1
|
Tonon MC, Vaudry H, Chuquet J, Guillebaud F, Fan J, Masmoudi-Kouki O, Vaudry D, Lanfray D, Morin F, Prevot V, Papadopoulos V, Troadec JD, Leprince J. Endozepines and their receptors: Structure, functions and pathophysiological significance. Pharmacol Ther 2020; 208:107386. [DOI: 10.1016/j.pharmthera.2019.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
|
2
|
Detection, characterization and biological activities of [bisphospho-thr3,9]ODN, an endogenous molecular form of ODN released by astrocytes. Neuroscience 2015; 290:472-84. [PMID: 25639232 DOI: 10.1016/j.neuroscience.2015.01.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 11/23/2022]
Abstract
Astrocytes synthesize and release endozepines, a family of regulatory neuropeptides, including diazepam-binding inhibitor (DBI) and its processing fragments such as the octadecaneuropeptide (ODN). At the molecular level, ODN interacts with two types of receptors, i.e. it acts as an inverse agonist of the central-type benzodiazepine receptor (CBR), and as an agonist of a G protein-coupled receptor (GPCR). ODN exerts a wide range of biological effects mediated through these two receptors and, in particular, it regulates astrocyte activity through an autocrine/paracrine mechanism involving the metabotropic receptor. More recently, it has been shown that Müller glial cells secrete phosphorylated DBI and that bisphosphorylated ODN ([bisphospho-Thr(3,9)]ODN, bpODN) has a stronger affinity for CBR than ODN. The aim of the present study was thus to investigate whether bpODN is released by mouse cortical astrocytes and to compare its potency to ODN. Using a radioimmunoassay and mass spectrometry analysis we have shown that bpODN as well as ODN were released in cultured astrocyte supernatants. Both bpODN and ODN increased astrocyte calcium event frequency but in a very different range of concentration. Indeed, ODN stimulatory effect decreased at concentrations over 10(-10)M whereas bpODN increased the calcium event frequency at similar doses. In vivo effects of bpODN and ODN were analyzed in two behavioral paradigms involving either the metabotropic receptor (anorexia) or the CBR (anxiety). As previously described, ODN (100ng, icv) induced a significant reduction of food intake. Similar effect was achieved with bpODN but at a 10 times higher dose (1000 ng, icv). Similarly, and contrasting with our hypothesis, bpODN was also 10 times less potent than ODN to induce anxiety-related behavior in the elevated zero maze test. Thus, the present data do not support that phosphorylation of ODN is involved in receptor selectivity but indicate that it rather weakens ODN activity.
Collapse
|
3
|
Hamdi Y, Kaddour H, Vaudry D, Douiri S, Bahdoudi S, Leprince J, Castel H, Vaudry H, Amri M, Tonon MC, Masmoudi-Kouki O. The stimulatory effect of the octadecaneuropeptide ODN on astroglial antioxidant enzyme systems is mediated through a GPCR. Front Endocrinol (Lausanne) 2012; 3:138. [PMID: 23181054 PMCID: PMC3502939 DOI: 10.3389/fendo.2012.00138] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Astroglial cells possess an array of cellular defense systems, including superoxide dismutase (SOD) and catalase antioxidant enzymes, to prevent damage caused by oxidative stress on the central nervous system. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides including the octadecaneuropeptide (ODN). ODN is the ligand of both central-type benzodiazepine receptors (CBR), and an adenylyl cyclase- and phospholipase C-coupled receptor. We have recently shown that ODN is a potent protective agent that prevents hydrogen peroxide (H(2)O(2))-induced inhibition of SOD and catalase activities and stimulation of cell apoptosis in astrocytes. The purpose of the present study was to investigate the type of receptor involved in ODN-induced inhibition of SOD and catalase in cultured rat astrocytes. We found that ODN induced a rapid stimulation of SOD and catalase gene transcription in a concentration-dependent manner. In addition, 0.1 nM ODN blocked H(2)O(2)-evoked reduction of both mRNA levels and activities of SOD and catalase. Furthermore, the inhibitory actions of ODN on the deleterious effects of H(2)O(2) on SOD and catalase were abrogated by the metabotropic ODN receptor antagonist cyclo(1-8)[Dleu(5)]OP, but not by the CBR antagonist flumazenil. Finally, the protective action of ODN against H(2)O(2)-evoked inhibition of endogenous antioxidant systems in astrocytes was protein kinase A (PKA)-dependent, but protein kinase C-independent. Taken together, these data demonstrate for the first time that ODN, acting through its metabotropic receptor coupled to the PKA pathway, prevents oxidative stress-induced alteration of antioxidant enzyme expression and activities. The peptide ODN is thus a potential candidate for the development of specific agonists that would selectively mimic its protective activity.
Collapse
Affiliation(s)
- Yosra Hamdi
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El ManarTunis, Tunisia
| | - Hadhemi Kaddour
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El ManarTunis, Tunisia
| | - David Vaudry
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Regional Platform for Cell Imaging of Haute-Normandie, Institute for Medical Research and Innovation, University of RouenMont-Saint-Aignan, France
| | - Salma Douiri
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El ManarTunis, Tunisia
| | - Seyma Bahdoudi
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El ManarTunis, Tunisia
| | - Jérôme Leprince
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El ManarTunis, Tunisia
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
| | - Hélène Castel
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El ManarTunis, Tunisia
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of RouenMont-Saint-Aignan, France
| | - Hubert Vaudry
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El ManarTunis, Tunisia
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- *Correspondence: Mohamed Amri, Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia. e-mail: ; Hubert Vaudry, Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, International Associated Laboratory Samuel de Champlain, Regional Platform for Cell Imaging of Haute-Normandie, Institute for Medical Research and Innovation, University of Rouen, 76821 Mont-Saint-Aignan, France. e-mail:
| | - Mohamed Amri
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El ManarTunis, Tunisia
- *Correspondence: Mohamed Amri, Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia. e-mail: ; Hubert Vaudry, Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, International Associated Laboratory Samuel de Champlain, Regional Platform for Cell Imaging of Haute-Normandie, Institute for Medical Research and Innovation, University of Rouen, 76821 Mont-Saint-Aignan, France. e-mail:
| | - Marie-Christine Tonon
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El ManarTunis, Tunisia
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of RouenMont-Saint-Aignan, France
| | - Olfa Masmoudi-Kouki
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El ManarTunis, Tunisia
| |
Collapse
|
4
|
Masmoudi-Kouki O, Gandolfo P, Castel H, Leprince J, Fournier A, Dejda A, Vaudry H, Tonon MC. Role of PACAP and VIP in astroglial functions. Peptides 2007; 28:1753-60. [PMID: 17655978 DOI: 10.1016/j.peptides.2007.05.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/22/2007] [Accepted: 05/24/2007] [Indexed: 11/30/2022]
Abstract
Astrocytes represent at least 50% of the volume of the human brain. Besides their roles in various supportive functions, astrocytes are involved in the regulation of stem cell proliferation, synaptic plasticity and neuroprotection. Astrocytes also influence neuronal physiology by responding to neurotransmitters and neuropeptides and by releasing regulatory factors termed gliotransmitters. In particular, astrocytes express the PACAP-specific receptor PAC1-R and the PACAP/VIP mutual receptors VPAC1-R and VPAC2-R during development and/or in the adult. There is now clear evidence that PACAP and VIP modulate a number of astrocyte activities such as proliferation, plasticity, glycogen production, and biosynthesis of neurotrophic factors and gliotransmitters.
Collapse
Affiliation(s)
- Olfa Masmoudi-Kouki
- INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, France
| | | | | | | | | | | | | | | |
Collapse
|
5
|
do Rego JC, Orta MH, Leprince J, Tonon MC, Vaudry H, Costentin J. Pharmacological characterization of the receptor mediating the anorexigenic action of the octadecaneuropeptide: evidence for an endozepinergic tone regulating food intake. Neuropsychopharmacology 2007; 32:1641-8. [PMID: 17151595 DOI: 10.1038/sj.npp.1301280] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptides of the endozepine family, including diazepam-binding inhibitor, the triakontatetraneuropeptide, and the octadecaneuropeptide (ODN), act through three types of receptors, that is, central-type benzodiazepine receptors (CBR), peripheral-type (mitochondrial) benzodiazepine receptors (PBR) and a metabotropic receptor positively coupled to phospholipase C via a pertussis toxin-sensitive G protein. We have previously reported that ODN exerts a potent anorexigenic effect in rat and we have found that the action of ODN is not affected by the mixed CBR/PBR agonist diazepam. In the present report, we have tested the possible involvement of the metabotropic receptor in the anorexigenic activity of ODN. Intracerebroventricular administration of the C-terminal octapeptide (OP) and its head-to-tail cyclic analog cyclo(1-8)OP (cOP) at a dose of 100 ng mimicked the inhibitory effect of ODN on food intake in food-deprived mice. The specific CBR antagonist flumazenil and the PBR antagonist PK11195 did not prevent the effect of ODN, OP, and cOP on food consumption. In contrast, the selective metabotropic endozepine receptor antagonist cyclo(1-8)[DLeu(5)]OP (100-1000 ng; cDLOP) suppressed the anorexigenic effect of ODN, OP, and cOP. At the highest concentration tested (1000 ng), cDLOP provoked by itself a significant increase in food intake. Taken together, the present results indicate that the anorexigenic effect of ODN and OP is mediated through activation of the metabotropic receptor recently characterized in astrocytes. The data also suggest that endogenous ODN, acting via this receptor, exerts an inhibitory tone on feeding behavior.
Collapse
Affiliation(s)
- Jean-Claude do Rego
- CNRS FRE 2735, Laboratory of Experimental Neuropsychopharmacology, European Institute for Peptide Research IFRMP 23, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France.
| | | | | | | | | | | |
Collapse
|
6
|
Compère V, Ouellet J, Luu-The V, Dureuil B, Tonon MC, Vaudry H, Labrie F, Pelletier G. Role of androgens and glucocorticoids in the regulation of diazepam-binding inhibitor mRNA levels in male mouse hypothalamus. Brain Res 2006; 1119:50-7. [PMID: 16963002 DOI: 10.1016/j.brainres.2006.08.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 08/11/2006] [Accepted: 08/12/2006] [Indexed: 10/24/2022]
Abstract
In peripheral organs, gonadal and adrenal steroids regulate diazepam-binding inhibitor (DBI) mRNA expression. In order to further investigate the involvement of peripheral steroid hormones in the modulation of brain DBI mRNA expression, we studied by semiquantitative in situ hybridization the effect of adrenalectomy (ADX) and castration (CX) and short-term replacement therapy on DBI mRNA levels in the male mouse hypothalamus. Cells expressing DBI mRNA were mostly observed in the arcuate nucleus, the median eminence and the ependyma bordering the third ventricle. In the median eminence and the ependyma bordering the third ventricule, the DBI gene expression was decreased in ADX rats and a single injection of corticosterone to ADX rats induced a significant increase in DBI gene expression at 3 and 12 h time intervals without completely restoring the basal DBI mRNA expression observed in intact mice. In the arcuate nucleus, ADX and corticosterone administration did not modify DBI mRNA expression. CX down-regulated DBI gene expression in the ependyma bordering the third ventricle. The administration of dihydrotestosterone (3-24 h) completely reversed the inhibitory effect of CX. In the median eminence and arcuate nucleus, neither CX or dihydrotestosterone administration modified DBI mRNA levels. These results suggest that the effects of glucocorticoids on the hypothalamo-pituitary-adrenocortical axis and androgens on the hypothalamo-pituitary-gonadal axis are mediated by DBI.
Collapse
Affiliation(s)
- V Compère
- European Institute for Peptide Research (IFRMP 23), Laboratory of Cellular and Molecular Neuroendocrinology, INSERM U413, UA CNRS, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Leprince J, Cosquer D, Bellemère G, Chatenet D, Tollemer H, Jégou S, Tonon MC, Vaudry H. Catabolism of the octadecaneuropeptide ODN by prolyl endopeptidase: identification of an unusual cleavage site. Peptides 2006; 27:1561-9. [PMID: 16406204 DOI: 10.1016/j.peptides.2005.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
The octadecaneuropeptide ODN (QATVGDVNTDRPGLLDLK), a biologically active fragment of diazepam-binding inhibitor, exerts a number of behavioral and neurophysiological activities. The presence of a proline residue in the sequence of ODN led us to investigate the role of proline endopeptidase (PEP) in the catabolism of this neuropeptide. The effect of PEP on the breakdown of ODN and related analogs was studied by combining RP-HPLC analysis and MALDI-TOF MS characterization. Incubation of ODN with PEP generated two products, i.e. ODN3-18 and ODN5-18 which resulted from cleavage of the Ala-Thr and Val-Gly peptide bonds. S 17092, a specific PEP inhibitor, significantly reduced the PEP-induced cleavages of ODN. Similarly, [Ala2]OP showed S 17092-sensitive post-alanine cleavage, while [pGlu1]ODN and OP (ODN11-18) were not catabolized by the enzyme. For all these peptides, cleavage of the Pro-Gly peptide bond by PEP was never observed, even after prolonged incubation times. In contrast, PEP hydrolyzed human urotensin II at the canonical post-proline site. Collectively, these data suggest that the Ala2 residue is the preferential cleavage site of ODN and that the Pro-Gly bond of ODN is not hydrolyzed by PEP. In addition, this study reveals for the first time that the endoproteolytic activity of PEP can specifically take place after a valine moiety.
Collapse
Affiliation(s)
- Jérôme Leprince
- INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP 23), University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Compère V, Li S, Leprince J, Tonon MC, Vaudry H, Pelletier G. In vivo action of a new octadecaneuropeptide antagonist on neuropeptide Y and corticotropin-releasing hormone mRNA levels in rat. ACTA ACUST UNITED AC 2005; 141:156-60. [PMID: 16154662 DOI: 10.1016/j.molbrainres.2005.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 08/09/2005] [Accepted: 08/17/2005] [Indexed: 11/26/2022]
Abstract
It has been reported that several of the effects induced by an octadecaneuropeptide (ODN), derived from an 86-amino-acid polypeptide termed diazepam-binding inhibitor, could be mediated by activation of a metabotropic receptor. In order to investigate the role and mechanism of action of ODN in the regulation of corticotropin-releasing factor (CRH) and neuropeptide Y (NPY) expression in the paraventricular nucleus and arcuate nucleus, respectively, we studied the effects of the acute intracerebroventricular administration of ODN (2 microg/rat) and the ODN antagonist to metabotropic receptor, cyclo(1-8)[Dleu5]OP (20 microg/rat), on the gene expression of the two neuropeptides in castrated male rat. ODN administration resulted in a 45% increase in CRH mRNA expression, an effect which was reversed by cyclo(1-8)[Dleu5]OP. When cyclo(1-8)[Dleu5]OP was administered alone, it induced a 19% decrease in CRH mRNA levels. ODN administration induced a 17% decrease in NPY mRNA expression while cyclo(1-8)[Dleu5]OP increased by 21% the hybridization signal. The administration of both ODN and ODN antagonist completely abolished the depressing effect of ODN on NPY mRNA. These data suggest that the effects of ODN on CRH and NPY mRNA might be mediated by interaction with metabotropic receptors. Moreover, since cyclo(1-8)[Dleu5]OP can by itself influence the expression of two peptide mRNAs, it might be suggested that ODN is exerting a tonic influence on NPY and CRH neurons.
Collapse
Affiliation(s)
- V Compère
- European Institute for Peptide Research (IFRMP 23), Laboratory of Cellular and Molecular Neuroendocrinology, INSERM U413, UA CNRS, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | |
Collapse
|