system. Myocardial infarction (MI) may induce pathological alterations in MOAT, which further affects cardiac function. Our study revealed that MI induced significant MOAT transcriptional changes in genes related with signal transduction, including adiponectin (APN), neuropeptide Y (NPY), and complement C3 (C3), potentially influencing afferent activity. We further found that MOAT sensory nerve denervation with capsaicin (CAP) prevented cardiac remodeling, improved cardiac function, and reversed cardiac sympathetic nerve hyperactivation in the MI group, accompanied by reduced serum norepinephrine. In addition, CAP reversed the elevated MOAT afferent input and brain-heart sympathetic outflow post-MI, increasing APN and NPY and decreasing C3 and serum proinflammatory factors. These results demonstrated that blockade of the MOAT afferent sensory nerve exerts a cardioprotective effect by inhibiting the brain-heart sympathetic axis.
Collapse
Affiliation(s)
- Jiaxing Huang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
| | - Xinyu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
| | - Qinfang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
| | - Wuping Tan
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
| | - Rui Li
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
| | - Haosong Xi
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
| | - Chen Peng
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
| | - Xiaoya Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
| | - Yueyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
| |
Collapse
|
2
|
Morris AJ, Parker RS, Nazzal MK, Natoli RM, Fehrenbacher JC, Kacena MA, White FA. Cracking the Code: The Role of Peripheral Nervous System Signaling in Fracture Repair. Curr Osteoporos Rep 2024; 22:193-204. [PMID: 38236511 PMCID: PMC10912155 DOI: 10.1007/s11914-023-00846-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW The traditionally understated role of neural regulation in fracture healing is gaining prominence, as recent findings underscore the peripheral nervous system's critical contribution to bone repair. Indeed, it is becoming more evident that the nervous system modulates every stage of fracture healing, from the onset of inflammation to repair and eventual remodeling. RECENT FINDINGS Essential to this process are neurotrophins and neuropeptides, such as substance P, calcitonin gene-related peptide, and neuropeptide Y. These molecules fulfill key roles in promoting osteogenesis, influencing inflammation, and mediating pain. The sympathetic nervous system also plays an important role in the healing process: while local sympathectomies may improve fracture healing, systemic sympathetic denervation impairs fracture healing. Furthermore, chronic activation of the sympathetic nervous system, often triggered by stress, is a potential impediment to effective fracture healing, marking an important area for further investigation. The potential to manipulate aspects of the nervous system offers promising therapeutic possibilities for improving outcomes in fracture healing. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Collapse
Affiliation(s)
- Ashlyn J Morris
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reginald S Parker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jill C Fehrenbacher
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| | - Fletcher A White
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Chen S, Chen J, Tang D, Yin W, Xu S, Gao P, Jiao Y, Yu W. Mechanical and chemical itch regulated by neuropeptide Y-Y 1 signaling. Mol Pain 2024; 20:17448069241242982. [PMID: 38485252 PMCID: PMC10981256 DOI: 10.1177/17448069241242982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/28/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Itch is a somatosensory sensation to remove potential harmful stimulation with a scratching desire, which could be divided into mechanical and chemical itch according to diverse stimuli, such as wool fiber and insect biting. It has been reported that neuropeptide Y (NPY) neurons, a population of spinal inhibitory interneurons, could gate the transmission of mechanical itch, with no effect on chemical itch. In our study, we verified that chemogenetic activation of NPY neurons could inhibit the mechanical itch as well as the chemical itch, which also attenuated the alloknesis phenomenon in the chronic dry skin model. Afterwards, intrathecal administration of NPY1R agonist, [Leu31, Pro34]-NPY (LP-NPY), showed the similar inhibition effect on mechanical itch, chemical itch and alloknesis as chemo-activation of NPY neurons. Whereas, intrathecal administration of NPY1R antagonist BIBO 3304 enhanced mechanical itch and reversed the alloknesis phenomenon inhibited by LP-NPY treatment. Moreover, selectively knocking down NPY1R by intrathecal injection of Npy1r siRNA enhanced mechanical and chemical itch behavior as well. These results indicate that NPY neurons in spinal cord regulate mechanical and chemical itch, and alloknesis in dry skin model through NPY1 receptors.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Junhui Chen
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Wen Yin
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Po Gao
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| |
Collapse
|
4
|
Kokotović T, Lenartowicz EM, Langeslag M, Ciotu CI, Fell CW, Scaramuzza A, Fischer MJM, Kress M, Penninger JM, Nagy V. Transcription factor mesenchyme homeobox protein 2 (MEOX2) modulates nociceptor function. FEBS J 2022; 289:3457-3476. [PMID: 35029322 PMCID: PMC9306780 DOI: 10.1111/febs.16347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022]
Abstract
Mesenchyme homeobox protein 2 (MEOX2) is a transcription factor involved in mesoderm differentiation, including development of bones, muscles, vasculature and dermatomes. We have previously identified dysregulation of MEOX2 in fibroblasts from Congenital Insensitivity to Pain patients, and confirmed that btn, the Drosophila homologue of MEOX2, plays a role in nocifensive responses to noxious heat stimuli. To determine the importance of MEOX2 in the mammalian peripheral nervous system, we used a Meox2 heterozygous (Meox2+/−) mouse model to characterise its function in the sensory nervous system, and more specifically, in nociception. MEOX2 is expressed in the mouse dorsal root ganglia (DRG) and spinal cord, and localises in the nuclei of a subset of sensory neurons. Functional studies of the mouse model, including behavioural, cellular and electrophysiological analyses, showed altered nociception encompassing impaired action potential initiation upon depolarisation. Mechanistically, we noted decreased expression of Scn9a and Scn11a genes encoding Nav1.7 and Nav1.9 voltage‐gated sodium channels respectively, that are crucial in subthreshold amplification and action potential initiation in nociceptors. Further transcriptomic analyses of Meox2+/− DRG revealed downregulation of a specific subset of genes including those previously associated with pain perception, such as PENK and NPY. Based on these observations, we propose a novel role of MEOX2 in primary afferent nociceptor neurons for the maintenance of a transcriptional programme required for proper perception of acute and inflammatory noxious stimuli.
Collapse
Affiliation(s)
- Tomislav Kokotović
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases Vienna Austria
- CeMM‐Research Center for Molecular Medicine of the Austrian Academy of Sciences Vienna Austria
- Department of Neurology Medical University of Vienna Austria
| | | | - Michiel Langeslag
- Department of Physiology and Medical Physics Institute of Physiology Medical University of Innsbruck Austria
- Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI) University of Innsbruck Austria
- Department of Pharmacology Medical University of Innsbruck Austria
| | - Cosmin I. Ciotu
- Institute of Physiology Medical University of Vienna Austria
| | - Christopher W. Fell
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases Vienna Austria
- CeMM‐Research Center for Molecular Medicine of the Austrian Academy of Sciences Vienna Austria
- Department of Neurology Medical University of Vienna Austria
| | - Angelica Scaramuzza
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases Vienna Austria
| | | | - Michaela Kress
- Department of Physiology and Medical Physics Institute of Physiology Medical University of Innsbruck Austria
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences VBC – Vienna BioCenter Campus Vienna Austria
- Department of Medical Genetics Life Science Institute University of British Columbia Vancouver Canada
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases Vienna Austria
- CeMM‐Research Center for Molecular Medicine of the Austrian Academy of Sciences Vienna Austria
- Department of Neurology Medical University of Vienna Austria
| |
Collapse
|
5
|
Santos DS, Stein DJ, Medeiros HR, Dos Santos Pereira F, de Macedo IC, Fregni F, Caumo W, Torres ILS. Transcranial direct current stimulation alters anxious-like behavior and neural parameters in rats with chronic pain exposed to alcohol. J Psychiatr Res 2021; 144:369-377. [PMID: 34735841 DOI: 10.1016/j.jpsychires.2021.10.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 11/27/2022]
Abstract
The aim of this study was to evaluate the effects of transcranial direct current stimulation (tDCS) on anxiety-like behavior and neural parameters in rats with chronic pain exposed to alcohol. Thirty-six adult male Wistar rats were randomly assigned to control (CT), neuropathic pain (NP), NPtDCS, NP + alcohol (NPAL), or NPALtDCS groups, subjected to sciatic nerve chronic constriction injury (CCI) and exposed to alcohol (20% v/v solution, 4 g/kg) or vehicle by gavage for 15 days. Afterward, rats were treated using bimodal tDCS (0.5 mA/20 min/8 days) and tested in the open field. Rats were killed 24 h after the last behavioral assessment, and brain and spinal cord tissue samples were collected and processed for NPY immunohistochemistry, expression of Il1a and Il1b in the spinal cord, cerebellum, and hippocampus, and levels of IL-1α and IL-1β in the same brain structures and the striatum. tDCS reverted the anxiety-like behavior induced by CCI and alcohol, and the increased expression of Il1a in the spinal cord induced by alcohol, which increased the expression of Il1b in the cerebellum. In addition, tDCS modulated the hypothalamic NPY-immunoreactivity, increased the levels of IL-1α in the hippocampus (like NP and AL), and increased the expression of Il1b in the spinal cord (like AL). Thus, this study shows that tDCS changes NP and alcohol-induced anxiety-like behavior, possibly through its central modulatory effect of NPY and spinal cord expression of Il1a and Il1b, being considered a treatment option for alcohol and NP-induced anxiety symptoms.
Collapse
Affiliation(s)
- Daniela Silva Santos
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Dirson João Stein
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helouise Richardt Medeiros
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Dos Santos Pereira
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
| | - Isabel Cristina de Macedo
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil; Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Wolnei Caumo
- Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Iraci L S Torres
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Nelson TS, Taylor BK. Targeting spinal neuropeptide Y1 receptor-expressing interneurons to alleviate chronic pain and itch. Prog Neurobiol 2020; 196:101894. [PMID: 32777329 DOI: 10.1016/j.pneurobio.2020.101894] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
An accelerating basic science literature is providing key insights into the mechanisms by which spinal neuropeptide Y (NPY) inhibits chronic pain. A key target of pain inhibition is the Gi-coupled neuropeptide Y1 receptor (Y1). Y1 is located in key sites of pain transmission, including the peptidergic subpopulation of primary afferent neurons and a dense subpopulation of small, excitatory, glutamatergic/somatostatinergic interneurons (Y1-INs) that are densely expressed in the dorsal horn, particularly in superficial lamina I-II. Selective ablation of spinal Y1-INs with an NPY-conjugated saporin neurotoxin attenuates the development of peripheral nerve injury-induced mechanical and cold hypersensitivity. Conversely, conditional knockdown of NPY expression or intrathecal administration of Y1 antagonists reinstates hypersensitivity in models of chronic latent pain sensitization. These and other results indicate that spinal NPY release and the consequent inhibition of pain facilitatory Y1-INs represent an important mechanism of endogenous analgesia. This mechanism can be mimicked with exogenous pharmacological approaches (e.g. intrathecal administration of Y1 agonists) to inhibit mechanical and thermal hypersensitivity and spinal neuron activity in rodent models of neuropathic, inflammatory, and postoperative pain. Pharmacological activation of Y1 also inhibits mechanical- and histamine-induced itch. These immunohistochemical, pharmacological, and cell type-directed lesioning data, in combination with recent transcriptomic findings, point to Y1-INs as a promising therapeutic target for the development of spinally directed NPY-Y1 agonists to treat both chronic pain and itch.
Collapse
Affiliation(s)
- Tyler S Nelson
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bradley K Taylor
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Fu W, Wessel CR, Taylor BK. Neuropeptide Y tonically inhibits an NMDAR➔AC1➔TRPA1/TRPV1 mechanism of the affective dimension of chronic neuropathic pain. Neuropeptides 2020; 80:102024. [PMID: 32145934 PMCID: PMC7456540 DOI: 10.1016/j.npep.2020.102024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/18/2019] [Accepted: 01/23/2020] [Indexed: 11/26/2022]
Abstract
Transection of the sural and common peroneal branches of the sciatic nerve produces cutaneous hypersensitivity at the tibial innervation territory of the mouse hindpaw that resolves within a few weeks. We report that interruption of endogenous neuropeptide Y (NPY) signaling during remission, with either conditional NPY knockdown in NPYtet/tet mice or intrathecal administration of the Y1 receptor antagonist BIBO3304, reinstated hypersensitivity. These data indicate that nerve injury establishes a long-lasting latent sensitization of spinal nociceptive neurons that is masked by spinal NPY-Y1 neurotransmission. To determine whether this mechanism extends beyond the sensory component of nociception, we used conditioned place aversion and preference assays to evaluate the affective component of pain. We found that BIBO3304 produced place aversion in mice when administered during remission. Furthermore, the analgesic drug gabapentin produced place preference after NPY knockdown in NPYtet/tet but not control mice. We then used pharmacological agents and deletion mutant mice to investigate the cellular mechanisms of neuropathic latent sensitization. BIBO3304-induced reinstatement of mechanical hypersensitivity and conditioned place aversion could be prevented with intrathecal administration of an N-methyl-d-aspartate receptor antagonist (MK-801) and was absent in adenylyl cyclase type 1 (AC1) deletion mutant mice. BIBO3304-induced reinstatement could also be prevented with intrathecal administration an AC1 inhibitor (NB001) or a TRPV1 channel blocker (AMG9801), but not vehicle. Intrathecal administration of a TRPA1 channel blocker (HC030031) prevented the reinstatement of neuropathic hypersensitivity produced either by BIBO3304, or by NPY knockdown in NPYtet/tet but not control mice. Our results confirm new mediators of latent sensitization: TRPA1 and TRPV1. We conclude that NPY acts at spinal Y1 to tonically inhibit a molecular NMDAR➔AC1 intracellular signaling pathway in the dorsal horn that is induced by peripheral nerve injury and drives both the sensory and affective components of chronic neuropathic pain.
Collapse
Affiliation(s)
- Weisi Fu
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA
| | - Caitlin R Wessel
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA
| | - Bradley K Taylor
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Fu W, Nelson TS, Santos DF, Doolen S, Gutierrez JJ, Ye N, Zhou J, Taylor B. An NPY Y1 receptor antagonist unmasks latent sensitization and reveals the contribution of protein kinase A and Epac to chronic inflammatory pain. Pain 2019; 160:1754-1765. [PMID: 31335645 PMCID: PMC6903783 DOI: 10.1097/j.pain.0000000000001557] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peripheral inflammation produces a long-lasting latent sensitization of spinal nociceptive neurons, that is, masked by tonic inhibitory controls. We explored mechanisms of latent sensitization with an established four-step approach: (1) induction of inflammation; (2) allow pain hypersensitivity to resolve; (3) interrogate latent sensitization with a channel blocker, mutant mouse, or receptor antagonist; and (4) disrupt compensatory inhibition with a receptor antagonist so as to reinstate pain hypersensitivity. We found that the neuropeptide Y Y1 receptor antagonist BIBO3304 reinstated pain hypersensitivity, indicative of an unmasking of latent sensitization. BIBO3304-evoked reinstatement was not observed in AC1 knockout mice and was prevented with intrathecal co-administration of a pharmacological blocker to the N-methyl-D-aspartate receptor (NMDAR), adenylyl cyclase type 1 (AC1), protein kinase A (PKA), transient receptor potential cation channel A1 (TRPA1), channel V1 (TRPV1), or exchange protein activated by cAMP (Epac1 or Epac2). A PKA activator evoked both pain reinstatement and touch-evoked pERK expression in dorsal horn; the former was prevented with intrathecal co-administration of a TRPA1 or TRPV1 blocker. An Epac activator also evoked pain reinstatement and pERK expression. We conclude that PKA and Epac are sufficient to maintain long-lasting latent sensitization of dorsal horn neurons that is kept in remission by the NPY-Y1 receptor system. Furthermore, we have identified and characterized 2 novel molecular signaling pathways in the dorsal horn that drive latent sensitization in the setting of chronic inflammatory pain: NMDAR→AC1→PKA→TRPA1/V1 and NMDAR→AC1→Epac1/2. New treatments for chronic inflammatory pain might either increase endogenous NPY analgesia or inhibit AC1, PKA, or Epac.
Collapse
Affiliation(s)
- Weisi Fu
- Department of Physiology, University of Kentucky Medical Center, Lexington KY, USA
| | - Tyler S. Nelson
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
| | - Diogo F. Santos
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Suzanne Doolen
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Javier J.P. Gutierrez
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Na Ye
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bradley Taylor
- Department of Physiology, University of Kentucky Medical Center, Lexington KY, USA
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
9
|
Acton D, Ren X, Di Costanzo S, Dalet A, Bourane S, Bertocchi I, Eva C, Goulding M. Spinal Neuropeptide Y1 Receptor-Expressing Neurons Form an Essential Excitatory Pathway for Mechanical Itch. Cell Rep 2019; 28:625-639.e6. [PMID: 31315043 PMCID: PMC6709688 DOI: 10.1016/j.celrep.2019.06.033] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 01/08/2023] Open
Abstract
Acute itch can be generated by either chemical or mechanical stimuli, which activate separate pathways in the periphery and spinal cord. While substantial progress has been made in mapping the transmission pathway for chemical itch, the central pathway for mechanical itch remains obscure. Using complementary genetic and pharmacological manipulations, we show that excitatory neurons marked by the expression of the neuropeptide Y1 receptor (Y1Cre neurons) form an essential pathway in the dorsal spinal cord for the transmission of mechanical but not chemical itch. Ablating or silencing the Y1Cre neurons abrogates mechanical itch, while chemogenetic activation induces scratching. Moreover, using Y1 conditional knockout mice, we demonstrate that endogenous neuropeptide Y (NPY) acts via dorsal-horn Y1-expressing neurons to suppress light punctate touch and mechanical itch stimuli. NPY-Y1 signaling thus regulates the transmission of innocuous tactile information by establishing biologically relevant thresholds for touch discrimination and mechanical itch reflexes.
Collapse
Affiliation(s)
- David Acton
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Xiangyu Ren
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Biology Graduate Program, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Stefania Di Costanzo
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Biology Graduate Program, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Antoine Dalet
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Steeve Bourane
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ilaria Bertocchi
- Department of Neuroscience, University of Torino, Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole 1, 10043 Orbassano, Italy
| | - Carola Eva
- Department of Neuroscience, University of Torino, Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole 1, 10043 Orbassano, Italy
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Lee C, Ramsey A, De Brito-Gariepy H, Michot B, Podborits E, Melnyk J, Gibbs JL. Molecular, cellular and behavioral changes associated with pathological pain signaling occur after dental pulp injury. Mol Pain 2018; 13:1744806917715173. [PMID: 28580829 PMCID: PMC5480629 DOI: 10.1177/1744806917715173] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Persistent pain can occur after routine dental treatments in which the dental pulp is
injured. To better understand pain chronicity after pulp injury, we assessed whether
dental pulp injury in mice causes changes to the sensory nervous system associated with
pathological pain. In some experiments, we compared findings after dental pulp injury to a
model of orofacial neuropathic pain, in which the mental nerve is injured. After
unilateral dental pulp injury, we observed increased expression of activating
transcription factor 3 (ATF3) and neuropeptide Y (NPY) mRNA and decreased tachykinin
precursor 1 gene expression, in the ipsilateral trigeminal ganglion. We also observed an
ipsilateral increase in the number of trigeminal neurons expressing immunoreactivity for
ATF3, a decrease in substance P (SP) immunoreactive cells, and no change in the number of
cells labeled with IB4. Mice with dental pulp injury transiently exhibit hindpaw
mechanical allodynia, out to 12 days, while mice with mental nerve injury have persistent
hindpaw allodynia. Mice with dental pulp injury increased spontaneous consumption of a
sucrose solution for 17 days while mental nerve injury mice did not. Finally, after dental
pulp injury, an increase in expression of the glial markers Iba1 and glial fibrillary
acidic protein occurs in the transition zone between nucleus caudalis and interpolaris,
ipsilateral to the injury. Collectively these studies suggest that dental pulp injury is
associated with significant neuroplasticity that could contribute to persistent pain after
of dental pulp injury.
Collapse
Affiliation(s)
- Caroline Lee
- Department of Endodontics. New York University College of Dentistry. NY, NY USA
| | - Austin Ramsey
- Department of Endodontics. New York University College of Dentistry. NY, NY USA
| | | | - Benoit Michot
- Department of Endodontics. New York University College of Dentistry. NY, NY USA
| | - Eugene Podborits
- Department of Endodontics. New York University College of Dentistry. NY, NY USA
| | - Janet Melnyk
- Department of Endodontics. New York University College of Dentistry. NY, NY USA
| | | |
Collapse
|
11
|
Abstract
The hypothalamus is involved in the regulation of homeostatic mechanisms and migraine-related trigeminal nociception and as such has been hypothesized to play a central role in the migraine syndrome from the earliest stages of the attack. The hypothalamus hosts many key neuropeptide systems that have been postulated to play a role in this pathophysiology. Such neuropeptides include but are not exclusive too orexins, oxytocin, neuropeptide Y, and pituitary adenylate cyclase activating protein, which will be the focus of this review. Each of these peptides has its own unique physiological role and as such many preclinical studies have been conducted targeting these peptide systems with evidence supporting their role in migraine pathophysiology. Preclinical studies have also begun to explore potential therapeutic compounds targeting these systems with some success in all cases. Clinical efficacy of dual orexin receptor antagonists and intranasal oxytocin have been tested; however, both have yet to demonstrate clinical effect. Despite this, there were limitations in these cases and strong arguments can be made for the further development of intranasal oxytocin for migraine prophylaxis. Regarding neuropeptide Y, work has yet to begun in a clinical setting, and clinical trials for pituitary adenylate cyclase activating protein are just beginning to be established with much optimism. Regardless, it is becoming increasingly clear the prominent role that the hypothalamus and its peptide systems have in migraine pathophysiology. Much work is required to better understand this system and the early stages of the attack to develop more targeted and effective therapies aimed at reducing attack susceptibility with the potential to prevent the attack all together.
Collapse
Affiliation(s)
- Lauren C Strother
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Anan Srikiatkhachorn
- International Medical College, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Weera Supronsinchai
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, Thailand.
| |
Collapse
|
12
|
Malet M, Leiguarda C, Gastón G, McCarthy C, Brumovsky P. Spinal activation of the NPY Y1 receptor reduces mechanical and cold allodynia in rats with chronic constriction injury. Peptides 2017; 92:38-45. [PMID: 28465077 DOI: 10.1016/j.peptides.2017.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/29/2017] [Accepted: 04/19/2017] [Indexed: 12/18/2022]
Abstract
Neuropeptide tyrosine (NPY) and its associated receptors Y1R and Y2R have been previously implicated in the spinal modulation of neuropathic pain induced by total or partial sectioning of the sciatic nerve. However, their role in chronic constrictive injuries of the sciatic nerve has not yet been described. In the present study, we analyzed the consequences of pharmacological activation of spinal Y1R, by using the specific Y1R agonist Leu31Pro34-NPY, in rats with chronic constriction injury (CCI). CCI and sham-injury rats were implanted with a permanent intrathecal catheter (at day 7 after injury), and their response to the administration of different doses (2.5, 5, 7, 10 or 20μg) of Leu31Pro34-NPY (at a volume of 10μl) through the implanted catheter, recorded 14days after injury. Mechanical allodynia was tested by means of the up-and-down method, using von Frey filaments. Cold allodynia was tested by application of an acetone drop to the affected hindpaw. Intrathecal Leu31Pro34-NPY induced an increase of mechanical thresholds in rats with CCI, starting at doses of 5μg and becoming stronger with higher doses. Intrathecal Leu31Pro34 also resulted in reductions in the frequency of withdrawal to cold stimuli, although the effect was somewhat more moderate and mostly observed for doses of 7μg and higher. We thus show that spinal activation of the Y1R is able to reduce neuropathic pain due to a chronic constrictive injury and, together with other studies, support the use of a spinal Y1R agonist as a therapeutic agent against chronic pain induced by peripheral neuropathy.
Collapse
Affiliation(s)
- Mariana Malet
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Consejo Nacional de Investigaciones Cientiíficas y Técnicas (CONICET) - Austral University, Avenida Juan D. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Candelaria Leiguarda
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Consejo Nacional de Investigaciones Cientiíficas y Técnicas (CONICET) - Austral University, Avenida Juan D. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Guillermo Gastón
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Consejo Nacional de Investigaciones Cientiíficas y Técnicas (CONICET) - Austral University, Avenida Juan D. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Carly McCarthy
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Consejo Nacional de Investigaciones Cientiíficas y Técnicas (CONICET) - Austral University, Avenida Juan D. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Pablo Brumovsky
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Consejo Nacional de Investigaciones Cientiíficas y Técnicas (CONICET) - Austral University, Avenida Juan D. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Taylor BK, Fu W, Kuphal KE, Stiller CO, Winter MK, Chen W, Corder GF, Urban JH, McCarson KE, Marvizon JC. Inflammation enhances Y1 receptor signaling, neuropeptide Y-mediated inhibition of hyperalgesia, and substance P release from primary afferent neurons. Neuroscience 2013; 256:178-94. [PMID: 24184981 DOI: 10.1016/j.neuroscience.2013.10.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/21/2013] [Accepted: 10/23/2013] [Indexed: 12/20/2022]
Abstract
Neuropeptide Y (NPY) is present in the superficial laminae of the dorsal horn and inhibits spinal nociceptive processing, but the mechanisms underlying its anti-hyperalgesic actions are unclear. We hypothesized that NPY acts at neuropeptide Y1 receptors in the dorsal horn to decrease nociception by inhibiting substance P (SP) release, and that these effects are enhanced by inflammation. To evaluate SP release, we used microdialysis and neurokinin 1 receptor (NK1R) internalization in rat. NPY decreased capsaicin-evoked SP-like immunoreactivity in the microdialysate of the dorsal horn. NPY also decreased non-noxious stimulus (paw brush)-evoked NK1R internalization (as well as mechanical hyperalgesia and mechanical and cold allodynia) after intraplantar injection of carrageenan. Similarly, in rat spinal cord slices with dorsal root attached, [Leu(31), Pro(34)]-NPY inhibited dorsal root stimulus-evoked NK1R internalization. In rat dorsal root ganglion neurons, Y1 receptors colocalized extensively with calcitonin gene-related peptide (CGRP). In dorsal horn neurons, Y1 receptors were extensively expressed and this may have masked the detection of terminal co-localization with CGRP or SP. To determine whether the pain inhibitory actions of Y1 receptors are enhanced by inflammation, we administered [Leu(31), Pro(34)]-NPY after intraplantar injection of complete Freund's adjuvant (CFA) in rat. We found that [Leu(31), Pro(34)]-NPY reduced paw clamp-induced NK1R internalization in CFA rats but not uninjured controls. To determine the contribution of increased Y1 receptor-G protein coupling, we measured [(35)S]GTPγS binding simulated by [Leu(31), Pro(34)]-NPY in mouse dorsal horn. CFA inflammation increased the affinity of Y1 receptor G-protein coupling. We conclude that Y1 receptors contribute to the anti-hyperalgesic effects of NPY by mediating the inhibition of SP release, and that Y1 receptor signaling in the dorsal horn is enhanced during inflammatory nociception.
Collapse
Affiliation(s)
- B K Taylor
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, KY 40536, USA.
| | - W Fu
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | - K E Kuphal
- Division of Pharmacology, University of Missouri-Kansas City, Kansas City, MO, USA
| | - C-O Stiller
- Department of Medicine, Division of Clinical Pharmacology, Karolinska Hospital, Karolinska Institutet, Stockholm, Sweden
| | - M K Winter
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - W Chen
- Veteran Affairs Greater Los Angeles Healthcare System and Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - G F Corder
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | - J H Urban
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - K E McCarson
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - J C Marvizon
- Veteran Affairs Greater Los Angeles Healthcare System and Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
14
|
Raimondo S, Ronchi G, Geuna S, Pascal D, Reano S, Filigheddu N, Graziani A. Ghrelin: a novel neuromuscular recovery promoting factor? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:207-21. [PMID: 24083436 DOI: 10.1016/b978-0-12-410499-0.00008-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Promoting neuromuscular recovery after neural injury is a major clinical issue. While techniques for nerve reconstruction are continuously improving and most peripheral nerve lesions can be repaired today, recovery of the lost function is usually unsatisfactory. This evidence claims for innovative nonsurgical therapeutic strategies that can implement the outcome after neural repair. Although no pharmacological approach for improving posttraumatic neuromuscular recovery has still entered clinical practice, various molecules are explored in experimental models of neural repair. One of such molecules is the circulating peptide hormone ghrelin. This hormone has proved to have a positive effect on neural repair after central nervous system lesion, and very recently its effectiveness has also been demonstrated in preventing posttraumatic skeletal muscle atrophy. By contrast, no information is still available about its effectiveness on peripheral nerve regeneration although preliminary data from our laboratory suggest that this molecule can have an effect also in promoting axonal regeneration after nerve injury and repair. Should this be confirmed, ghrelin might represent an ideal candidate as a therapeutic agent for improving posttraumatic neuromuscular recovery because of its putative effects at all the various structural levels involved in this regeneration process, namely, the central nervous system, the peripheral nerve, and the target skeletal muscle.
Collapse
Affiliation(s)
- Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Turin & Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Kostić S, Puljak L, Sapunar D. Attenuation of pain-related behaviour evoked by carrageenan injection through blockade of neuropeptide Y Y1 and Y2 receptors. Eur J Pain 2012; 17:493-504. [DOI: 10.1002/j.1532-2149.2012.00218.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2012] [Indexed: 01/01/2023]
Affiliation(s)
- S. Kostić
- Laboratory for Pain Research; Department of Anatomy, Histology and Embryology; University of Split School of Medicine; Croatia
| | - L. Puljak
- Laboratory for Pain Research; Department of Anatomy, Histology and Embryology; University of Split School of Medicine; Croatia
| | - D. Sapunar
- Laboratory for Pain Research; Department of Anatomy, Histology and Embryology; University of Split School of Medicine; Croatia
| |
Collapse
|
16
|
Rethnam S, Raju B, Fristad I, Berggreen E, Heyeraas KJ. Differential expression of neuropeptide Y Y1 receptors during pulpal inflammation. Int Endod J 2010; 43:492-8. [DOI: 10.1111/j.1365-2591.2010.01704.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Abstract
Nerve injury increases the spinal cord expression and/or activity of voltage- and ligand-gated ion channels, peptide receptors, and neuroimmune factors, which then drive dorsal horn neuron hyperexcitability. The intensity and duration of this central sensitization is determined by the net activity of local excitatory and inhibitory neurotransmitter systems, together with ongoing/evoked primary afferent activity and descending supraspinal control. Spinal endogenous inhibitory systems serve as opposing compensatory influences and are gaining recognition for their powerful capacity to restrain allodynia and hyperalgesia. These include numerous G protein-coupled receptors (mu- and delta-opioid, alpha(2)-adrenergic, purinergic A1, neuropeptide Y1 and Y2, cannabinoid CB1 and CB2, muscarinic M2, gamma-amino-butyric acid type B, metabotropic glutamate type II-III, somatostatin) and perhaps nuclear receptors (peroxisome proliferator-activated receptor gamma). Excessive downregulation or defective compensatory upregulation of these systems may contribute to the maintenance of neuropathic pain. An increasing number of pharmacotherapeutic strategies for neuropathic pain are emerging that mimic and enhance inhibitory neurotransmission in the dorsal horn.
Collapse
Affiliation(s)
- Bradley K Taylor
- Department of Physiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536-0298, USA.
| |
Collapse
|
18
|
Datta S, Chatterjee K, Kline RH, Wiley RG. Behavioral and anatomical characterization of the bilateral sciatic nerve chronic constriction (bCCI) injury: correlation of anatomic changes and responses to cold stimuli. Mol Pain 2010; 6:7. [PMID: 20105332 PMCID: PMC2825192 DOI: 10.1186/1744-8069-6-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Accepted: 01/27/2010] [Indexed: 01/30/2023] Open
Abstract
Background Unilateral constrictive sciatic nerve injury (uCCI) is a common neuropathic pain model. However, the bilateral constrictive injury (bCCI) model is less well studied, and shows unique characteristics. In the present study, we sought to correlate effects of bCCI on nocifensive responses to cold and mechanical stimuli with selected dorsal horn anatomic markers. bCCI or sham ligation of both rat sciatic nerves were followed up to 90 days of behavioural testing. Additional rats sacrificed at 15, 30 and 90 days were used for anatomic analyses. Behavioural tests included hindpaw withdrawal responses to topical acetone, cold plate testing, an operant thermal preference task and hindpaw withdrawal thresholds to mechanical probing. Results All nocifensive responses to cold increased and remained enhanced for >45 days. Mechanical withdrawal thresholds decreased for 25 days only. Densitometric analyses of immunoperoxidase staining in the superficial dorsal horn at L4-5 revealed decreased cholecystokinin (CCK) staining at all times after bCCI, decreased mu opiate receptor (MOR) staining, maximal at 15 days, increased neuropeptide Y (NPY) staining only at days 15 and 30, and increased neurokinin-1 receptor (NK-1R) staining at all time points, maximal at 15 days. Correlation analyses at 45 days post-bCCI, were significant for individual rat nocifensive responses in each cold test and CCK and NK-1R, but not for MOR or NPY. Conclusions These results confirm the usefulness of cold testing in bCCI rats, a new approach using CCI to model neuropathic pain, and suggest a potential value of studying the roles of dorsal horn CCK and substance P in chronic neuropathic pain. Compared to human subjects with neuropathic pain, responses to cold stimuli in rats with bCCI may be a useful model of neuropathic pain.
Collapse
Affiliation(s)
- Sukdeb Datta
- Department of Anesthesiology, Vanderbilt University, Nashville, TN, USA.
| | | | | | | |
Collapse
|
19
|
Kuphal KE, Solway B, Pedrazzini T, Taylor BK. Y1 receptor knockout increases nociception and prevents the anti-allodynic actions of NPY. Nutrition 2009; 24:885-91. [PMID: 18725085 DOI: 10.1016/j.nut.2008.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 06/13/2007] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Recent pharmacologic studies in our laboratory have suggested that the spinal neuropeptide Y (NPY) Y1 receptor contributes to pain inhibition and to the analgesic effects of NPY. To rule out off-target effects, the present study used Y1-receptor-deficient (-/-) mice to further explore the contribution of Y1 receptors to pain modulation. METHODS AND RESULTS Y1(-/-) mice exhibited reduced latency in the hotplate test of acute pain and a longer-lasting heat allodynia in the complete Freund's adjuvant (CFA) model of inflammatory pain. Y1 deletion did not change CFA-induced inflammation. Upon targeting the spinal NPY systems with intrathecal drug delivery, NPY reduced tactile and heat allodynia in the CFA model and the partial sciatic nerve ligation model of neuropathic pain. Importantly, we show for the first time that NPY does not exert these anti-allodynic effects in Y1(-/-) mice. Furthermore, in nerve-injured CD1 mice, concomitant injection of the potent Y1 antagonist BIBO3304 prevented the anti-allodynic actions of NPY. Neither NPY nor BIBO3304 altered performance on the Rotorod test, arguing against an indirect effect of motor function. CONCLUSION The Y1 receptor contributes to pain inhibition and to the analgesic effects of NPY.
Collapse
Affiliation(s)
- K E Kuphal
- Division of Pharmacology, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Neuropeptide Y (NPY) is an important modulatory neuropeptide that regulates several physiological systems, including the activity of sensory neurons. We evaluated whether activation of the NPY Y1 receptor could modulate the activity of capsaicin-sensitive nociceptors in trigeminal ganglia and dental pulp. We tested this hypothesis by measuring capsaicin-stimulated calcitonin gene-related peptide release (CGRP) as a measure of nociceptor activity. Capsaicin-evoked CGRP release was inhibited by 50% (p < 0.05) in trigeminal ganglia and by 26% (p < 0.05) in dental pulp when tissues were pre-treated with [Leu(31),Pro(34)]NPY. The Y1 receptor was found to co-localize with the capsaicin receptor TRPV1 in trigeminal ganglia. These results demonstrate that activation of the Y1 receptor results in the inhibition of the activity of capsaicin-sensitive nociceptors in the trigeminal ganglia and dental pulp. These findings are relevant to the physiological modulation of dental nociceptors by endogenous NPY and demonstrate an important novel analgesic target for the treatment of dental pain.
Collapse
Affiliation(s)
- J L Gibbs
- Department of Endodontics, University of Texas Health Science Center in San Antonio, TX, USA.
| | | |
Collapse
|
21
|
Lundy FT, El Karim IA, Linden GJ. Neuropeptide Y (NPY) and NPY Y1 receptor in periodontal health and disease. Arch Oral Biol 2008; 54:258-62. [PMID: 19010457 DOI: 10.1016/j.archoralbio.2008.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 10/01/2008] [Accepted: 10/04/2008] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Neuropeptide Y (NPY) coordinates inflammation and bone metabolism which are central to the pathogenesis of periodontitis. The present study was designed to determine whether NPY was quantifiable in human gingival crevicular fluid (GCF) and to test the null hypothesis that GCF levels of NPY were the same in periodontal health and disease. A subsidiary aim was to determine the potential functionality of released NPY by detecting the presence of NPY Y1 receptors in gingival tissue. DESIGN The periodontitis group consisted of 20 subjects (10 females and 10 males) mean age 41.4 (S.D. 9.6 years). The control group comprised 20 subjects (10 females and 10 males) mean age 37.4 (S.D. 11.7 years). NPY levels in GCF were measured in periodontal health and disease by radioimmunoassay. NPY Y1 receptor expression in gingival tissue was determined by Western blotting of membrane protein extracts from healthy and inflamed gum. RESULTS Healthy sites from control subjects had significantly higher levels of NPY than diseased sites from periodontitis subjects. NPY Y1 receptor protein was detected in both healthy and inflamed gingival tissue by Western blotting. CONCLUSIONS The significantly elevated levels of NPY in GCF from healthy compared with periodontitis sites suggests a tonic role for NPY, the functionality of which is indicated by the presence of NPY Y1 receptors in local gingival tissue.
Collapse
Affiliation(s)
- Fionnuala T Lundy
- Oral Science Research Centre, School of Medicine and Dentistry, Queen's University, Grosvenor Road, Belfast BT126BP, Northern Ireland, UK.
| | | | | |
Collapse
|
22
|
Drosophila TRPA channel modulates sugar-stimulated neural excitation, avoidance and social response. Nat Neurosci 2008; 11:676-82. [PMID: 18469811 DOI: 10.1038/nn.2119] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 04/08/2008] [Indexed: 01/08/2023]
Abstract
Drosophila melanogaster postfeeding larvae show food-averse migration toward food-free habitats before metamorphosis. This developmental switching from food attraction to aversion is regulated by a neuropeptide Y (NPY)-related brain signaling peptide. We used the fly larva model to delineate the neurobiological basis of age-restricted response to environmental stimuli. Here we provide evidence for a fructose-responsive chemosensory pathway that modulates food-averse migratory and social behaviors. We found that fructose potently elicited larval food-averse behaviors, and painless (pain), a transient receptor potential channel that is responsive to noxious stimuli, was required for the fructose response. A subset of pain-expressing sensory neurons have been identified that show pain-dependent excitation by fructose. Although evolutionarily conserved avoidance mechanisms are widely appreciated for their roles in stress coping and survival, their biological importance in animal physiology and development remains unknown. Our findings demonstrate how an avoidance mechanism is recruited to facilitate animal development.
Collapse
|
23
|
Thomsen M, Wörtwein G, Olesen MV, Begtrup M, Havez S, Bolwig TG, Woldbye DPD. Involvement of Y5 receptors in neuropeptide Y agonist-induced analgesic-like effect in the rat hot plate test. Brain Res 2007; 1155:49-55. [PMID: 17498669 DOI: 10.1016/j.brainres.2007.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 04/07/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
Neuropeptide Y (NPY) induces analgesic-like effects after central administration across diverse pain models in rodents. In spinal pain models, previous studies indicate a prominent role for Y(1) receptors at mediating this effect of NPY. In supraspinal pain models like the hot plate test, the NPY receptors involved have not been thoroughly explored. By intracerebroventricular (i.c.v.) administration of selective NPY receptor ligands, the possible involvement of Y(5) receptors in analgesic-like mechanisms was investigated using the hot plate test in rats. Both NPY and selective Y(5) agonists induced analgesic-like effects as revealed by prolonged hot plate latencies. Further consistent with a role for Y(5) receptors, pretreatment with a selective Y(5) receptor antagonist blocked the Y(5) agonist-induced analgesic-like effect. The present study indicates involvement of Y(5) receptors probably at the supraspinal level in mediation of NPY agonist-induced analgesic-like effects in the hot plate test.
Collapse
Affiliation(s)
- Morgane Thomsen
- Laboratory of Neuropsychiatry, Rigshospitalet University Hospital O-6102 and Department of Neuroscience and Pharmacology, University of Copenhagen, 9 Blegdamsvej, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
24
|
Hökfelt T, Brumovsky P, Shi T, Pedrazzini T, Villar M. NPY and pain as seen from the histochemical side. Peptides 2007; 28:365-72. [PMID: 17234301 DOI: 10.1016/j.peptides.2006.07.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 07/20/2006] [Indexed: 01/10/2023]
Abstract
The expression of neuropeptide tyrosine (NPY) and two of its receptors (Y1- and Y2Rs) in different types of rodent dorsal root ganglion (DRG) and spinal cord neurons, and their regulation by peripheral nerve injury, have suggested a role in neuropathic pain. Here we present the spinal NPYergic system from an immunohistochemical perspective based on recent studies using two specific antibodies recognizing the Y1- and Y2Rs, respectively, as well as on data from a study on a Y1R knock-out mouse. We have, for example, defined seven different neuron populations of Y1R-expressing neurons in the rat spinal cord, representing multiple targets for spinally released NPY. The differential distribution of NPY receptors probably explains both the pro- and antinociceptive effects of NPY previously reported in the literature. One system possibly responsible for antinociception is a group of Y1R-positive, presumably glutamatergic interneurons in the superficial dorsal horn laminae. We also discuss the possibility that NPY released within DRGs can act in a paracrine fashion on NPY receptors on adjacent neurons, perhaps contributing to the so-called cross excitation, a concept advanced by Devor, Amir and collaborators. Taken together with behavioral and electrophysiological results summarized by Smith et al. in this volume, histochemical analyses have advanced the knowledge on the role of NPY in pain processing.
Collapse
Affiliation(s)
- Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
25
|
Smith PA, Moran TD, Abdulla F, Tumber KK, Taylor BK. Spinal mechanisms of NPY analgesia. Peptides 2007; 28:464-74. [PMID: 17194506 DOI: 10.1016/j.peptides.2006.09.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 09/18/2006] [Indexed: 12/25/2022]
Abstract
We review previously published data, and present some new data, indicating that spinal application of neuropeptide Y (NPY) reduces behavioral and neurophysiological signs of acute and chronic pain. In models of acute pain, early behavioral studies showed that spinal (intrathecal) administration of NPY and Y2 receptor agonists decrease thermal nociception. Subsequent neurophysiological studies indicated that Y2-mediated inhibition of excitatory neurotransmitter release from primary afferent terminals in the substantia gelatinosa may contribute to the antinociceptive actions of NPY. As with acute pain, NPY reduced behavioral signs of inflammatory pain such as mechanical allodynia and thermal hyperalgesia; however, receptor antagonist studies indicate an important contribution of spinal Y1 rather than Y2 receptors. Interestingly, Y1 agonists suppress inhibitory synaptic events in dorsal horn neurons (indeed, well known mu-opioid analgesic drugs produce similar cellular actions). To resolve the behavioral and neurophysiological data, we propose that NPY/Y1 inhibits the spinal release of inhibitory neurotransmitters (GABA and glycine) onto inhibitory neurons, e.g. disinhibition of pain inhibition, resulting in hyporeflexia. The above mechanisms of Y1- and Y2-mediated analgesia may also operate in the setting of peripheral nerve injury, and new data indicate that NPY dose-dependently inhibits behavioral signs of neuropathic pain. Indeed, neurophysiological studies indicate that Y2-mediated inhibition of Ca(2+) channel currents in dorsal root ganglion neurons is actually increased after axotomy. We conclude that spinal delivery of Y1 agonists may be of use in the treatment of chronic inflammatory pain, and that the use of Y1 and Y2 agonists in neuropathic pain warrants further consideration.
Collapse
Affiliation(s)
- Peter A Smith
- Department of Pharmacology and Centre for Neuroscience, University of Alberta, 9.75 Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada.
| | | | | | | | | |
Collapse
|
26
|
Brumovsky P, Shi TS, Landry M, Villar MJ, Hökfelt T. Neuropeptide tyrosine and pain. Trends Pharmacol Sci 2007; 28:93-102. [PMID: 17222466 DOI: 10.1016/j.tips.2006.12.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 11/24/2006] [Accepted: 12/20/2006] [Indexed: 12/20/2022]
Abstract
Research during the past two decades supports a complex role for neuropeptide tyrosine (NPY) and two of its associated receptors, the Y1 receptor and the Y2 receptor, in the modulation of pain, in addition to regeneration and survival mechanisms at the spinal level. Thus, NPY has been shown to both cause and reduce pain, in addition to having biphasic effects. Recent research has focused on the distribution of the spinal NPY-mediated system. Here, we propose various possible scenarios for the role of NPY in pain processing, based on its actions at different sites (axon versus cell body), through different receptors (Y1 receptor versus Y2 receptor) and/or types of neuron (ganglion neurons and intraganglionic cross-excitation versus interneurons versus projection neurons).
Collapse
Affiliation(s)
- Pablo Brumovsky
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
27
|
Gibbs JL, Diogenes A, Hargreaves KM. Neuropeptide Y modulates effects of bradykinin and prostaglandin E2 on trigeminal nociceptors via activation of the Y1 and Y2 receptors. Br J Pharmacol 2006; 150:72-9. [PMID: 17143304 PMCID: PMC2013847 DOI: 10.1038/sj.bjp.0706967] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Although previous studies have demonstrated that neuropeptide Y (NPY) modulates nociceptors, the relative contributions of the Y1 and Y2 receptors are unknown. Therefore, we evaluated the effect of Y1 and Y2 receptor activation on nociceptors stimulated by bradykinin (BK) and prostaglandin E2 (PGE2). EXPERIMENTAL APPROACH Combined immunohistochemistry (IHC) with in situ hybridization (ISH) demonstrated that Y1- and Y2-receptors are collocated with bradykinin (2) (B2)-receptors in rat trigeminal ganglia (TG). The relative functions of the Y1 and Y2 receptors in modulating BK/PGE2-evoked CGRP release and increased intracellular calcium levels in cultured TG neurons were evaluated. KEY RESULTS The Y1 and Y2 receptors are co-expressed with B2 in TG neurons, suggesting the potential for direct NPY modulation of BK responses. Pretreatment with the Y1 agonist [Leu31,Pro34]-NPY, inhibited BK/PGE2-evoked CGRP release. Conversely, pretreatment with PYY(3-36), a Y2 agonist, increased BK/PGE2 evoked CGRP release. Treatment with NPY evoked an overall inhibitory effect, although of lesser magnitude. Similarly, [Leu31,Pro34]-NPY inhibited BK/PGE2-evoked increases in intracellular calcium levels whereas PYY(3-36) increased responses. NPY inhibition of BK/PGE2-evoked release of CGRP was reversed by the Y1 receptor antagonist, BIBO3304, and higher concentrations of BIBO3304 significantly facilitated CGRP release. The Y2 receptor antagonist, BIIE0246, enhanced the inhibitory NPY effects. CONCLUSIONS AND IMPLICATIONS These results demonstrate that NPY modulation of peptidergic neurons is due to net activation of inhibitory Y1 and excitatory Y2 receptor systems. The relative expression or activity of these opposing receptor systems may mediate dynamic responses to injury and pain.
Collapse
Affiliation(s)
- J L Gibbs
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
28
|
El Karim IA, Lamey PJ, Linden GJ, Awawdeh LA, Lundy FT. Caries-induced changes in the expression of pulpal neuropeptide Y. Eur J Oral Sci 2006; 114:133-7. [PMID: 16630305 DOI: 10.1111/j.1600-0722.2006.00343.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent evidence suggests that the sympathetic nervous system may have a role in modulating neurogenic inflammation and bone remodelling. Neuropeptide Y (NPY) is a well-characterized neuropeptide transmitter in the peripheral sympathetic nervous system. NPY is known to be present in human dental pulp; however, quantitative data on NPY levels in pulpal health and disease in an adult population remain to be determined. The aims of the current study were to assess, quantitatively, NPY levels by radioimmunoassay and confirm the distribution of NPY fibres by immunocytochemistry in carious and non-carious adult human pulp tissue. Our results suggest changes in the levels and distribution of NPY in human dental pulp during the caries process, with significantly higher levels of NPY in carious compared with non-carious adult human teeth. Within the carious samples studied, our finding, that NPY levels were significantly elevated in mild/moderate caries, concurs with the hypothesis that NPY could have a modulatory role in pulpal inflammation and in reparative dentine formation.
Collapse
Affiliation(s)
- Ikhlas A El Karim
- Oral Science Research Center, School of Medicine and Dentistry, Queen's University Belfast, UK
| | | | | | | | | |
Collapse
|
29
|
Gibbs JL, Flores CM, Hargreaves KM. Attenuation of capsaicin-evoked mechanical allodynia by peripheral neuropeptide Y Y1 receptors. Pain 2006; 124:167-74. [PMID: 16714086 DOI: 10.1016/j.pain.2006.04.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 03/21/2006] [Accepted: 04/03/2006] [Indexed: 11/27/2022]
Abstract
Neuropeptide Y (NPY) and its cognate receptors are important modulators of nociception and their expression is significantly altered following injury. In particular, previous studies have demonstrated that the Y1 subtype of NPY receptors inhibits nociceptive transmission from capsaicin-sensitive terminals in the dorsal horn of the spinal cord. The present study evaluated the function of the Y1 receptor on peripheral terminals of primary afferent neurons by testing whether peripherally administered Y1 agonists and antagonists alter capsaicin-evoked mechanical allodynia in rats and capsaicin-evoked immunoreactive calcitonin gene-related peptide (iCGRP) release from isolated superfused rat skin. Treatment with the Y1 agonist [Leu31,Pro34]-NPY (0.5, 1, or 10 nmol) significantly inhibited capsaicin-evoked mechanical allodynia in a dose-dependent manner. This effect was reversible by pretreatment with the Y1 antagonist BIBO3304 (10 nmol). The anti-allodynia produced by the Y1 agonist occurred at a peripheral site of action, because injection into the paw contralateral to the site of the capsaicin injection had no effect on paw withdrawal latencies. In isolated skin, application of [Leu31,Pro34]-NPY (300 nM) significantly inhibited capsaicin-evoked CGRP release. BIBO3304 reversed this inhibition, having itself no effect on capsaicin-evoked iCGRP release. These studies indicate that the activation of peripheral Y1 receptors produces anti-allodynia, possibly via the direct inhibition of capsaicin-sensitive fibers.
Collapse
Affiliation(s)
- Jennifer L Gibbs
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | |
Collapse
|
30
|
Davidson EP, Coppey LJ, Yorek MA. Activity and expression of the vanilloid receptor 1 (TRPV1) is altered by long-term diabetes in epineurial arterioles of the rat sciatic nerve. Diabetes Metab Res Rev 2006; 22:211-9. [PMID: 16196077 DOI: 10.1002/dmrr.599] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Epineurial arterioles of the sciatic nerve are innervated by sensory nerves containing calcitonin gene-related peptide (CGRP). We postulated that treating these resistance vessels with capsaicin would cause the release of endogenous CGRP and vascular relaxation. METHODS Videomicroscopy was used to examine the effect of capsaicin and neuropeptides on vascular reactivity of epineurial arterioles from control and streptozotocin-induced diabetic rats. Using immunohistochemistry, we examined expression of neuropeptide Y (NPY) and vanilloid receptor 1 in epineurial arterioles. RESULTS Instead of relaxation, capsaicin was found to cause a concentration-dependent vasoconstriction in epineurial arterioles. The effect of capsaicin was transient, refractory, blocked by capsazepine and duplicated by resiniferatoxin. When examining potential candidates for the mediation of capsaicin-induced constriction, we found that vasopressin (VP), NPY, serotonin (5HT) and endothelin (ET), but not neurokinin A or substance P, caused a concentration-dependent vasoconstriction of epineurial arterioles. Epineurial arterioles express NPY and receptor antagonists to NPY significantly decreased capsaicin-induced vasoconstriction. In long-term diabetic rats, vasoconstriction to capsaicin was significantly attenuated. However, long-term diabetes did not impair vasoconstriction of epineurial arterioles to exogenous VP, NPY, 5HT or ET. Examining the expression of vanilloid receptor 1 in epineurial arterioles from control and long-term diabetic rats, we found that immunoreactivity for vanilloid receptor 1 was decreased by diabetes. CONCLUSIONS These studies suggest that long-term diabetes causes vascular dysfunction in epineurial arterioles of the sciatic nerve that includes a decrease in capsaicin-induced vasoconstriction that is likely due to a decrease in the expression of vanilloid receptor 1.
Collapse
Affiliation(s)
- Eric P Davidson
- Veteran Affairs Medical Center and Department of Internal Medicine, University of Iowa, Iowa City, 52246, USA
| | | | | |
Collapse
|
31
|
Brumovsky P, Hofstetter C, Olson L, Ohning G, Villar M, Hökfelt T. The neuropeptide tyrosine Y1R is expressed in interneurons and projection neurons in the dorsal horn and area X of the rat spinal cord. Neuroscience 2006; 138:1361-76. [PMID: 16448775 DOI: 10.1016/j.neuroscience.2005.11.069] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 11/22/2005] [Accepted: 11/30/2005] [Indexed: 11/16/2022]
Abstract
The localization of the neuropeptide tyrosine Y1 receptor was studied with immunohistochemistry in parasagittal and transverse, free-floating sections of the rat lumbar spinal cord. At least seven distinct Y1 receptor-positive populations could tentatively be recognized: Type 1) abundant small, fusiform Y1 receptor-positive neurons in laminae I-II, producing a profuse neuropil; Type 2) Y1 receptor-positive projection neurons in lamina I; Type 3) small Y1 receptor-positive neurons in lamina III, similar to Type 1 neurons, but less densely packed; Type 4) a number of large, multipolar Y1 receptor-positive neurons in the border area between laminae III-IV, with dendrites projecting toward laminae I-II; Type 5) a considerable number of large, multipolar Y1 receptor-positive neurons in laminae V-VI; Type 6) many large Y1 receptor-positive neurons around the central canal (area X); and Type 7) a small number of large Y1 receptor-positive neurons in the medial aspect of the ventral horns (lamina VIII). Many of the neurons present in laminae V-VI and area X produce craniocaudal processes extending for several hundred micrometers. Retrograde tracing using cholera toxin B subunit injected at the 9th thoracic spinal cord level shows that several Type 5 neurons in laminae V-VI, and at least a few Type 2 in lamina I and Type 6 in area X have projections extending to the lower segments of the thoracic spinal cord (and perhaps to supraspinal levels). The present results define distinct subpopulations of neuropeptide tyrosine-sensitive neurons, localized in superficial and deep layers of the dorsal, in the ventral horns and in area X. The lamina II neurons express somatostatin [The neuropeptide Y Y1 receptor is a somatic receptor on dorsal root ganglion neurons and a postsynaptic receptor on somatostatin dorsal horn neurons. Eur J Neurosci 11:2211-2225] and are presumably glutamatergic [Todd AJ, Hughes DI, Polgar E, Nagy GG, Mackie M, Ottersen OP, Maxwell DJ (2003) The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci 17:13-27], that is they are excitatory interneurons under a Y1 receptor-mediated inhibitory influence. The remaining Y1 receptor-positive spinal neurons need to be phenotyped, for example if the large Y1 receptor-positive laminae III-IV neurons (Type 5) are identical to the neurokinin (NK)1R-positive neurons previously shown to receive neuropeptide tyrosine positive dendritic contacts [Polgár E, Shehab SA, Watt C, Todd AJ (1999) GABAergic neurons that contain neuropeptide Y selectively target cells with the NK1 receptor in laminae III and IV of the rat spinal cord. J Neurosci 19:2637-2646]. If so, neuropeptide tyrosine could have an antinociceptive action not only via Y1 receptor-positive interneurons (Type 1) but also projection neurons. The present results show neuropeptide tyrosine-sensitive neuron populations virtually in all parts of the lumbar spinal cord, suggesting a role for neuropeptide tyrosine signaling in many spinal functions, including pain.
Collapse
Affiliation(s)
- P Brumovsky
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, B2:5, S-171 77 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
32
|
Holliday ND, Lam CW, Tough IR, Cox HM. Role of the C terminus in neuropeptide Y Y1 receptor desensitization and internalization. Mol Pharmacol 2005; 67:655-64. [PMID: 15576634 DOI: 10.1124/mol.104.006114] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have studied truncation mutants of the rat neuropeptide Y (NPY) Y1 receptor lacking four (Thr361stop, Y1T361*) or eight (Ser352stop, Y1S352*) potential serine/threonine C-terminal phosphorylation sites. NPY-stimulated hemagglutinin-tagged Y1, Y1T361*, and Y1S352* receptors all efficiently activated G proteins in Chinese hamster ovary (CHO) cell membranes, but desensitization after NPY pretreatment was only prevented in the HAY1S352* clone. In transfected colonic carcinoma epithelial layers, functional Y1 and Y1T361* peptide YY responses became more transient as the agonist concentration increased, whereas those mediated by the Y1S352* receptor remained sustained. NPY-stimulated HAY1 receptor phosphorylation was increased by transient overexpression of G protein-coupled receptor kinase 2, and only Ser352stop truncation abolished this response in CHO or human embryonic kidney (HEK) 293 cells. Rapid internalization of cell-surface HAY1 receptors in HEK293 cells was observed in response to agonist, resulting in partial colocalization with transferrin, a marker for clathrin-mediated endocytosis and recycling. It is surprising that both truncated receptors were constitutively internalized, predominantly in transferrin-positive compartments. NPY increased cell-surface localization of HAY1S352* receptors, whereas the distribution of both mutants was unaltered by BIBO3304. Recruitment of green fluorescent protein-tagged beta-arrestin2 to punctate endosomes was observed only for HAY1 and HAY1T361* receptors and solely under NPY-stimulated conditions. Thus, the key C-terminal sequence between Ser352 and Lys360 is a major site for Y1 receptor phosphorylation, is critical for its desensitization, and contributes to the association between the receptor and beta-arrestin proteins. However, additional beta-arrestin-independent mechanisms control Y1 receptor trafficking under basal conditions.
Collapse
Affiliation(s)
- Nicholas D Holliday
- Wolfson Centre for Age-Relatated Diseases, King's College London, Guy's Campus, 19 Newcomen Street, London Bridge, London SE1 1UL, UK.
| | | | | | | |
Collapse
|
33
|
Brumovsky P, Stanic D, Shuster S, Herzog H, Villar M, Hökfelt T. Neuropeptide Y2 receptor protein is present in peptidergic and nonpeptidergic primary sensory neurons of the mouse. J Comp Neurol 2005; 489:328-48. [PMID: 16025447 DOI: 10.1002/cne.20639] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The localization of the neuropeptide tyrosine (NPY) Y2 receptor (Y2R) protein was studied in mouse dorsal root ganglia (DRGs) and spinal cord, by using a recently developed rabbit anti-Y2R antibody and a sensitive immunohistochemical method. Y2R-like immunoreactivity (-LI) was observed in about 10% of the small/medium-sized lumbar DRG neurons. Among these, about 44% were calcitonin gene-related peptide-immunoreactive, and about 38% bound isolectin B4. In the dorsal horn of the spinal cord, an intense Y2R-LI was seen in the most superficial layers, mostly restricted to laminae I-II. This immunoreactivity was completely abolished by dorsal rhizotomy. Y2R-L1 was also detected on the skin, more abundantly in hairy than glabrous skin. Specificity experiments showed complete disappearance of the Y2R-LI described above after incubation with antibody preadsorbed with the immunogenic peptide. Furthermore, Y2R-LI was also absent in a Y2R knockout mouse. These results demonstrate that the NPY Y2R is associated mainly with both peptidergic and nonpeptidergic small, presumably nociceptive, neurons projecting to the superficial layers of the dorsal horn. The results also support a role for this receptor and NPY in pain mechanisms.
Collapse
Affiliation(s)
- Pablo Brumovsky
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|