1
|
Lee CH, Juan CH, Chen HH, Hong JP, Liao TW, French I, Lo YS, Wang YR, Cheng ML, Wu HC, Chen CM, Chang KH. Long-Range Temporal Correlations in Electroencephalography for Parkinson's Disease Progression. Mov Disord 2025; 40:266-275. [PMID: 39663783 DOI: 10.1002/mds.30074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/15/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Patients with Parkinson's disease (PD) present progressive deterioration in both motor and non-motor manifestations. However, the absence of clinical biomarkers for disease progression hinders clinicians from tailoring treatment strategies effectively. OBJECTIVES To identify electroencephalography (EEG) biomarker that can track disease progression in PD. METHODS A total of 116 patients with PD were initially enrolled, whereas 63 completed 2-year follow-up evaluation. Fifty-eight age- and sex-matched healthy individuals were recruited as the control group. All participants underwent EEG and clinical assessments. Long-range temporal correlations (LRTC) of EEG data were analyzed using the detrended fluctuation analysis. RESULTS Patients with PD exhibited higher LRTC in left parietal θ oscillations (P = 0.0175) and lower LRTC in centro-parietal γ oscillations (P = 0.0258) compared to controls. LRTC in parietal γ oscillations inversely correlated with changes in Unified Parkinson's Disease Rating Scale (UPDRS) part III scores over 2 years (Spearman ρ = -0.34, P = 0.0082). Increased LRTC in left parietal θ oscillations were associated with rapid motor progression (P = 0.0107), defined as an annual increase in UPDRS part III score ≥3. In cognitive assessments, LRTC in parieto-occipital α oscillations exhibited a positive correlation with changes in Mini-Mental State Examination and Montreal Cognitive Assessment scores over 2 years (Spearman ρ = 0.27-0.38, P = 0.0037-0.0452). CONCLUSIONS LRTC patterns in EEG potentially predict rapid progression of both motor and non-motor manifestations in PD patients, enhancing clinical assessment and understanding of the disease. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Chih-Hong Lee
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan, Taiwan
| | - Hsiang-Han Chen
- Department of Computer Science and Information Engineering, National Taiwan Normal University, Taipei, Taiwan
| | - Jia-Pei Hong
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ting-Wei Liao
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Isobel French
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan, Taiwan
| | - Yen-Shi Lo
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Ru Wang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Clinical Phenome Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsiu-Chuan Wu
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
2
|
McGregor JN, Farris CA, Ensley S, Schneider A, Fosque LJ, Wang C, Tilden EI, Liu Y, Tu J, Elmore H, Ronayne KD, Wessel R, Dyer EL, Bhaskaran-Nair K, Holtzman DM, Hengen KB. Failure in a population: Tauopathy disrupts homeostatic set-points in emergent dynamics despite stability in the constituent neurons. Neuron 2024; 112:3567-3584.e5. [PMID: 39241778 PMCID: PMC11560743 DOI: 10.1016/j.neuron.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024]
Abstract
Homeostatic regulation of neuronal activity is essential for robust computation; set-points, such as firing rate, are actively stabilized to compensate for perturbations. The disruption of brain function central to neurodegenerative disease likely arises from impairments of computationally essential set-points. Here, we systematically investigated the effects of tau-mediated neurodegeneration on all known set-points in neuronal activity. We continuously tracked hippocampal neuronal activity across the lifetime of a mouse model of tauopathy. We were unable to detect effects of disease in measures of single-neuron firing activity. By contrast, as tauopathy progressed, there was disruption of network-level neuronal activity, quantified by measuring neuronal pairwise interactions and criticality, a homeostatically controlled, ideal computational regime. Deviations in criticality correlated with symptoms, predicted underlying anatomical pathology, occurred in a sleep-wake-dependent manner, and could be used to reliably classify an animal's genotype. This work illustrates how neurodegeneration may disrupt the computational capacity of neurobiological systems.
Collapse
Affiliation(s)
- James N McGregor
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Clayton A Farris
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Sahara Ensley
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Aidan Schneider
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Leandro J Fosque
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Chao Wang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in Saint Louis, St. Louis, MO, USA; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing 400016, China
| | - Elizabeth I Tilden
- Department of Neuroscience, Washington University in Saint Louis, St. Louis, MO, USA
| | - Yuqi Liu
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Jianhong Tu
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Halla Elmore
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Keenan D Ronayne
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Ralf Wessel
- Department of Physics, Washington University in Saint Louis, St. Louis, MO, USA
| | - Eva L Dyer
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in Saint Louis, St. Louis, MO, USA
| | - Keith B Hengen
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
3
|
Shi LJ, Li CC, Zhang XT, Lin YC, Wang YP, Zhang JC. Application of HFO and scaling analysis of neuronal oscillations in the presurgical evaluation of focal epilepsy. Brain Res Bull 2024; 215:111018. [PMID: 38908759 DOI: 10.1016/j.brainresbull.2024.111018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
PURPOSE To explore the utility of high frequency oscillations (HFO) and long-range temporal correlations (LRTCs) in preoperative assessment of epilepsy. METHODS MEG ripples were detected in 59 drug-resistant epilepsy patients, comprising 5 with parietal lobe epilepsy (PLE), 21 with frontal lobe epilepsy (FLE), 14 with lateral temporal lobe epilepsy (LTLE), and 19 with mesial temporal lobe epilepsy (MTLE) to identify the epileptogenic zone (EZ). The results were compared with clinical MEG reports and resection area. Subsequently, LRTCs were quantified at the source-level by detrended fluctuation analysis (DFA) and life/waiting -time at 5 bands for 90 cerebral cortex regions. The brain regions with larger DFA exponents and standardized life-waiting biomarkers were compared with the resection results. RESULTS Compared to MEG sensor-level data, ripple sources were more frequently localized within the resection area. Moreover, source-level analysis revealed a higher proportion of DFA exponents and life-waiting biomarkers with relatively higher rankings, primarily distributed within the resection area (p<0.01). Moreover, these two LRCT indices across five distinct frequency bands correlated with EZ. CONCLUSION HFO and source-level LRTCs are correlated with EZ. Integrating HFO and LRTCs may be an effective approach for presurgical evaluation of epilepsy.
Collapse
Affiliation(s)
- Li-Juan Shi
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Can-Cheng Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Xia-Ting Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Brain Functional Disease and Neuromodulation of Beijing Key Laboratory, Beijing 100053, China
| | - Yi-Cong Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Brain Functional Disease and Neuromodulation of Beijing Key Laboratory, Beijing 100053, China
| | - Yu-Ping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Brain Functional Disease and Neuromodulation of Beijing Key Laboratory, Beijing 100053, China.
| | - Ji-Cong Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China; Hefei Innovation Research Institute, Beihang University, Hefei, Anhui, China.
| |
Collapse
|
4
|
Rajaraman RR, Smith RJ, Oana S, Daida A, Shrey DW, Nariai H, Lopour BA, Hussain SA. Computational EEG attributes predict response to therapy for epileptic spasms. Clin Neurophysiol 2024; 163:39-46. [PMID: 38703698 DOI: 10.1016/j.clinph.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE We set out to evaluate whether response to treatment for epileptic spasms is associated with specific candidate computational EEG biomarkers, independent of clinical attributes. METHODS We identified 50 children with epileptic spasms, with pre- and post-treatment overnight video-EEG. After EEG samples were preprocessed in an automated fashion to remove artifacts, we calculated amplitude, power spectrum, functional connectivity, entropy, and long-range temporal correlations (LRTCs). To evaluate the extent to which each feature is independently associated with response and relapse, we conducted logistic and proportional hazards regression, respectively. RESULTS After statistical adjustment for the duration of epileptic spasms prior to treatment, we observed an association between response and stronger baseline and post-treatment LRTCs (P = 0.042 and P = 0.004, respectively), and higher post-treatment entropy (P = 0.003). On an exploratory basis, freedom from relapse was associated with stronger post-treatment LRTCs (P = 0.006) and higher post-treatment entropy (P = 0.044). CONCLUSION This study suggests that multiple EEG features-especially LRTCs and entropy-may predict response and relapse. SIGNIFICANCE This study represents a step toward a more precise approach to measure and predict response to treatment for epileptic spasms.
Collapse
Affiliation(s)
- Rajsekar R Rajaraman
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital and University of California, Los Angeles, Los Angeles, CA, USA
| | - Rachel J Smith
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shingo Oana
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital and University of California, Los Angeles, Los Angeles, CA, USA
| | - Atsuro Daida
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital and University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel W Shrey
- Division of Pediatric Neurology, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Children's Hospital of Orange County, Orange, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital and University of California, Los Angeles, Los Angeles, CA, USA
| | - Beth A Lopour
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Shaun A Hussain
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital and University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Sysoeva O, Maximenko V, Kuc A, Voinova V, Martynova O, Hramov A. Abnormal spectral and scale-free properties of resting-state EEG in girls with Rett syndrome. Sci Rep 2023; 13:12932. [PMID: 37558701 PMCID: PMC10412611 DOI: 10.1038/s41598-023-39398-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
Spontaneous EEG contains important information about neuronal network properties that is valuable for understanding different neurological and psychiatric conditions. Rett syndrome (RTT) is a rare neurodevelopmental disorder, caused by mutation in the MECP2 gene. RTT is characterized by severe motor impairments that prevent adequate assessment of cognitive functions. Here we probe EEG parameters obtained in no visual input condition from a 28-channels system in 23 patients with Rett Syndrome and 38 their typically developing peers aged 3-17 years old. Confirming previous results, RTT showed a fronto-central theta power (4-6.25 Hz) increase that correlates with a progression of the disease. Alpha power (6.75-11.75 Hz) across multiple regions was, on the contrary, decreased in RTT, also corresponding to general background slowing reported previously. Among novel results we found an increase in gamma power (31-39.5 Hz) across frontal, central and temporal electrodes, suggesting elevated excitation/inhibition ratio. Long-range temporal correlation measured by detrended fluctuation analysis within 6-13 Hz was also increased, pointing to a more predictable oscillation pattern in RTT. Overall measured EEG parameters allow to differentiate groups with high accuracy, ROC AUC value of 0.92 ± 0.08, indicating clinical relevance.
Collapse
Affiliation(s)
- Olga Sysoeva
- Center for Cognitive Sciences, Sirius University of Science and Technology, Sochi, Russia, 354340.
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova St. 5a, Moscow, Russia, 117485.
| | - Vladimir Maximenko
- Artificial Intelligence and Neurotechnology Lab, Privolzhsky Research Medical University, Nizhny Novgorod, Russia, 603950
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, A. Nevskogo Str., Kaliningrad, Russia, 236016
| | - Alexander Kuc
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, A. Nevskogo Str., Kaliningrad, Russia, 236016
| | - Victoria Voinova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov, Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia, 125412
- Mental Health Research Center, Moscow, Russia, 117152
| | - Olga Martynova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova St. 5a, Moscow, Russia, 117485
| | - Alexander Hramov
- Artificial Intelligence and Neurotechnology Lab, Privolzhsky Research Medical University, Nizhny Novgorod, Russia, 603950
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, A. Nevskogo Str., Kaliningrad, Russia, 236016
| |
Collapse
|
6
|
Fuscà M, Siebenhühner F, Wang SH, Myrov V, Arnulfo G, Nobili L, Palva JM, Palva S. Brain criticality predicts individual levels of inter-areal synchronization in human electrophysiological data. Nat Commun 2023; 14:4736. [PMID: 37550300 PMCID: PMC10406818 DOI: 10.1038/s41467-023-40056-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023] Open
Abstract
Neuronal oscillations and their synchronization between brain areas are fundamental for healthy brain function. Yet, synchronization levels exhibit large inter-individual variability that is associated with behavioral variability. We test whether individual synchronization levels are predicted by individual brain states along an extended regime of critical-like dynamics - the Griffiths phase (GP). We use computational modelling to assess how synchronization is dependent on brain criticality indexed by long-range temporal correlations (LRTCs). We analyze LRTCs and synchronization of oscillations from resting-state magnetoencephalography and stereo-electroencephalography data. Synchronization and LRTCs are both positively linearly and quadratically correlated among healthy subjects, while in epileptogenic areas they are negatively linearly correlated. These results show that variability in synchronization levels is explained by the individual position along the GP with healthy brain areas operating in its subcritical and epileptogenic areas in its supercritical side. We suggest that the GP is fundamental for brain function allowing individual variability while retaining functional advantages of criticality.
Collapse
Affiliation(s)
- Marco Fuscà
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Felix Siebenhühner
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki, Aalto University, and Helsinki University Hospital, Helsinki, Finland
| | - Sheng H Wang
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- CEA, NeuroSpin, Gif-sur-Yvette, France
- MIND team, Inria, Université Paris-Saclay, Bures-sur-Yvette, France
| | - Vladislav Myrov
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Gabriele Arnulfo
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Dept. of Informatics, Bioengineering, Robotics and System engineering, University of Genoa, Genoa, Italy
| | - Lino Nobili
- Child Neuropsychiatry Unit, IRCCS, Istituto G. Gaslini, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- "Claudio Munari" Epilepsy Surgery Centre, Niguarda Hospital, Milan, Italy
| | - J Matias Palva
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Satu Palva
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK.
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Gervais C, Boucher LP, Villar GM, Lee U, Duclos C. A scoping review for building a criticality-based conceptual framework of altered states of consciousness. Front Syst Neurosci 2023; 17:1085902. [PMID: 37304151 PMCID: PMC10248073 DOI: 10.3389/fnsys.2023.1085902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
The healthy conscious brain is thought to operate near a critical state, reflecting optimal information processing and high susceptibility to external stimuli. Conversely, deviations from the critical state are hypothesized to give rise to altered states of consciousness (ASC). Measures of criticality could therefore be an effective way of establishing the conscious state of an individual. Furthermore, characterizing the direction of a deviation from criticality may enable the development of treatment strategies for pathological ASC. The aim of this scoping review is to assess the current evidence supporting the criticality hypothesis, and the use of criticality as a conceptual framework for ASC. Using the PRISMA guidelines, Web of Science and PubMed were searched from inception to February 7th 2022 to find articles relating to measures of criticality across ASC. N = 427 independent papers were initially found on the subject. N = 378 were excluded because they were either: not related to criticality; not related to consciousness; not presenting results from a primary study; presenting model data. N = 49 independent papers were included in the present research, separated in 7 sub-categories of ASC: disorders of consciousness (DOC) (n = 5); sleep (n = 13); anesthesia (n = 18); epilepsy (n = 12); psychedelics and shamanic state of consciousness (n = 4); delirium (n = 1); meditative state (n = 2). Each category included articles suggesting a deviation of the critical state. While most studies were only able to identify a deviation from criticality without being certain of its direction, the preliminary consensus arising from the literature is that non-rapid eye movement (NREM) sleep reflects a subcritical state, epileptic seizures reflect a supercritical state, and psychedelics are closer to the critical state than normal consciousness. This scoping review suggests that, though the literature is limited and methodologically inhomogeneous, ASC are characterized by a deviation from criticality, though its direction is not clearly reported in a majority of studies. Criticality could become, with more extensive research, an effective and objective way to characterize ASC, and help identify therapeutic avenues to improve criticality in pathological brain states. Furthermore, we suggest how anesthesia and psychedelics could potentially be used as neuromodulation techniques to restore criticality in DOC.
Collapse
Affiliation(s)
- Charles Gervais
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
| | - Louis-Philippe Boucher
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Guillermo Martinez Villar
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Biomedical Sciences, Université de Montréal, Montréal, QC, Canada
| | - UnCheol Lee
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Catherine Duclos
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Montréal, QC, Canada
- CIFAR Azrieli Global Scholars Program, Toronto, ON, Canada
| |
Collapse
|
8
|
Houtman SJ, Lammertse HCA, van Berkel AA, Balagura G, Gardella E, Ramautar JR, Reale C, Møller RS, Zara F, Striano P, Misra-Isrie M, van Haelst MM, Engelen M, van Zuijen TL, Mansvelder HD, Verhage M, Bruining H, Linkenkaer-Hansen K. STXBP1 Syndrome Is Characterized by Inhibition-Dominated Dynamics of Resting-State EEG. Front Physiol 2022; 12:775172. [PMID: 35002760 PMCID: PMC8733612 DOI: 10.3389/fphys.2021.775172] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
STXBP1 syndrome is a rare neurodevelopmental disorder caused by heterozygous variants in the STXBP1 gene and is characterized by psychomotor delay, early-onset developmental delay, and epileptic encephalopathy. Pathogenic STXBP1 variants are thought to alter excitation-inhibition (E/I) balance at the synaptic level, which could impact neuronal network dynamics; however, this has not been investigated yet. Here, we present the first EEG study of patients with STXBP1 syndrome to quantify the impact of the synaptic E/I dysregulation on ongoing brain activity. We used high-frequency-resolution analyses of classical and recently developed methods known to be sensitive to E/I balance. EEG was recorded during eyes-open rest in children with STXBP1 syndrome (n = 14) and age-matched typically developing children (n = 50). Brain-wide abnormalities were observed in each of the four resting-state measures assessed here: (i) slowing of activity and increased low-frequency power in the range 1.75–4.63 Hz, (ii) increased long-range temporal correlations in the 11–18 Hz range, (iii) a decrease of our recently introduced measure of functional E/I ratio in a similar frequency range (12–24 Hz), and (iv) a larger exponent of the 1/f-like aperiodic component of the power spectrum. Overall, these findings indicate that large-scale brain activity in STXBP1 syndrome exhibits inhibition-dominated dynamics, which may be compensatory to counteract local circuitry imbalances expected to shift E/I balance toward excitation, as observed in preclinical models. We argue that quantitative EEG investigations in STXBP1 and other neurodevelopmental disorders are a crucial step to understand large-scale functional consequences of synaptic E/I perturbations.
Collapse
Affiliation(s)
- Simon J Houtman
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Hanna C A Lammertse
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands.,Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
| | - Annemiek A van Berkel
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands.,Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
| | - Ganna Balagura
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands.,IRCCS Istituto Giannina Gaslini, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Member of the ERN EpiCARE
| | - Jennifer R Ramautar
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Chiara Reale
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Dianalund, Denmark.,Department of Clinical and Experimental Medicine, Epilepsy Center, University Hospital of Messina, Messina, Italy
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Member of the ERN EpiCARE
| | - Federico Zara
- IRCCS Istituto Giannina Gaslini, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Mala Misra-Isrie
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
| | | | - Marc Engelen
- Department of Pediatric Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Titia L van Zuijen
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands.,Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
| | - Hilgo Bruining
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, Netherlands.,Levvel, Center for Child and Adolescent Psychiatry, Amsterdam, Netherlands
| | - Klaus Linkenkaer-Hansen
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Smith RJ, Hu DK, Shrey DW, Rajaraman R, Hussain SA, Lopour BA. Computational characteristics of interictal EEG as objective markers of epileptic spasms. Epilepsy Res 2021; 176:106704. [PMID: 34218209 DOI: 10.1016/j.eplepsyres.2021.106704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/26/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Favorable neurodevelopmental outcomes in epileptic spasms (ES) are tied to early diagnosis and prompt treatment, but uncertainty in the identification of the disease can delay this process. Therefore, we investigated five categories of computational electroencephalographic (EEG) measures as markers of ES. METHODS We measured 1) amplitude, 2) power spectra, 3) Shannon entropy and permutation entropy, 4) long-range temporal correlations, via detrended fluctuation analysis (DFA) and 5) functional connectivity using cross-correlation and phase lag index (PLI). EEG data were analyzed from ES patients (n = 40 patients) and healthy controls (n = 20 subjects), with multiple blinded measurements during wakefulness and sleep for each patient. RESULTS In ES patients, EEG amplitude was significantly higher in all electrodes when compared to controls. Shannon and permutation entropy were lower in ES patients than control subjects. The DFA intercept values in ES patients were significantly higher than control subjects, while DFA exponent values were not significantly different between the groups. EEG functional connectivity networks in ES patients were significantly stronger than controls when based on both cross-correlation and PLI. Significance for all statistical tests was p < 0.05, adjusted for multiple comparisons using the Benjamini-Hochberg procedure as appropriate. Finally, using logistic regression, a multi-attribute classifier was derived that accurately distinguished cases from controls (area under curve of 0.96). CONCLUSIONS Computational EEG features successfully distinguish ES patients from controls in a large, blinded study. SIGNIFICANCE These objective EEG markers, in combination with other clinical factors, may speed the diagnosis and treatment of the disease, thereby improving long-term outcomes.
Collapse
Affiliation(s)
- Rachel J Smith
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| | - Derek K Hu
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| | - Daniel W Shrey
- Division of Neurology, Children's Hospital of Orange County, Orange, CA, United States; Department of Pediatrics, University of California, Irvine, CA, United States
| | - Rajsekar Rajaraman
- Division of Pediatric Neurology, University of California, Los Angeles, CA, United States
| | - Shaun A Hussain
- Division of Pediatric Neurology, University of California, Los Angeles, CA, United States
| | - Beth A Lopour
- Department of Biomedical Engineering, University of California, Irvine, CA, United States.
| |
Collapse
|
10
|
Lombardi F, Shriki O, Herrmann HJ, de Arcangelis L. Long-range temporal correlations in the broadband resting state activity of the human brain revealed by neuronal avalanches. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.05.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
EEG microstate in obstructive sleep apnea patients. Sci Rep 2021; 11:17178. [PMID: 34433839 PMCID: PMC8387348 DOI: 10.1038/s41598-021-95749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a common sleep respiratory disease. Previous studies have found that the wakefulness electroencephalogram (EEG) of OSA patients has changed, such as increased EEG power. However, whether the microstates reflecting the transient state of the brain is abnormal is unclear during obstructive hypopnea (OH). We investigated the microstates of sleep EEG in 100 OSA patients. Then correlation analysis was carried out between microstate parameters and EEG markers of sleep disturbance, such as power spectrum, sample entropy and detrended fluctuation analysis (DFA). OSA_OH patients showed that the microstate C increased presence and the microstate D decreased presence compared to OSA_withoutOH patients and controls. The fifth microstate E appeared during N1-OH, but the probability of other microstates transferring to microstate E was small. According to the correlation analysis, OSA_OH patients in N1-OH showed that the microstate D was positively correlated with delta power, and negatively correlated with beta and alpha power; the transition probability of the microstate B → C and E → C was positively correlated with alpha power. In other sleep stages, the microstate parameters were not correlated with power, sample entropy and FDA. We might interpret that the abnormal transition of brain active areas of OSA patients in N1-OH stage leads to abnormal microstates, which might be related to the change of alpha activity in the cortex.
Collapse
|
12
|
Wairagkar M, Hayashi Y, Nasuto SJ. Dynamics of Long-Range Temporal Correlations in Broadband EEG During Different Motor Execution and Imagery Tasks. Front Neurosci 2021; 15:660032. [PMID: 34121989 PMCID: PMC8193084 DOI: 10.3389/fnins.2021.660032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Brain activity is composed of oscillatory and broadband arrhythmic components; however, there is more focus on oscillatory sensorimotor rhythms to study movement, but temporal dynamics of broadband arrhythmic electroencephalography (EEG) remain unexplored. We have previously demonstrated that broadband arrhythmic EEG contains both short- and long-range temporal correlations that change significantly during movement. In this study, we build upon our previous work to gain a deeper understanding of these changes in the long-range temporal correlation (LRTC) in broadband EEG and contrast them with the well-known LRTC in alpha oscillation amplitude typically found in the literature. We investigate and validate changes in LRTCs during five different types of movements and motor imagery tasks using two independent EEG datasets recorded with two different paradigms-our finger tapping dataset with single self-initiated asynchronous finger taps and publicly available EEG dataset containing cued continuous movement and motor imagery of fists and feet. We quantified instantaneous changes in broadband LRTCs by detrended fluctuation analysis on single trial 2 s EEG sliding windows. The broadband LRTC increased significantly (p < 0.05) during all motor tasks as compared to the resting state. In contrast, the alpha oscillation LRTC, which had to be computed on longer stitched EEG segments, decreased significantly (p < 0.05) consistently with the literature. This suggests the complementarity of underlying fast and slow neuronal scale-free dynamics during movement and motor imagery. The single trial broadband LRTC gave high average binary classification accuracy in the range of 70.54±10.03% to 76.07±6.40% for all motor execution and imagery tasks and hence can be used in brain-computer interface (BCI). Thus, we demonstrate generalizability, robustness, and reproducibility of novel motor neural correlate, the single trial broadband LRTC, during different motor execution and imagery tasks in single asynchronous and cued continuous motor-BCI paradigms and its contrasting behavior with LRTC in alpha oscillation amplitude.
Collapse
Affiliation(s)
- Maitreyee Wairagkar
- Brain Embodiment Laboratory, Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom
- Biomechatronics Laboratory, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
- Care Research and Technology Centre, The UK Dementia Research Institute (UK DRI), London, United Kingdom
| | - Yoshikatsu Hayashi
- Brain Embodiment Laboratory, Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Slawomir J. Nasuto
- Brain Embodiment Laboratory, Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
13
|
Auno S, Lauronen L, Wilenius J, Peltola M, Vanhatalo S, Palva JM. Detrended fluctuation analysis in the presurgical evaluation of parietal lobe epilepsy patients. Clin Neurophysiol 2021; 132:1515-1525. [PMID: 34030053 DOI: 10.1016/j.clinph.2021.03.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To examine the usability of long-range temporal correlations (LRTCs) in non-invasive localization of the epileptogenic zone (EZ) in refractory parietal lobe epilepsy (RPLE) patients. METHODS We analyzed 10 RPLE patients who had presurgical MEG and underwent epilepsy surgery. We quantified LRTCs with detrended fluctuation analysis (DFA) at four frequency bands for 200 cortical regions estimated using individual source models. We correlated individually the DFA maps to the distance from the resection area and from cortical locations of interictal epileptiform discharges (IEDs). Additionally, three clinical experts inspected the DFA maps to visually assess the most likely EZ locations. RESULTS The DFA maps correlated with the distance to resection area in patients with type II focal cortical dysplasia (FCD) (p<0.05), but not in other etiologies. Similarly, the DFA maps correlated with the IED locations only in the FCD II patients. Visual analysis of the DFA maps showed high interobserver agreement and accuracy in FCD patients in assigning the affected hemisphere and lobe. CONCLUSIONS Aberrant LRTCs correlate with the resection areas and IED locations. SIGNIFICANCE This methodological pilot study demonstrates the feasibility of approximating cortical LRTCs from MEG that may aid in the EZ localization and provide new non-invasive insight into the presurgical evaluation of epilepsy.
Collapse
Affiliation(s)
- Sami Auno
- Epilepsia Helsinki, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Clinical Neurophysiology and BABA center, Children's Hospital, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Leena Lauronen
- Epilepsia Helsinki, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Clinical Neurophysiology and BABA center, Children's Hospital, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland
| | - Juha Wilenius
- Epilepsia Helsinki, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Clinical Neurophysiology and BABA center, Children's Hospital, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital(HUH), Helsinki, Finland
| | - Maria Peltola
- Epilepsia Helsinki, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Clinical Neurophysiology and BABA center, Children's Hospital, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland
| | - Sampsa Vanhatalo
- Department of Clinical Neurophysiology and BABA center, Children's Hospital, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - J Matias Palva
- Department of Neuroscience and Biomedical Engineering, Aalto University, Finland; Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, United Kingdom; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Zimmern V. Why Brain Criticality Is Clinically Relevant: A Scoping Review. Front Neural Circuits 2020; 14:54. [PMID: 32982698 PMCID: PMC7479292 DOI: 10.3389/fncir.2020.00054] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
The past 25 years have seen a strong increase in the number of publications related to criticality in different areas of neuroscience. The potential of criticality to explain various brain properties, including optimal information processing, has made it an increasingly exciting area of investigation for neuroscientists. Recent reviews on this topic, sometimes termed brain criticality, make brief mention of clinical applications of these findings to several neurological disorders such as epilepsy, neurodegenerative disease, and neonatal hypoxia. Other clinicallyrelevant domains - including anesthesia, sleep medicine, developmental-behavioral pediatrics, and psychiatry - are seldom discussed in review papers of brain criticality. Thorough assessments of these application areas and their relevance for clinicians have also yet to be published. In this scoping review, studies of brain criticality involving human data of all ages are evaluated for their current and future clinical relevance. To make the results of these studies understandable to a more clinical audience, a review of the key concepts behind criticality (e.g., phase transitions, long-range temporal correlation, self-organized criticality, power laws, branching processes) precedes the discussion of human clinical studies. Open questions and forthcoming areas of investigation are also considered.
Collapse
Affiliation(s)
- Vincent Zimmern
- Division of Child Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
15
|
Dynamical Mechanisms of Interictal Resting-State Functional Connectivity in Epilepsy. J Neurosci 2020; 40:5572-5588. [PMID: 32513827 PMCID: PMC7363471 DOI: 10.1523/jneurosci.0905-19.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Drug-resistant focal epilepsy is a large-scale brain networks disorder characterized by altered spatiotemporal patterns of functional connectivity (FC), even during interictal resting state (RS). Although RS-FC-based metrics can detect these changes, results from RS functional magnetic resonance imaging (RS-fMRI) studies are unclear and difficult to interpret, and the underlying dynamical mechanisms are still largely unknown. To better capture the RS dynamics, we phenomenologically extended the neural mass model of partial seizures, the Epileptor, by including two neuron subpopulations of epileptogenic and nonepileptogenic type, making it capable of producing physiological oscillations in addition to the epileptiform activity. Using the neuroinformatics platform The Virtual Brain, we reconstructed 14 epileptic and 5 healthy human (of either sex) brain network models (BNMs), based on individual anatomical connectivity and clinically defined epileptogenic heatmaps. Through systematic parameter exploration and fitting to neuroimaging data, we demonstrated that epileptic brains during interictal RS are associated with lower global excitability induced by a shift in the working point of the model, indicating that epileptic brains operate closer to a stable equilibrium point than healthy brains. Moreover, we showed that functional networks are unaffected by interictal spikes, corroborating previous experimental findings; additionally, we observed higher excitability in epileptogenic regions, in agreement with the data. We shed light on new dynamical mechanisms responsible for altered RS-FC in epilepsy, involving the following two key factors: (1) a shift of excitability of the whole brain leading to increased stability; and (2) a locally increased excitability in the epileptogenic regions supporting the mixture of hyperconnectivity and hypoconnectivity in these areas. SIGNIFICANCE STATEMENT Advances in functional neuroimaging provide compelling evidence for epilepsy-related brain network alterations, even during the interictal resting state (RS). However, the dynamical mechanisms underlying these changes are still elusive. To identify local and network processes behind the RS-functional connectivity (FC) spatiotemporal patterns, we systematically manipulated the local excitability and the global coupling in the virtual human epileptic patient brain network models (BNMs), complemented by the analysis of the impact of interictal spikes and fitting to the neuroimaging data. Our results suggest that a global shift of the dynamic working point of the brain model, coupled with locally hyperexcitable node dynamics of the epileptogenic networks, provides a mechanistic explanation of the epileptic processes during the interictal RS period. These, in turn, are associated with the changes in FC.
Collapse
|
16
|
Smith RJ, Ombao HC, Shrey DW, Lopour BA. Inference on Long-Range Temporal Correlations in Human EEG Data. IEEE J Biomed Health Inform 2020; 24:1070-1079. [DOI: 10.1109/jbhi.2019.2936326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Jannesari M, Saeedi A, Zare M, Ortiz-Mantilla S, Plenz D, Benasich AA. Stability of neuronal avalanches and long-range temporal correlations during the first year of life in human infants. Brain Struct Funct 2020; 225:1169-1183. [PMID: 32095901 PMCID: PMC7166209 DOI: 10.1007/s00429-019-02014-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/26/2019] [Indexed: 11/27/2022]
Abstract
During infancy, the human brain rapidly expands in size and complexity as neural networks mature and new information is incorporated at an accelerating pace. Recently, it was shown that single-electrode EEG in preterms at birth exhibits scale-invariant intermittent bursts. Yet, it is currently not known whether the normal infant brain, in particular, the cortex, maintains a distinct dynamical state during development that is characterized by scale-invariant spatial as well as temporal aspects. Here we employ dense-array EEG recordings acquired from the same infants at 6 and 12 months of age to characterize brain activity during an auditory odd-ball task. We show that suprathreshold events organize as spatiotemporal clusters whose size and duration are power-law distributed, the hallmark of neuronal avalanches. Time series of local suprathreshold EEG events display significant long-range temporal correlations (LRTCs). No differences were found between 6 and 12 months, demonstrating stability of avalanche dynamics and LRTCs during the first year after birth. These findings demonstrate that the infant brain is characterized by distinct spatiotemporal dynamical aspects that are in line with expectations of a critical cortical state. We suggest that critical state dynamics, which theory and experiments have shown to be beneficial for numerous aspects of information processing, are maintained by the infant brain to process an increasingly complex environment during development.
Collapse
Affiliation(s)
- Mostafa Jannesari
- School of Computer Science, Institute for Research in Fundamental Sciences (IPM), 70 Lavasani Avenue, Tehran, 19395, Iran
| | - Alireza Saeedi
- Department of Physiology of Cognitive Processes, Max-Planck-Institute for Biological Cybernetics, 72076, Tübingen, Germany
| | - Marzieh Zare
- School of Computer Science, Institute for Research in Fundamental Sciences (IPM), 70 Lavasani Avenue, Tehran, 19395, Iran.
| | - Silvia Ortiz-Mantilla
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ, 07102, USA
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, Laboratory of Systems Neuroscience, National Institute of Mental Health, Porter Neuroscience Research Center, MSC 3735, Bethesda, MD, 20892, USA
| | - April A Benasich
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ, 07102, USA
| |
Collapse
|
18
|
Wairagkar M, Hayashi Y, Nasuto SJ. Modeling the Ongoing Dynamics of Short and Long-Range Temporal Correlations in Broadband EEG During Movement. Front Syst Neurosci 2019; 13:66. [PMID: 31787885 PMCID: PMC6856010 DOI: 10.3389/fnsys.2019.00066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/15/2019] [Indexed: 11/17/2022] Open
Abstract
Electroencephalogram (EEG) undergoes complex temporal and spectral changes during voluntary movement intention. Characterization of such changes has focused mostly on narrowband spectral processes such as Event-Related Desynchronization (ERD) in the sensorimotor rhythms because EEG is mostly considered as emerging from oscillations of the neuronal populations. However, the changes in the temporal dynamics, especially in the broadband arrhythmic EEG have not been investigated for movement intention detection. The Long-Range Temporal Correlations (LRTC) are ubiquitously present in several neuronal processes, typically requiring longer timescales to detect. In this paper, we study the ongoing changes in the dynamics of long- as well as short-range temporal dependencies in the single trial broadband EEG during movement intention. We obtained LRTC in 2 s windows of broadband EEG and modeled it using the Autoregressive Fractionally Integrated Moving Average (ARFIMA) model which allowed simultaneous modeling of short- and long-range temporal correlations. There were significant (p < 0.05) changes in both broadband long- and short-range temporal correlations during movement intention and execution. We discovered that the broadband LRTC and narrowband ERD are complementary processes providing distinct information about movement because eliminating LRTC from the signal did not affect the ERD and conversely, eliminating ERD from the signal did not affect LRTC. Exploring the possibility of applications in Brain Computer Interfaces (BCI), we used hybrid features with combinations of LRTC, ARFIMA, and ERD to detect movement intention. A significantly higher (p < 0.05) classification accuracy of 88.3 ± 4.2% was obtained using the combination of ARFIMA and ERD features together, which also predicted the earliest movement at 1 s before its onset. The ongoing changes in the long- and short-range temporal correlations in broadband EEG contribute to effectively capturing the motor command generation and can be used to detect movement successfully. These temporal dependencies provide different and additional information about the movement.
Collapse
Affiliation(s)
- Maitreyee Wairagkar
- Brain Embodiment Laboratory, Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | | |
Collapse
|
19
|
Jannesari M, Saeedi A, Zare M, Ortiz-Mantilla S, Plenz D, Benasich AA. Stability of neuronal avalanches and long-range temporal correlations during the first year of life in human infant. Brain Struct Funct 2019; 224:2453-2465. [PMID: 31267171 PMCID: PMC6698269 DOI: 10.1007/s00429-019-01918-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/26/2019] [Indexed: 11/29/2022]
Abstract
During infancy, the human brain rapidly expands in size and complexity as neural networks mature and new information is incorporated at an accelerating pace. Recently, it was shown that single electrode EEG in preterms at birth exhibits scale-invariant intermittent bursts. Yet, it is currently not known whether the normal infant brain, in particular, the cortex maintains a distinct dynamical state during development that is characterized by scale-invariant spatial as well as temporal aspects. Here we employ dense-array EEG recordings acquired from the same infants at 6 and 12 months of age to characterize brain activity during an auditory oddball task. We show that suprathreshold events organize as spatiotemporal clusters whose size and duration are power-law distributed, the hallmark of neuronal avalanches. Time series of local suprathreshold EEG events display significant long-range temporal correlations (LRTCs). No differences were found between 6 and 12 months, demonstrating stability of avalanche dynamics and LRTCs during the first year after birth. These findings demonstrate that the infant brain is characterized by distinct spatiotemporal dynamical aspects that are in line with expectations of a critical cortical state. We suggest that critical state dynamics, which theory and experiments have shown to be beneficial for numerous aspects of information processing, are maintained by the infant brain to process an increasingly complex environment during development.
Collapse
Affiliation(s)
- Mostafa Jannesari
- School of Computer Science, Institute for Research in Fundamental Sciences (IPM), 70 Lavasani Avenue, Tehran, 19395, Iran
| | - Alireza Saeedi
- Department of Physiology of Cognitive Processes, Max-Planck-Institute for Biological Cybernetics, Tübingen, 72076, Germany
| | - Marzieh Zare
- School of Computer Science, Institute for Research in Fundamental Sciences (IPM), 70 Lavasani Avenue, Tehran, 19395, Iran.
| | - Silvia Ortiz-Mantilla
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ, 07102, USA
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, Laboratory of Systems Neuroscience, National Institute of Mental Health, Porter Neuroscience Research Center, MSC 3735, Bethesda, MD, 20892, USA
| | - April A Benasich
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ, 07102, USA
| |
Collapse
|
20
|
Visibility graph analysis of speech evoked auditory brainstem response in persistent developmental stuttering. Neurosci Lett 2019; 696:28-32. [DOI: 10.1016/j.neulet.2018.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
|
21
|
Mozaffarilegha M, Movahed SMS. Long-range temporal correlation in Auditory Brainstem Responses to Spoken Syllable/da/. Sci Rep 2019; 9:1751. [PMID: 30741968 PMCID: PMC6370814 DOI: 10.1038/s41598-018-38215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 12/20/2018] [Indexed: 11/18/2022] Open
Abstract
The speech auditory brainstem response (sABR) is an objective clinical tool to diagnose particular impairments along the auditory brainstem pathways. We explore the scaling behavior of the brainstem in response to synthetic /da/ stimuli using a proposed pipeline including Multifractal Detrended Moving Average Analysis (MFDMA) modified by Singular Value Decomposition. The scaling exponent confirms that all normal sABR are classified into the non-stationary process. The average Hurst exponent is H = 0:77 ± 0:12 at 68% confidence interval indicating long-range correlation which shows the first universality behavior of sABR. Our findings exhibit that fluctuations in the sABR series are dictated by a mechanism associated with long-term memory of the dynamic of the auditory system in the brainstem level. The q-dependency of h(q) demonstrates that underlying data sets have multifractal nature revealing the second universality behavior of the normal sABR samples. Comparing Hurst exponent of original sABR with the results of the corresponding shuffled and surrogate series, we conclude that its multifractality is almost due to the long-range temporal correlations which are devoted to the third universality. Finally, the presence of long-range correlation which is related to the slow timescales in the subcortical level and integration of information in the brainstem network is confirmed.
Collapse
Affiliation(s)
- Marjan Mozaffarilegha
- Ibn-Sina Multidisciplinary laboratory, Department of Physics, Shahid Beheshti University, Tehran, P.O.Box: 1983969411, Iran
| | - S M S Movahed
- Ibn-Sina Multidisciplinary laboratory, Department of Physics, Shahid Beheshti University, Tehran, P.O.Box: 1983969411, Iran. .,Department of Physics, Shahid Beheshti University, Tehran, P.O.Box: 1983969411, Iran.
| |
Collapse
|
22
|
Croce P, Quercia A, Costa S, Zappasodi F. Circadian Rhythms in Fractal Features of EEG Signals. Front Physiol 2018; 9:1567. [PMID: 30483146 PMCID: PMC6240683 DOI: 10.3389/fphys.2018.01567] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022] Open
Abstract
Time-of-day modulations affect both performance on a wide range of cognitive tasks and electrical activity of the brain, as recorded by electroencephalography (EEG). The aim of this work was to identify fluctuations of fractal properties of EEG time series due to circadian rhythms. In twenty-one healthy volunteers (all males, age between 20 and 30 years, chronotype: neutral type) high density EEG recordings at rest in open and closed eyes conditions were acquired in 4 times of the day (8.00 a.m., 11.30 a.m., 2.30 p.m., 7.00 p.m.). A vigilance task (Psychomotor Vigilance Test, PVT) was also performed. Detrended fluctuation Analysis (DFA) of envelope of alpha, beta and theta rhythms was performed, as well as Highuchi fractal dimension (HFD) of the whole band EEG. Our results evidenced circadian fluctuations of fractal features of EEG at rest in both eyes closed and eyes open conditions. Lower values of DFA exponent were found in the time T1 in closed eyes condition, likely effect of the sleep inertia. An alpha DFA exponent reduction was found also in central sensory-motor areas at time T3, the day time in which the sleepiness can be present. In eyes open condition, HFD lowered during the day. In eyes closed condition, an HFD increase was observed in central and frontal regions at time T2, the time in which alertness reaches its maximum and homeostatic sleep pressure is low. Complexity and the persistence of temporal correlations of brain rhythms change during daytime, parallel to changes in alertness and performance.
Collapse
Affiliation(s)
- Pierpaolo Croce
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University, Chieti, Italy
| | - Angelica Quercia
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University, Chieti, Italy
| | - Sergio Costa
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University, Chieti, Italy
| | - Filippo Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University, Chieti, Italy.,Institute for Advanced Biomedical Imaging, G. d'Annunzio University, Chieti, Italy
| |
Collapse
|
23
|
Kwok EYL, Cardy JO, Allman BL, Allen P, Herrmann B. Dynamics of spontaneous alpha activity correlate with language ability in young children. Behav Brain Res 2018; 359:56-65. [PMID: 30352251 DOI: 10.1016/j.bbr.2018.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/21/2018] [Accepted: 10/16/2018] [Indexed: 11/18/2022]
Abstract
Early childhood is a period of tremendous growth in both language ability and brain maturation. To understand the dynamic interplay between neural activity and spoken language development, we used resting-state EEG recordings to explore the relation between alpha oscillations (7-10 Hz) and oral language ability in 4- to 6-year-old children with typical development (N = 41). Three properties of alpha oscillations were investigated: a) alpha power using spectral analysis, b) flexibility of the alpha frequency quantified via the oscillation's moment-to-moment fluctuations, and c) scaling behavior of the alpha oscillator investigated via the long-range temporal correlation in the alpha-amplitude time course. All three properties of the alpha oscillator correlated with children's oral language abilities. Higher language scores were correlated with lower alpha power, greater flexibility of the alpha frequency, and longer temporal correlations in the alpha-amplitude time course. Our findings demonstrate a cognitive role of several properties of the alpha oscillator that has largely been overlooked in the literature.
Collapse
Affiliation(s)
- Elaine Y L Kwok
- Communication Sciences and Disorders, The University of Western Ontario, London, ON, N6G 1H1, Canada.
| | - Janis Oram Cardy
- Communication Sciences and Disorders, The University of Western Ontario, London, ON, N6G 1H1, Canada; Brain and Mind Institute, The University of Western Ontario, London, ON, N6A 5B7, Canada; National Centre for Audiology, The University of Western Ontario, London, ON, N6G 1H1, Canada
| | - Brian L Allman
- National Centre for Audiology, The University of Western Ontario, London, ON, N6G 1H1, Canada; Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Prudence Allen
- Communication Sciences and Disorders, The University of Western Ontario, London, ON, N6G 1H1, Canada; National Centre for Audiology, The University of Western Ontario, London, ON, N6G 1H1, Canada
| | - Björn Herrmann
- Brain and Mind Institute, The University of Western Ontario, London, ON, N6A 5B7, Canada; Department of Psychology, The University of Western Ontario, London, ON, N6A 5C2, Canada.
| |
Collapse
|
24
|
Ros T, Frewen P, Théberge J, Michela A, Kluetsch R, Mueller A, Candrian G, Jetly R, Vuilleumier P, Lanius RA. Neurofeedback Tunes Scale-Free Dynamics in Spontaneous Brain Activity. Cereb Cortex 2018; 27:4911-4922. [PMID: 27620975 DOI: 10.1093/cercor/bhw285] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/19/2016] [Indexed: 11/13/2022] Open
Abstract
Brain oscillations exhibit long-range temporal correlations (LRTCs), which reflect the regularity of their fluctuations: low values representing more random (decorrelated) while high values more persistent (correlated) dynamics. LRTCs constitute supporting evidence that the brain operates near criticality, a state where neuronal activities are balanced between order and randomness. Here, healthy adults used closed-loop brain training (neurofeedback, NFB) to reduce the amplitude of alpha oscillations, producing a significant increase in spontaneous LRTCs post-training. This effect was reproduced in patients with post-traumatic stress disorder, where abnormally random dynamics were reversed by NFB, correlating with significant improvements in hyperarousal. Notably, regions manifesting abnormally low LRTCs (i.e., excessive randomness) normalized toward healthy population levels, consistent with theoretical predictions about self-organized criticality. Hence, when exposed to appropriate training, spontaneous cortical activity reveals a residual capacity for "self-tuning" its own temporal complexity, despite manifesting the abnormal dynamics seen in individuals with psychiatric disorder. Lastly, we observed an inverse-U relationship between strength of LRTC and oscillation amplitude, suggesting a breakdown of long-range dependence at high/low synchronization extremes, in line with recent computational models. Together, our findings offer a broader mechanistic framework for motivating research and clinical applications of NFB, encompassing disorders with perturbed LRTCs.
Collapse
Affiliation(s)
- T Ros
- Geneva Neuroscience Center, Department of Neuroscience, University of Geneva, CH-1202 Geneva, Switzerland
| | - P Frewen
- Department of Psychiatry, Western University, London N6A 5A5, Ontario, Canada
| | - J Théberge
- Department of Medical Imaging, Lawson Health Research Institute, London N6C 2R5, Ontario, Canada
| | - A Michela
- Geneva Neuroscience Center, Department of Neuroscience, University of Geneva, CH-1202 Geneva, Switzerland
| | - R Kluetsch
- Department of Psychosomatic Medicine and Psychotherapy, Mannheim-Heidelberg University, 68159 Mannheim, Germany
| | - A Mueller
- Brain and Trauma Foundation, CH-7000 Chur, Switzerland
| | - G Candrian
- Brain and Trauma Foundation, CH-7000 Chur, Switzerland
| | - R Jetly
- Directorate of Mental Health, Canadian Forces Health Services, Ottawa K1A 0K6, Canada
| | - P Vuilleumier
- Geneva Neuroscience Center, Department of Neuroscience, University of Geneva, CH-1202 Geneva, Switzerland
| | - R A Lanius
- Department of Psychiatry, Western University, London N6A 5A5, Ontario, Canada
| |
Collapse
|
25
|
Complexity-Based Analysis of the Difference Between Normal Subjects and Subjects with Stuttering in Speech Evoked Auditory Brainstem Response. J Med Biol Eng 2018. [DOI: 10.1007/s40846-018-0430-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Abstract
Many methods have been developed to translate a human electroencephalogram (EEG) into music. In addition to EEG, functional magnetic resonance imaging (fMRI) is another method used to study the brain and can reflect physiological processes. In 2012, we established a method to use simultaneously recorded fMRI and EEG signals to produce EEG-fMRI music, which represents a step toward scale-free brain music. In this study, we used a neural mass model, the Jansen-Rit model, to simulate activity in several cortical brain regions. The interactions between different brain regions were represented by the average normalized diffusion tensor imaging (DTI) structural connectivity with a coupling coefficient that modulated the coupling strength. Seventy-eight brain regions were adopted from the Automated Anatomical Labeling (AAL) template. Furthermore, we used the Balloon-Windkessel hemodynamic model to transform neural activity into a blood-oxygen-level dependent (BOLD) signal. Because the fMRI BOLD signal changes slowly, we used a sampling rate of 250 Hz to produce the temporal series for music generation. Then, the BOLD music was generated for each region using these simulated BOLD signals. Because the BOLD signal is scale free, these music pieces were also scale free, which is similar to classic music. Here, to simulate the case of an epileptic patient, we changed the parameter that determined the amplitude of the excitatory postsynaptic potential (EPSP) in the neural mass model. Finally, we obtained BOLD music for healthy and epileptic patients. The differences in levels of arousal between the 2 pieces of music may provide a potential tool for discriminating the different populations if the differences can be confirmed by more real data.
Collapse
Affiliation(s)
- Jing Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China
| | - Sijia Guo
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China
| | - Mingming Chen
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China
| | - Weixia Wang
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China
| | - Hua Yang
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China
- Department of Composition, Sichuan Conservatory of Music, Chengdu, Sichuan, China
| | - Daqing Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China
| |
Collapse
|
27
|
Smith RJ, Sugijoto A, Rismanchi N, Hussain SA, Shrey DW, Lopour BA. Long-Range Temporal Correlations Reflect Treatment Response in the Electroencephalogram of Patients with Infantile Spasms. Brain Topogr 2017; 30:810-821. [PMID: 28905146 PMCID: PMC6058722 DOI: 10.1007/s10548-017-0588-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
Infantile spasms syndrome is an epileptic encephalopathy in which prompt diagnosis and treatment initiation are critical to therapeutic response. Diagnosis of the disease heavily depends on the identification of characteristic electroencephalographic (EEG) patterns, including hypsarrhythmia. However, visual assessment of the presence and characteristics of hypsarrhythmia is challenging because multiple variants of the pattern exist, leading to poor inter-rater reliability. We investigated whether a quantitative measurement of the control of neural synchrony in the EEGs of infantile spasms patients could be used to reliably distinguish the presence of hypsarrhythmia and indicate successful treatment outcomes. We used autocorrelation and Detrended Fluctuation Analysis (DFA) to measure the strength of long-range temporal correlations in 21 infantile spasms patients before and after treatment and 21 control subjects. The strength of long-range temporal correlations was significantly lower in patients with hypsarrhythmia than control patients, indicating decreased control of neural synchrony. There was no difference between patients without hypsarrhythmia and control patients. Further, the presence of hypsarrhythmia could be classified based on the DFA exponent and intercept with 92% accuracy using a support vector machine. Successful treatment was marked by a larger increase in the DFA exponent compared to those in which spasms persisted. These results suggest that the strength of long-range temporal correlations is a marker of pathological cortical activity that correlates with treatment response. Combined with current clinical measures, this quantitative tool has the potential to aid objective identification of hypsarrhythmia and assessment of treatment efficacy to inform clinical decision-making.
Collapse
Affiliation(s)
- Rachel J Smith
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, University of California, Irvine, CA, USA
| | - Amanda Sugijoto
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, University of California, Irvine, CA, USA
| | - Neggy Rismanchi
- Division of Neurology, Children's Hospital Orange County, Orange, CA, USA
| | - Shaun A Hussain
- Division of Pediatric Neurology, University of California, Los Angeles, CA, USA
| | - Daniel W Shrey
- Division of Neurology, Children's Hospital Orange County, Orange, CA, USA
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - Beth A Lopour
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
28
|
Deviations from Critical Dynamics in Interictal Epileptiform Activity. J Neurosci 2017; 36:12276-12292. [PMID: 27903734 DOI: 10.1523/jneurosci.0809-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 11/21/2022] Open
Abstract
The framework of criticality provides a unifying perspective on neuronal dynamics from in vitro cortical cultures to functioning human brains. Recent findings suggest that a healthy cortex displays critical dynamics, giving rise to scale-free spatiotemporal cascades of activity, termed neuronal avalanches. Pharmacological manipulations of the excitation-inhibition balance (EIB) in cortical cultures were previously shown to result in deviations from criticality and from the power law scaling of avalanche size distribution. To examine the sensitivity of neuronal avalanche metrics to altered EIB in humans, we focused on epilepsy, a neurological disorder characterized by hyperexcitable networks. Using magnetoencephalography, we quantitatively assessed deviations from criticality in the brain dynamics of patients with epilepsy during interictal (between-seizures) activity. Compared with healthy control subjects, epilepsy patients tended to exhibit a higher neural gain and larger avalanches, particularly during interictal epileptiform activity. Moreover, deviations from scale-free behavior were exclusively connected to brief intervals at epileptiform discharges, strengthening the association between deviations from criticality and the instantaneous changes in EIB. The avalanches collected during interictal epileptiform activity had not only a stereotypical size range but also involved particular spatial patterns of activations, as expected for periods of epileptic network dominance. Overall, the neuronal avalanche metrics provide a quantitative novel description of interictal brain activity of patients with epilepsy. SIGNIFICANCE STATEMENT Healthy brain dynamics requires a delicate balance between excitatory and inhibitory processes. Several brain disorders, such as epilepsy, are associated with altered excitation-inhibition balance, but assessing this balance using noninvasive tools is still challenging. In this study, we apply the framework of critical brain dynamics to data from epilepsy patients, which were recorded between seizures. We show that metrics of criticality provide a sensitive tool for noninvasive assessment of changes in the balance. Specifically, brain activity of epilepsy patients deviates from healthy critical brain dynamics, particularly during abnormal epileptiform activity. The study offers a novel quantitative perspective on epilepsy and its relation to healthy brain dynamics.
Collapse
|
29
|
Effect of Restriction of Visual Afferentation on the Rhythmic Organization of Alpha EEG Activity. NEUROPHYSIOLOGY+ 2015. [DOI: 10.1007/s11062-015-9525-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Aguiar LAA, Silva IMS, Fernandes TS, Nogueira RA. Long-term correlation of the electrocorticogram as a bioindicator of brain exposure to ionizing radiation. ACTA ACUST UNITED AC 2015; 48:915-22. [PMID: 26445335 PMCID: PMC4617118 DOI: 10.1590/1414-431x20154473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/06/2015] [Indexed: 11/25/2022]
Abstract
Understanding the effects of radiation and its possible influence on the nervous
system are of great clinical interest. However, there have been few
electrophysiological studies on brain activity after exposure to ionizing radiation
(IR). A new methodological approach regarding the assessment of the possible effects
of IR on brain activity is the use of linear and nonlinear mathematical methods in
the analysis of complex time series, such as brain oscillations measured using the
electrocorticogram (ECoG). The objective of this study was to use linear and
nonlinear mathematical methods as biomarkers of gamma radiation regarding cortical
electrical activity. Adult Wistar rats were divided into 3 groups: 1 control and 2
irradiated groups, evaluated at 24 h (IR24) and 90 days (IR90) after exposure to 18
Gy of gamma radiation from a cobalt-60 radiotherapy source. The ECoG was analyzed
using power spectrum methods for the calculation of the power of delta, theta, alpha
and beta rhythms and by means of the α-exponent of the detrended fluctuation analysis
(DFA). Using both mathematical methods it was possible to identify changes in the
ECoG, and to identify significant changes in the pattern of the recording at 24 h
after irradiation. Some of these changes were persistent at 90 days after exposure to
IR. In particular, the theta wave using the two methods showed higher sensitivity
than other waves, suggesting that it is a possible biomarker of exposure to IR.
Collapse
Affiliation(s)
- L A A Aguiar
- Departamento de Morfologia e Fisiologia Animal, Laboratório de Biofísica Teórico-Experimental e Computacional, Universidade Federal Rural de Pernambuco, PE, Recife, BR
| | - I M S Silva
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, PE, Recife, BR
| | - T S Fernandes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, PE, Recife, BR
| | - R A Nogueira
- Departamento de Morfologia e Fisiologia Animal, Laboratório de Biofísica Teórico-Experimental e Computacional, Universidade Federal Rural de Pernambuco, PE, Recife, BR
| |
Collapse
|
31
|
Matic V, Cherian PJ, Koolen N, Ansari AH, Naulaers G, Govaert P, Van Huffel S, De Vos M, Vanhatalo S. Objective differentiation of neonatal EEG background grades using detrended fluctuation analysis. Front Hum Neurosci 2015; 9:189. [PMID: 25954174 PMCID: PMC4407610 DOI: 10.3389/fnhum.2015.00189] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/20/2015] [Indexed: 12/22/2022] Open
Abstract
A quantitative and objective assessment of background electroencephalograph (EEG) in sick neonates remains an everyday clinical challenge. We studied whether long range temporal correlations quantified by detrended fluctuation analysis (DFA) could be used in the neonatal EEG to distinguish different grades of abnormality in the background EEG activity. Long-term EEG records of 34 neonates were collected after perinatal asphyxia, and their background was scored in 1 h epochs (8 h in each neonate) as mild, moderate or severe. We applied DFA on 15 min long, non-overlapping EEG epochs (n = 1088) filtered from 3 to 8 Hz. Our formal feasibility study suggested that DFA exponent can be reliably assessed in only part of the EEG epochs, and in only relatively short time scales (10-60 s), while it becomes ambiguous if longer time scales are considered. This prompted further exploration whether paradigm used for quantifying multifractal DFA (MF-DFA) could be applied in a more efficient way, and whether metrics from MF-DFA paradigm could yield useful benchmark with existing clinical EEG gradings. Comparison of MF-DFA metrics showed a significant difference between three visually assessed background EEG grades. MF-DFA parameters were also significantly correlated to interburst intervals quantified with our previously developed automated detector. Finally, we piloted a monitoring application of MF-DFA metrics and showed their evolution during patient recovery from asphyxia. Our exploratory study showed that neonatal EEG can be quantified using multifractal metrics, which might offer a suitable parameter to quantify the grade of EEG background, or to monitor changes in brain state that take place during long-term brain monitoring.
Collapse
Affiliation(s)
- Vladimir Matic
- Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven Leuven, Belgium ; iMinds Medical IT Department Leuven, Belgium
| | - Perumpillichira Joseph Cherian
- Section of Clinical Neurophysiology, Department of Neurology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Ninah Koolen
- Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven Leuven, Belgium ; iMinds Medical IT Department Leuven, Belgium
| | - Amir H Ansari
- Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven Leuven, Belgium ; iMinds Medical IT Department Leuven, Belgium
| | - Gunnar Naulaers
- Neonatal Intensive Care Unit, University Hospital Gasthuisberg Leuven, Belgium
| | - Paul Govaert
- Section of Neonatology, Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Netherlands
| | - Sabine Van Huffel
- Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven Leuven, Belgium ; iMinds Medical IT Department Leuven, Belgium
| | - Maarten De Vos
- Department of Engineering, Institute of Biomedical Engineering, University of Oxford Oxford, UK
| | - Sampsa Vanhatalo
- Department of Children's Clinical Neurophysiology, HUS Medical Imaging Center and Children's Hospital, Helsinki University Central Hospital and University of Helsinki Helsinki, Finland
| |
Collapse
|
32
|
Seseña-Rubfiaro A, Echeverría JC, Godínez-Fernández JR. Fractal-like correlations of the fluctuating inter-spike membrane potential of a Helix aspersa pacemaker neuron. Comput Biol Med 2014; 53:258-64. [PMID: 25189698 DOI: 10.1016/j.compbiomed.2014.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 08/02/2014] [Accepted: 08/10/2014] [Indexed: 10/24/2022]
Abstract
We analyzed the voltage fluctuations of the membrane potential manifested along the inter-spike segment of a pacemaker neuron. Time series of intracellular inter-spike voltage fluctuations were obtained in the current-clamp configuration from the F1 neuron of 12 Helix aspersa specimens. To assess the dynamic or stochastic nature of the voltage fluctuations these series were analyzed by Detrended Fluctuation Analysis (DFA), providing the scaling exponent α. The median α result obtained for the inter-spike segments was 0.971 ([0.963, 0.995] lower and upper quartiles). Our results indicate a critical-like dynamic behavior in the inter-spike membrane potential that, far from being random, shows long-term correlations probably linked to the dynamics of the mechanisms involved in the regulation of the membrane potential, thereby endorsing the occurrence of critical-like phenomena at a single-neuron level.
Collapse
Affiliation(s)
- Alberto Seseña-Rubfiaro
- Electrical Engineering Department, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340 Iztapalapa, Mexico City, Mexico.
| | - Juan Carlos Echeverría
- Electrical Engineering Department, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340 Iztapalapa, Mexico City, Mexico.
| | - Jose Rafael Godínez-Fernández
- Electrical Engineering Department, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340 Iztapalapa, Mexico City, Mexico.
| |
Collapse
|
33
|
Staba RJ, Worrell GA. What is the importance of abnormal "background" activity in seizure generation? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:43-54. [PMID: 25012365 DOI: 10.1007/978-94-017-8914-1_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Investigations of interictal epileptiform spikes and seizures have played a central role in the study of epilepsy. The background EEG activity, however, has received less attention. In this chapter we discuss the characteristic features of the background activity of the brain when individuals are at rest and awake (resting wake) and during sleep. The characteristic rhythms of the background EEG are presented, and the presence of 1/f (β) behavior of the EEG power spectral density is discussed and its possible origin and functional significance. The interictal EEG findings of focal epilepsy and the impact of interictal epileptiform spikes on cognition are also discussed.
Collapse
Affiliation(s)
- Richard J Staba
- Department of Neurology, Reed Neurological Research Center, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, RNRC 2-155, Los Angeles, CA, 90095, USA,
| | | |
Collapse
|
34
|
Dimitriadis S, Laskaris N, Simos P, Micheloyannis S, Fletcher J, Rezaie R, Papanicolaou A. Altered temporal correlations in resting-state connectivity fluctuations in children with reading difficulties detected via MEG. Neuroimage 2013; 83:307-17. [DOI: 10.1016/j.neuroimage.2013.06.036] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/01/2013] [Accepted: 06/08/2013] [Indexed: 01/25/2023] Open
|
35
|
Single-neuron criticality optimizes analog dendritic computation. Sci Rep 2013; 3:3222. [PMID: 24226045 PMCID: PMC3827605 DOI: 10.1038/srep03222] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/30/2013] [Indexed: 11/08/2022] Open
Abstract
Active dendritic branchlets enable the propagation of dendritic spikes, whose computational functions remain an open question. Here we propose a concrete function to the active channels in large dendritic trees. Modelling the input-output response of large active dendritic arbors subjected to complex spatio-temporal inputs and exhibiting non-stereotyped dendritic spikes, we find that the dendritic arbor can undergo a continuous phase transition from a quiescent to an active state, thereby exhibiting spontaneous and self-sustained localized activity as suggested by experiments. Analogously to the critical brain hypothesis, which states that neuronal networks self-organize near criticality to take advantage of its specific properties, here we propose that neurons with large dendritic arbors optimize their capacity to distinguish incoming stimuli at the critical state. We suggest that "computation at the edge of a phase transition" is more compatible with the view that dendritic arbors perform an analog rather than a digital dendritic computation.
Collapse
|
36
|
Characterizing functional integrity: intraindividual brain signal variability predicts memory performance in patients with medial temporal lobe epilepsy. J Neurosci 2013; 33:9855-65. [PMID: 23739982 DOI: 10.1523/jneurosci.3009-12.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Computational modeling suggests that variability in brain signals provides important information regarding the system's capacity to adopt different network configurations that may promote optimal responding to stimuli. Although there is limited empirical work on this construct, a recent study indicates that age-related decreases in variability across the adult lifespan correlate with less efficient and less accurate performance. Here, we extend this construct to the assessment of cerebral integrity by comparing fMRI BOLD variability and fMRI BOLD amplitude in their ability to account for differences in functional capacity in patients with focal unilateral medial temporal dysfunction. We were specifically interested in whether either of these BOLD measures could identify a link between the affected medial temporal region and memory performance (as measured by a clinical test of verbal memory retention). Using partial least-squares analyses, we found that variability in a set of regions including the left hippocampus predicted verbal retention and, furthermore, this relationship was similar across a range of cognitive tasks measured during scanning (i.e., the same pattern was seen in fixation, autobiographical recall, and word generation). In contrast, signal amplitude in the hippocampus did not predict memory performance, even for a task that reliably activates the medial temporal lobes (i.e., autobiographical recall). These findings provide a powerful validation of the concept that variability in brain signals reflects functional integrity. Furthermore, this measure can be characterized as a robust biomarker in this clinical setting because it reveals the same pattern regardless of cognitive challenge or task engagement during scanning.
Collapse
|
37
|
Hardstone R, Poil SS, Schiavone G, Jansen R, Nikulin VV, Mansvelder HD, Linkenkaer-Hansen K. Detrended fluctuation analysis: a scale-free view on neuronal oscillations. Front Physiol 2012; 3:450. [PMID: 23226132 PMCID: PMC3510427 DOI: 10.3389/fphys.2012.00450] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 11/10/2012] [Indexed: 12/03/2022] Open
Abstract
Recent years of research have shown that the complex temporal structure of ongoing oscillations is scale-free and characterized by long-range temporal correlations. Detrended fluctuation analysis (DFA) has proven particularly useful, revealing that genetic variation, normal development, or disease can lead to differences in the scale-free amplitude modulation of oscillations. Furthermore, amplitude dynamics is remarkably independent of the time-averaged oscillation power, indicating that the DFA provides unique insights into the functional organization of neuronal systems. To facilitate understanding and encourage wider use of scaling analysis of neuronal oscillations, we provide a pedagogical explanation of the DFA algorithm and its underlying theory. Practical advice on applying DFA to oscillations is supported by MATLAB scripts from the Neurophysiological Biomarker Toolbox (NBT) and links to the NBT tutorial website http://www.nbtwiki.net/. Finally, we provide a brief overview of insights derived from the application of DFA to ongoing oscillations in health and disease, and discuss the putative relevance of criticality for understanding the mechanism underlying scale-free modulation of oscillations.
Collapse
Affiliation(s)
- Richard Hardstone
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam Amsterdam, Netherlands
| | | | | | | | | | | | | |
Collapse
|
38
|
Lee JS, Koo BH. Fractal analysis of EEG upon auditory stimulation during waking and hypnosis in healthy volunteers. Int J Clin Exp Hypn 2012; 60:266-85. [PMID: 22681326 DOI: 10.1080/00207144.2012.675294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The authors tested fluctuation analyses (DFA) of EEGs upon auditory stimulation in waking and hypnotic states as related to topography and hypnotizability. They administered the Hypnotic Induction Profile (HIP), Dissociation Experience Scale, and Tellegen Absorption Scale to 10 healthy volunteers and measured subjects' EEGs while the subjects listened to sounds, either selecting or ignoring tones of different decibels, in waking and hypnotic states. DFA scaling exponents were closest to 0.5 when subjects reported the tones in the hypnotic state. Different DFA values at C3 showed significant positive correlations with the HIP eye-roll sign. Adding to the literature supporting the state theory of hypnosis, the DFA values at F3 and C3 showed significant differences between waking and hypnotic states. Application of auditory stimuli is useful for understanding neurophysiological characteristics of hypnosis using DFA.
Collapse
|
39
|
Scale-free modulation of resting-state neuronal oscillations reflects prolonged brain maturation in humans. J Neurosci 2011; 31:13128-36. [PMID: 21917796 DOI: 10.1523/jneurosci.1678-11.2011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human neuronal circuits undergo life-long functional reorganization with profound effects on cognition and behavior. Well documented prolonged development of anatomical brain structures includes white and gray matter changes that continue into the third decade of life. We investigated resting-state EEG oscillations in 1433 subjects from 5 to 71 years. Neuronal oscillations exhibit scale-free amplitude modulation as reflected in power-law decay of autocorrelations--also known as long-range temporal correlations (LRTC)--which was assessed by detrended fluctuation analysis. We observed pronounced increases in LRTC from childhood to adolescence, during adolescence, and even into early adulthood (∼25 years of age) after which the temporal structure stabilized. A principal component analysis of the spatial distribution of LRTC revealed increasingly uniform scores across the scalp. Together, these findings indicate that the scale-free modulation of resting-state oscillations reflects brain maturation, and suggests that scaling analysis may prove useful as a biomarker of pathophysiology in neurodevelopmental disorders such as attention deficit hyperactivity disorder and schizophrenia.
Collapse
|
40
|
Benayoun M, Kohrman M, Cowan J, van Drongelen W. EEG, Temporal Correlations, and Avalanches. J Clin Neurophysiol 2010; 27:458-64. [DOI: 10.1097/wnp.0b013e3181fdf8e5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One 2010; 5:e13766. [PMID: 21072168 PMCID: PMC2967471 DOI: 10.1371/journal.pone.0013766] [Citation(s) in RCA: 551] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 10/08/2010] [Indexed: 11/18/2022] Open
Abstract
Non-invasive electrical stimulation of the human cortex by means of transcranial direct current stimulation (tDCS) has been instrumental in a number of important discoveries in the field of human cortical function and has become a well-established method for evaluating brain function in healthy human participants. Recently, transcranial alternating current stimulation (tACS) has been introduced to directly modulate the ongoing rhythmic brain activity by the application of oscillatory currents on the human scalp. Until now the efficiency of tACS in modulating rhythmic brain activity has been indicated only by inference from perceptual and behavioural consequences of electrical stimulation. No direct electrophysiological evidence of tACS has been reported. We delivered tACS over the occipital cortex of 10 healthy participants to entrain the neuronal oscillatory activity in their individual alpha frequency range and compared results with those from a separate group of participants receiving sham stimulation. The tACS but not the sham stimulation elevated the endogenous alpha power in parieto-central electrodes of the electroencephalogram. Additionally, in a network of spiking neurons, we simulated how tACS can be affected even after the end of stimulation. The results show that spike-timing-dependent plasticity (STDP) selectively modulates synapses depending on the resonance frequencies of the neural circuits that they belong to. Thus, tACS influences STDP which in turn results in aftereffects upon neural activity. The present findings are the first direct electrophysiological evidence of an interaction of tACS and ongoing oscillatory activity in the human cortex. The data demonstrate the ability of tACS to specifically modulate oscillatory brain activity and show its potential both at fostering knowledge on the functional significance of brain oscillations and for therapeutic application.
Collapse
Affiliation(s)
- Tino Zaehle
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Stefan Rach
- Experimental Psychology Lab, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Carl von Ossietzky Universität, Oldenburg, Germany
- * E-mail:
| |
Collapse
|
42
|
Osorio I, Frei MG, Sornette D, Milton J, Lai YC. Epileptic seizures: Quakes of the brain? PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:021919. [PMID: 20866849 DOI: 10.1103/physreve.82.021919] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 07/12/2010] [Indexed: 05/23/2023]
Abstract
A dynamical analogy supported by five scale-free statistics (the Gutenberg-Richter distribution of event sizes, the distribution of interevent intervals, the Omori and inverse Omori laws, and the conditional waiting time until the next event) is shown to exist between two classes of seizures ("focal" in humans and generalized in animals) and earthquakes. Increments in excitatory interneuronal coupling in animals expose the system's dependence on this parameter and its dynamical transmutability: moderate increases lead to power-law behavior of seizure energy and interevent times, while marked ones to scale-free (power-law) coextensive with characteristic scales and events. The coextensivity of power law and characteristic size regimes is predicted by models of coupled heterogeneous threshold oscillators of relaxation and underscores the role of coupling strength in shaping the dynamics of these systems.
Collapse
Affiliation(s)
- Ivan Osorio
- Department of Neurology, The University of Kansas Medical Center, Kansas City, 66160, USA.
| | | | | | | | | |
Collapse
|
43
|
Epilepsy as a dynamic disease: a tutorial of the past with an eye to the future. Epilepsy Behav 2010; 18:33-44. [PMID: 20472508 DOI: 10.1016/j.yebeh.2010.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 11/22/2022]
Abstract
How can clinical epileptologists and computational neuroscientists learn to function together within the confines of interdisciplinary teams to develop new and more effective treatment strategies for epilepsy? Here we introduce epileptologists to the way modelers think about epilepsy as a dynamic disease. Not only is there terminology to be learned, but also it is necessary to identify those areas where clinical input might be expected to have the greatest impact. It is concluded that both groups have major roles to play in educating, evaluating, and shaping the direction of the efforts of each other.
Collapse
|
44
|
Human EEG shows long-range temporal correlations of oscillation amplitude in Theta, Alpha and Beta bands across a wide age range. Clin Neurophysiol 2010; 121:1187-97. [PMID: 20346732 DOI: 10.1016/j.clinph.2010.02.163] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/24/2010] [Accepted: 02/26/2010] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Long-range temporal correlations (LRTC) of EEG amplitude fluctuations in adults reveal power-law statistics and have been interpreted within the framework of self-organized criticality (SOC). In physical systems states of self-organized criticality showing power-law statistics take time to develop. In this paper we have sought evidence for the idea that brain development tends towards SOC through examining the hypothesis that during normal human development a power law behaviour of EEG oscillations is approached with increasing chronological age. METHODS We examined EEGs from central and parietal electrodes in 36 subjects aged between 0 and 660months during performance of a steady wrist extension task with their dominant hand and applied spectral and detrended fluctuation analysis in 36 subjects to assess long-range temporal correlations of oscillation amplitude in the Theta, Alpha and Beta frequency bands. RESULTS Our data indicate that at all subject ages power-law statistics dominate the records at Alpha, Beta and Theta frequencies. Small consistent effects of chronological age were detected for amplitude fluctuations at Theta and Beta frequencies. CONCLUSIONS The data suggest that the scale-free nature of EEG LRTCs is a feature from early childhood through to maturity but that there are changes in the magnitude of these effects with age. SIGNIFICANCE This study is the first to have explored long-range temporal correlations over a wide range of chronological age.
Collapse
|
45
|
Buice MA, Cowan JD. Statistical mechanics of the neocortex. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 99:53-86. [PMID: 19695282 DOI: 10.1016/j.pbiomolbio.2009.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Thatcher RW, North DM, Biver CJ. Self-organized criticality and the development of EEG phase reset. Hum Brain Mapp 2009; 30:553-74. [PMID: 18219618 PMCID: PMC6871258 DOI: 10.1002/hbm.20524] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 10/09/2007] [Accepted: 11/02/2007] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES The purpose of this study was to explore human development of self-organized criticality as measured by EEG phase reset from infancy to 16 years of age. METHODS The electroencephalogram (EEG) was recorded from 19 scalp locations from 458 subjects ranging in age from 2 months to 16.67 years. Complex demodulation was used to compute instantaneous phase differences between pairs of electrodes and the 1st and 2nd derivatives were used to detect the sudden onset and offset times of a phase shift followed by an extended period of phase locking. Mean phase shift duration and phase locking intervals were computed for two symmetrical electrode arrays in the posterior-to-anterior locations and the anterior-to-posterior directions in the alpha frequency band (8-13 Hz). RESULTS Log-log spectral plots demonstrated 1/f (alpha) distributions (alpha approximately 1) with longer slopes during periods of phase shifting than during periods of phase locking. The mean duration of phase locking (150-450 msec) and phase shift (45-67 msec) generally increased as a function of age. The mean duration of phase shift declined over age in the local frontal regions but increased in distant electrode pairs. Oscillations and growth spurts from mean age 0.4-16 years were consistently present. CONCLUSIONS The development of increased phase stability in local systems is paralleled by lengthened periods of unstable phase in distant connections. Development of the number and/or density of synaptic connections is a likely order parameter to explain oscillations and growth spurts in self-organized criticality during human brain maturation.
Collapse
Affiliation(s)
- Robert Wayne Thatcher
- Department of Neurology, University of South Florida College of Medicine, Tampa, Florida, USA.
| | | | | |
Collapse
|
47
|
Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease. Proc Natl Acad Sci U S A 2009; 106:1614-9. [PMID: 19164579 DOI: 10.1073/pnas.0811699106] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Encoding and retention of information in memory are associated with a sustained increase in the amplitude of neuronal oscillations for up to several seconds. We reasoned that coordination of oscillatory activity over time might be important for memory and, therefore, that the amplitude modulation of oscillations may be abnormal in Alzheimer disease (AD). To test this hypothesis, we measured magnetoencephalography (MEG) during eyes-closed rest in 19 patients diagnosed with early-stage AD and 16 age-matched control subjects and characterized the autocorrelation structure of ongoing oscillations using detrended fluctuation analysis and an analysis of the life- and waiting-time statistics of oscillation bursts. We found that Alzheimer's patients had a strongly reduced incidence of alpha-band oscillation bursts with long life- or waiting-times (< 1 s) over temporo-parietal regions and markedly weaker autocorrelations on long time scales (1-25 seconds). Interestingly, the life- and waiting-times of theta oscillations over medial prefrontal regions were greatly increased. Whereas both temporo-parietal alpha and medial prefrontal theta oscillations are associated with retrieval and retention of information, metabolic and structural deficits in early-stage AD are observed primarily in temporo-parietal areas, suggesting that the enhanced oscillations in medial prefrontal cortex reflect a compensatory mechanism. Together, our results suggest that amplitude modulation of neuronal oscillations is important for cognition and that indices of amplitude dynamics of oscillations may prove useful as neuroimaging biomarkers of early-stage AD.
Collapse
|
48
|
Abásolo D, Hornero R, Escudero J, Espino P. A study on the possible usefulness of detrended fluctuation analysis of the electroencephalogram background activity in Alzheimer's disease. IEEE Trans Biomed Eng 2008; 55:2171-9. [PMID: 18713686 DOI: 10.1109/tbme.2008.923145] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We studied the EEG background activity of Alzheimer's disease (AD) patients with detrended fluctuation analysis (DFA). DFA provides an estimation of the scaling information and long-range correlations in time series. We recorded the EEG in 11 AD patients and 11 age-matched controls. Our results showed two scaling regions in all subjects' channels (for limited time scales from 0.01 to 0.04 s and from 0.08 to 0.43 s, respectively), with a clear bend when their corresponding slopes (alpha(1) and alpha(2)) were different. No significant differences between groups were found with alpha(1). However, alpha(2) values were significantly lower in control subjects at electrodes T5, T6, and O1 (p < 0.01, Student's t-test). These findings suggest that the scaling behavior of the EEG is sensitive to AD. Although alpha(2) values allowed us to separate AD patients and controls, accuracies were lower than with spectral analysis. However, a forward stepwise linear discriminant analysis with a leave-one-out cross-validation procedure showed that the combined use of DFA and spectral analysis could improve the diagnostic accuracy of each individual technique. Thus, although spectral analysis outperforms DFA, the combined use of both techniques may increase the insight into brain dysfunction in AD.
Collapse
Affiliation(s)
- Daniel Abásolo
- Biomedical Engineering Group, Department of Signal Theory and Communications, E.T.S.I. de Telecomunicación, University of Valladolid, 47011 Valladolid, Spain.
| | | | | | | |
Collapse
|
49
|
Li Y, Qiu J, Yang Z, Johns EJ, Zhang T. Long-range correlation of renal sympathetic nerve activity in both conscious and anesthetized rats. J Neurosci Methods 2008; 172:131-6. [PMID: 18511128 DOI: 10.1016/j.jneumeth.2008.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 04/12/2008] [Accepted: 04/16/2008] [Indexed: 12/01/2022]
Abstract
In this study we employed both detrended fluctuation analysis (DFA) and multiscale entropy (MSE) measurements to compare the long-range temporal correlation (LRTC) of multifibre renal sympathetic nerve activity (RSNA) between conscious and anesthetized Wistar rats. It was found that both methods showed the obvious LRTC properties in conscious state. Moreover, the scaling exponent of the RSNA in conscious rats was significantly higher than that in anesthetized rats. The results of MSE analysis showed that the entropy values, derived from the conscious group, increased on small time scales and then stabilized to a relatively constant value whereas the entropy measure, derived from anesthetized animals, almost monotonically decreased. This suggests that the fractal properties of underlying dynamics of the system have been reduced by anesthesia. The results demonstrate that apparently random fluctuations in multifibre RSNA are dictated by a complex deterministic process that imparts "long-term" memory to the dynamic system. However, this memory is significantly weakened by anesthesia.
Collapse
Affiliation(s)
- Yatang Li
- Key Laboratory of Bioactive Materials, Ministry of Education and the College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | | | | | | | | |
Collapse
|
50
|
Abstract
The amplitude fluctuations of ongoing oscillations in the electroencephalographic (EEG) signal of the human brain show autocorrelations that decay slowly and remain significant at time scales up to tens of seconds. We call these long-range temporal correlations (LRTC). Abnormal LRTC have been observed in several brain pathologies, but it has remained unknown whether genetic factors influence the temporal correlation structure of ongoing oscillations. We recorded the ongoing EEG during eyes-closed rest in 390 monozygotic and dizygotic twins and investigated the temporal structure of ongoing oscillations in the alpha- and beta-frequency bands using detrended fluctuation analysis (DFA). The strength of LRTC was more highly correlated in monozygotic than in dizygotic twins. Statistical analysis attributed up to approximately 60% of the variance in DFA to genetic factors, indicating a high heritability for the temporal structure of amplitude fluctuations in EEG oscillations. Importantly, the DFA and EEG power were uncorrelated. LRTC in ongoing oscillations are robust, heritable, and independent of power, suggesting that LRTC and oscillation power are governed by distinct biophysical mechanisms and serve different functions in the brain. We propose that the DFA method is an important complement to classical spectral analysis in fundamental and clinical research on ongoing oscillations.
Collapse
|