1
|
Shaw AA, Steketee JD, Bukiya AN, Dopico AM. Toluene is a cerebral artery constrictor acting via BK channels. Neuropharmacology 2025; 266:110272. [PMID: 39706291 PMCID: PMC11745904 DOI: 10.1016/j.neuropharm.2024.110272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Acute intoxication by toluene usually follows intentional inhalation to achieve a "high", which may lead to repeated use due to toluene's reinforcing properties. In both acute and chronic intoxication brain function is primarily affected. Neuronal and glial elements participate in toluene's reinforcing properties and chronic toxicity, yet the targets underlying acute toxicity remain unknown. Many signs of toluene's acute toxicity overlap with those of brain ischemia. Moreover, two studies in humans who abused toluene reveal brain hypoperfusion in middle cerebral artery (MCA) territories. Hypoperfusion, however, may result from either excessive vasoconstriction/increased vasodilation. Using rat and mouse models, we demonstrate that toluene at concentrations reached during recreational inhalation (8000 ppm) significantly decreases (-8%) MCA diameter in vivo in male and female animals. Using GC-MS, we determined toluene blood levels from inhalation (0.09-127 mM) and then show that <1 mM toluene constricts ex vivo-pressurized MCA independently of endothelium. Toluene action is blunted by deletion of KCNMA1, which codes for BK channels, key regulators of MCA diameter, and upon selective channel blockade by 1 μM paxilline. Lastly, when applied onto an isolated membrane patch several minutes after patch-excision from the SM cell, submM toluene reduces mildly yet statistically significantly (P < 0.05) both steady-state activity (-15%) and unitary current amplitude (-20%) of MCA myocyte BK channels. Thus, BK channels themselves and their immediate proteolipid microenvironment suffice for these drug actions. Collectively, data unveil a direct inhibition of MCA myocyte BK currents by intoxicating levels of toluene, which determines, or at least contributes to, MCA constriction by toluene levels reached during inhalation by humans who suffer acute brain intoxication.
Collapse
Affiliation(s)
- Andrew A Shaw
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Jeffery D Steketee
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Anna N Bukiya
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
| |
Collapse
|
2
|
Shaw AA, Steketee JD, Bukiya AN, Dopico AM. Toluene Toxicity in the Brain: From Cellular Targets to Molecular Mechanisms. Annu Rev Pharmacol Toxicol 2025; 65:487-506. [PMID: 39847463 DOI: 10.1146/annurev-pharmtox-012924-010532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Toluene intoxication constitutes a persistent public health problem worldwide. While most organs can be damaged, the brain is a primary target whether exposure is accidental, occupational, or recreational. Interventions to prevent/revert brain damage by toluene are curtailed by the scarce information on the molecular targets and mechanisms mediating toluene's brain toxicity and the common exposure to other neurotoxins and/or coexistence of neurological/psychiatric disorders. We examine (a) the physicochemical properties of toluene that allow this inhalant to primarily target the lipid-rich brain; (b) the cell types targeted by toluene (neurons, different types of glia), while considering a cerebrovascular component; and (c) putative molecular mechanisms by which toluene may modify receptor function while analyzing structural features that allow toluene to directly interact with membrane lipids or specific proteins. This information constitutes a stepping stone to design pharmacotherapies that counteract toluene brain intoxication.
Collapse
Affiliation(s)
- Andrew A Shaw
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA;
| | - Jeffery D Steketee
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA;
| | - Anna N Bukiya
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA;
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA;
| |
Collapse
|
3
|
Acharyya S, Kumar SH, Chouksey A, Soni N, Nazeer N, Mishra PK. The enigma of mitochondrial epigenetic alterations in air pollution-induced neurodegenerative diseases. Neurotoxicology 2024; 105:158-183. [PMID: 39374796 DOI: 10.1016/j.neuro.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The incidence of neurodegenerative diseases is a growing concern worldwide, affecting individuals from diverse backgrounds. Although these pathologies are primarily associated with aging and genetic susceptibility, their severity varies among the affected population. Numerous studies have indicated air pollution as a significant contributor to the increasing prevalence of neurodegeneration. Cohort studies have provided compelling evidence of the association between prolonged exposure to different air toxicants and cognitive decline, behavioural deficits, memory impairment, and overall neuronal health deterioration. Furthermore, molecular research has revealed that air pollutants can disrupt the body's protective mechanisms, participate in neuroinflammatory pathways, and cause neuronal epigenetic modifications. The mitochondrial epigenome is particularly interesting to the scientific community due to its potential to significantly impact our understanding of neurodegenerative diseases' pathogenesis and their release in the peripheral circulation. While protein hallmarks have been extensively studied, the possibility of using circulating epigenetic signatures, such as methylated DNA fragments, miRNAs, and genome-associated factors, as diagnostic tools and therapeutic targets requires further groundwork. The utilization of circulating epigenetic signatures holds promise for developing novel prognostic strategies, creating paramount point-of-care devices for disease diagnosis, identifying therapeutic targets, and developing clinical data-based disease models utilizing multi-omics technologies and artificial intelligence, ultimately mitigating the threat and prevalence of neurodegeneration.
Collapse
Affiliation(s)
- Sayanti Acharyya
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Sruthy Hari Kumar
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Apoorva Chouksey
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nazim Nazeer
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India; Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
4
|
Murray BP, Kiernan EA. Physiologic Effects of Substance Use. Emerg Med Clin North Am 2024; 42:69-91. [PMID: 37977754 DOI: 10.1016/j.emc.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Physiologic and psychological effects of substance use are common occurrences. They may be the proximate purpose of the exposure or related to an unintended complication. Acute short-term exposure effects may not be the same as long-term effects. These effects are mediated by different receptors they act on and the homeostatic changes that occur due to repeat exposure. We review in this article the physiologic and psychological effects from exposure to commonly encountered drugs, ethanol, sedative hypnotics, cocaine, amphetamines, marijuana, opioids, nicotine, hydrocarbons (halogenated and non-halogenated), and nitrous oxide.
Collapse
Affiliation(s)
- Brian Patrick Murray
- Department of Emergency Medicine, Wright State Boonshoft School of Medicine, 2555 University Boulevard, Suite 110, Dayton, OH 45324, USA.
| | - Emily Anne Kiernan
- Department of Emergency Medicine, Emory University School of Medicine, 50 Hurtz Plaza Southeast, Suite 600, Atlanta, GA, USA; Georgia Poison Center, 50 Hurtz Plaza Southeast, Suite 600, Atlanta, GA, USA
| |
Collapse
|
5
|
The Effects of the Inhalant Toluene on Cognitive Function and Behavioral Flexibility: A Review of Recent Findings. ADDICTION NEUROSCIENCE 2023; 5:100059. [PMID: 36798693 PMCID: PMC9928149 DOI: 10.1016/j.addicn.2022.100059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Substance use disorder (SUD) is characterized, in part, by lack of control over drug seeking and taking. The prefrontal cortex (PFC) is highly involved in control of behavior and deficits in PFC structure and function have been demonstrated in clinical and preclinical studies of SUD. Of the various classes of drugs associated with the development of SUD, inhalants are among the least studied despite their widespread use among adolescents and children. In this work, we review what is currently known regarding the sites and mechanisms of action of inhalants with a focus on the volatile solvent toluene that is contained in a wide variety of legal and easily obtained products. We then describe how inhalants including toluene affect various behaviors with an emphasis on those associated with PFC function and how chronic use of inhalants alters brain structure and neuronal signaling. Findings from these studies highlight advances made in recent years that have expanded our understanding of the effects of inhalants on brain structure and reinforce the need for continued work in this field.
Collapse
|
6
|
Zhvania MG, Pochkhidze N, Dashniani M, Tizabi Y, Japaridze N, Burjanadze M, Chilachava L. Short- and long-term effects of chronic toluene exposure on recognition memory in adolescent and adult male Wistar rats. Brain Res Bull 2022; 190:116-121. [PMID: 36156293 DOI: 10.1016/j.brainresbull.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Abuse of toluene-containing volatile inhalants, particularly among youth, is of significant medical and social concern worldwide. Teenagers constitute the most abundant users of toluene and the majority of adult abusers of toluene started as teenagers. Although the euphoric and neurotoxic effects of acute toluene have been widely studied, lasting effects of chronic toluene exposure, especially in various age groups, have not been well investigated. In this study, we used adolescent and adult male Wistar rats to evaluate the short- and long-term effects of chronic toluene on various behaviors including cognitive function. Daily exposure to toluene (2000 ppm) for 40 days (5min/day) resulted in age-dependent behavioral impairments. Specifically, adolescent animals showed recognition memory impairment the day after the last exposure, which had normalized by day 90 post- exposure, whereas such impairment in adult animals was still evident at day 90 post-exposure. Our data suggest that age-dependent responses should be taken into consideration in interventional attempts to overcome specific detrimental consequences of chronic toluene exposure.
Collapse
Affiliation(s)
- Mzia G Zhvania
- School of Natural Sciences and Medicine, Ilia State University. 3/5 K. Cholokashvili Avenue,0162 Tbilisi, Georgia; Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia.
| | - Nino Pochkhidze
- School of Natural Sciences and Medicine, Ilia State University. 3/5 K. Cholokashvili Avenue,0162 Tbilisi, Georgia; Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia
| | - Manana Dashniani
- Department of Behavior and Cognitive Functions, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia; Medical School, New Vision University, 1A Evgeni Mikeladze Street, 0159 Tbilisi, Georgia
| | - Maia Burjanadze
- Department of Behavior and Cognitive Functions, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia
| | - Lela Chilachava
- School of Natural Sciences and Medicine, Ilia State University. 3/5 K. Cholokashvili Avenue,0162 Tbilisi, Georgia
| |
Collapse
|
7
|
Cruz SL, Bowen SE. The last two decades on preclinical and clinical research on inhalant effects. Neurotoxicol Teratol 2021; 87:106999. [PMID: 34087382 DOI: 10.1016/j.ntt.2021.106999] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/24/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022]
Abstract
This paper reviews the scientific evidence generated in the last two decades on the effects and mechanisms of action of most commonly misused inhalants. In the first section, we define what inhalants are, how they are used, and their prevalence worldwide. The second section presents specific characteristics that define the main groups of inhalants: (a) organic solvents; (b) aerosols, gases, and volatile anesthetics; and (c) alkyl nitrites. We include a table with the molecular formula, structure, synonyms, uses, physicochemical properties and exposure limits of representative compounds within each group. The third and fourth sections review the direct acute and chronic effects of common inhalants on health and behavior with a summary of mechanisms of action, respectively. In the fifth section, we address inhalant intoxication signs and available treatment. The sixth section examines the health effects, intoxication, and treatment of nitrites. The seventh section reviews current intervention strategies. Finally, we propose a research agenda to promote the study of (a) solvents other than toluene; (b) inhalant mixtures; (c) effects in combination with other drugs of abuse; (d) age and (e) sex differences in inhalant effects; (f) the long-lasting behavioral effects of animals exposed in utero to inhalants; (g) abstinence signs and neurochemical changes after interrupting inhalant exposure; (h) brain networks involved in inhalant effects; and finally (i) strategies to promote recovery of inhalant users.
Collapse
Affiliation(s)
- Silvia L Cruz
- Department of Pharmacobiology, Center of Research and Advanced Studies (Cinvestav), Calzada de los Tenorios No. 235, Col. Granjas Coapa, México City 14330, México.
| | - Scott E Bowen
- Department of Psychology, Wayne State University, 5057 Woodward Ave., Suite 7906.1, Detroit, MI 48202, USA.
| |
Collapse
|
8
|
Minocycline prevents neuronal hyperexcitability and neuroinflammation in medial prefrontal cortex, as well as memory impairment caused by repeated toluene inhalation in adolescent rats. Toxicol Appl Pharmacol 2020; 395:114980. [PMID: 32234516 DOI: 10.1016/j.taap.2020.114980] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 02/04/2023]
Abstract
Toluene can be intentionally misused by adolescents to experience psychoactive effects. Toluene has a complex mechanism of action and broad behavioral effects, among which memory impairment is reported consistently. We have previously reported that repeated toluene inhalation (8000 ppm) increases layer 5 prelimbic pyramidal cells' excitability in the medial prefrontal cortex (mPFC) of adolescent rats. Toluene also produces reactive oxygen species (ROS), which activate glial cells. Here, we tested the hypothesis that the anti-inflammatory agent minocycline would decrease toluene's effects because it inhibits NF-κB (nuclear factor enhancer of the kappa light chains of activated B cells) and reduces pro-inflammatory cytokine and ROS production. Our results show that minocycline (50 mg/kg, ip, for 10 days) prevents the hyperexcitability of mPFC neurons observed after repeated 8000 ppm toluene exposure (30 min/day, 2×/day for 10 days). Minocycline prevents toluene-induced hyperexcitability by a mechanism that averts the loss of the slow calcium-dependent potassium current, and normalizes mPFC neurons' firing frequency. These effects are accompanied by significant decreased expression of astrocytes and activated microglia in the mPFC, reduced NLRP3 inflammasome activation and mRNA expression levels of the pro-inflammatory cytokine interleukin 1β (IL-1β), as well as increased mRNA expression of the anti-inflammatory cytokine transforming growth factor β (TGF-β). Minocycline also prevents toluene-induced memory impairment in adolescent rats in the passive avoidance task and the temporal order memory test in which the mPFC plays a central role. These results show that neuroinflammation produces several effects of repeated toluene administration at high concentrations, and minocycline can significantly prevent them.
Collapse
|
9
|
Soares MV, Charão MF, Jacques MT, Dos Santos ALA, Luchese C, Pinton S, Ávila DS. Airborne toluene exposure causes germline apoptosis and neuronal damage that promotes neurobehavioural changes in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113406. [PMID: 31662251 DOI: 10.1016/j.envpol.2019.113406] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Toluene is a highly volatile organic solvent present in gasoline. Exposure mainly occurs by absorption via the pulmonary tract and easily reaches the central nervous system, which causes toxic effects. Toluene toxicity has been described but not well established. The present work aimed to evaluate the effects of airborne exposure to toluene, the in vivo model Caenorhabditis elegans was assessed to determine whether nematode could be used to evaluate the effects of exposure to toluene and the possible mechanisms of toxicity of the solvent. Worms at the first or fourth larval stages were exposed to toluene for 48 or 24 h, respectively, in a laboratory-developed vapor chamber at concentrations of 450, 850, 1250 and 1800 ppm. We observed increases in worm mortality and significant developmental delays that occurred in a concentration-dependent manner. An increased incidence of apoptotic events in treated germline cells was shown, which was consistent with observed reductions in reproductive capacity. In addition, toluene promoted significant behavioural changes affecting swimming movements and radial locomotion, which were associated with changes in the fluorescence intensity and morphology of GABAergic and cholinergic neurons. We conclude that toluene exposure was toxic to C. elegans, with effects produced by the induction of apoptosis and neuronal damage.
Collapse
Affiliation(s)
- Marcell Valandro Soares
- Programa de Pós-Graduação em Bioquímica, Grupo de pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa, Uruguaiana, RS, 97500-970, Brazil
| | - Mariele Feiffer Charão
- Laboratório de Toxicologia Analítica, Universidade Feevale, Rua Rubem Berta, nº 200, Novo Hamburgo, CEP: 93525-090, RS, Brazil
| | - Mauricio Tavares Jacques
- Programa de Pós-Graduação em Bioquímica, Grupo de pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa, Uruguaiana, RS, 97500-970, Brazil; Laboratório de Experimentação em Neuropatologia - Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Bloco C, Trindade, Florianópolis, SC, CEP 88040-900, Brazil
| | - Ana Laura Anibaletto Dos Santos
- Laboratório de Toxicologia Analítica, Universidade Feevale, Rua Rubem Berta, nº 200, Novo Hamburgo, CEP: 93525-090, RS, Brazil
| | - Cristiane Luchese
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Simone Pinton
- Programa de Pós-Graduação em Bioquímica, Grupo de pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa, Uruguaiana, RS, 97500-970, Brazil
| | - Daiana Silva Ávila
- Programa de Pós-Graduação em Bioquímica, Grupo de pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa, Uruguaiana, RS, 97500-970, Brazil.
| |
Collapse
|
10
|
Armenta-Reséndiz M, Ríos-Leal E, Rivera-García MT, López-Rubalcava C, Cruz SL. Structure-activity study of acute neurobehavioral effects of cyclohexane, benzene, m-xylene, and toluene in rats. Toxicol Appl Pharmacol 2019; 376:38-45. [DOI: 10.1016/j.taap.2019.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/04/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022]
|
11
|
Cruz SL, Torres-Flores M, Galván EJ. Repeated toluene exposure alters the synaptic transmission of layer 5 medial prefrontal cortex. Neurotoxicol Teratol 2019; 73:9-14. [DOI: 10.1016/j.ntt.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 01/23/2023]
|
12
|
Campos-Ordonez T, Zarate-Lopez D, Ibarra-Castaneda N, Buritica J, Gonzalez-Perez O. Cyclohexane Inhalation Produces Long-Lasting Alterations in the Hippocampal Integrity and Reward-Seeking Behavior in the Adult Mouse. Cell Mol Neurobiol 2019; 39:435-449. [PMID: 30771197 PMCID: PMC11469884 DOI: 10.1007/s10571-019-00660-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
Cyclohexane (CHX) is an organic solvent commonly used as a drug-of-abuse. This drug increases the oxidative stress and glial reactivity in the hippocampus, which suggests that this brain region is vulnerable to CHX effects. This study aimed to establish the behavioral changes and the pathological alterations that occur in the Cornu Ammonis 3 (CA3) and Dentate Gyrus (DG) after a long-lasting exposure to CHX. We exposed CD1 mice to a recreational-like dose of CHX (~ 30,000 ppm) for 30 days and explored its consequences in motor skills, reward-seeking behavior, and the CA3 and DG hippocampal subfields. Twenty-four hours after the last administration of CHX, we found a significant decrease in the number of c-Fos+ cells in the hippocampal CA3 and DG regions. This event coincided with an increased in NMDAR1 expression and apoptotic cells in the CA3 region. At day 13th without CHX, we found a persistent reduction in the number of c-Fos+ and TUNEL+ cells in DG. At both time points, the CHX-exposed mice showed a strong overexpression of neuropeptide Y (NPY) in the CA3 stratum lucidum and the hippocampal hilus. In parallel, we used an operant-based task to assess motor performance and operant conditioning learning. The behavioral analysis indicated that CHX did not modify the acquisition of operant conditioning tasks, but affected some motor skills and increased the reward-seeking behavior. Altogether, this evidence reveals that CHX exposure provokes long-lasting changes in the hippocampal subfields, induces motor impairments and increases the motivation-guided behavior. These findings can help understand the deleterious effect of CHX into the adult hippocampus and unveil its potential to trigger addiction-like behaviors.
Collapse
Affiliation(s)
- Tania Campos-Ordonez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
- Physiological Sciences PhD Program, School of Medicine, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
| | - David Zarate-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
- Physiological Sciences PhD Program, School of Medicine, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
| | - Nereida Ibarra-Castaneda
- Laboratory of Neuroscience, School of Psychology, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
| | - Jonathan Buritica
- Centro de Estudios e Investigaciones en Comportamiento, University of Guadalajara, St. Francisco de Quevedo 180, 44130, Guadalajara, Jalisco, Mexico
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico.
| |
Collapse
|
13
|
Montes S, Yee-Rios Y, Páez-Martínez N. Environmental enrichment restores oxidative balance in animals chronically exposed to toluene: Comparison with melatonin. Brain Res Bull 2019; 144:58-67. [DOI: 10.1016/j.brainresbull.2018.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 08/28/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
|
14
|
Yavari F, van Thriel C, Nitsche MA, Kuo MF. Effect of acute exposure to toluene on cortical excitability, neuroplasticity, and motor learning in healthy humans. Arch Toxicol 2018; 92:3149-3162. [DOI: 10.1007/s00204-018-2277-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/31/2018] [Indexed: 12/27/2022]
|
15
|
Veit F, Martz W, Birngruber C, Dettmeyer R. Fatal accidental inhalation of brake cleaner aerosols. Forensic Sci Int 2018; 288:e10-e14. [DOI: 10.1016/j.forsciint.2018.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
|
16
|
Repeated toluene exposure increases the excitability of layer 5 pyramidal neurons in the prefrontal cortex of adolescent rats. Neurotoxicol Teratol 2018; 68:27-35. [DOI: 10.1016/j.ntt.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/11/2022]
|
17
|
Ratner MH, Jabre JF, Ewing WM, Abou-Donia M, Oliver LC. Amyotrophic lateral sclerosis-A case report and mechanistic review of the association with toluene and other volatile organic compounds. Am J Ind Med 2018; 61:251-260. [PMID: 29125194 DOI: 10.1002/ajim.22791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 12/11/2022]
Abstract
Unmasking of latent neurodegenerative disease has been reported following exposure to chemicals that share one or more mechanisms of action in common with those implicated in the specific disease. For example, unmasking of latent Parkinson's disease (PD) has been associated with exposure to anti-dopaminergic agents, while the progression of pre-existing mild cognitive impairment and unmasking of latent Alzheimer's disease has been associated with exposure to general anesthetic agents which promote Aβ protein aggregation. This literature review and clinical case report about a 45-year-old man with no family history of motor neuron disease who developed overt symptoms of a neuromuscular disorder in close temporal association with his unwitting occupational exposure to volatile organic compounds (VOCs) puts forth the hypothesis that exposure to VOCs such as toluene, which disrupt motor function and increase oxidative stress, can unmask latent ALS type neuromuscular disorder in susceptible individuals.
Collapse
Affiliation(s)
- Marcia H Ratner
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Joe F Jabre
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | - Mohamed Abou-Donia
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - L Christine Oliver
- Department of Medicine (Pulmonary and Critical Care Division), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
A novel approach of substitution therapy with inhalation of essential oil for the reduction of inhalant craving: A double-blinded randomized controlled trial. Psychiatry Res 2018; 261:61-67. [PMID: 29287237 DOI: 10.1016/j.psychres.2017.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/06/2017] [Accepted: 12/08/2017] [Indexed: 11/22/2022]
Abstract
Inhalants, which are neurotoxic central nervous system (CNS) suppressants, are frequently abused by young adults. Unlike other CNS depressants, including alcohol and opiates, no treatment is currently approved for inhalant dependence. In this report, a novel approach of substitution treatment for inhalant addiction was explored in a double-blinded, randomized, controlled crossover design to examine the effects of inhalation of essential oil and perfume on the reduction of cue-induced craving for inhalant in thirty-four Thai males with inhalant dependence. The craving response was measured by the modified version of Penn Alcohol Craving Score for Inhalants (PACS-inhalants). The participants (mean age ± SE = 27.9 ± 1.4) in this trial had used inhalant for 5.8 ± 1.1 years. Cravings could be induced in all participants by visual cues as assessed by ^50% increases in inhalant craving levels. Generalized estimating equations showed a significant suppressant effect of essential oil, but not perfume, on the craving response as compared with baseline cue-induced craving. Moreover, essential oil, but not perfume, had significant effects on physiological responses including decreasing pulse rate. It is concluded that inhaling essential oil as a substitution treatment for inhalant may be used as part of treatment programs for reducing inhalant craving.
Collapse
|
19
|
Delfino-Pereira P, Bertti-Dutra P, de Lima Umeoka EH, de Oliveira JAC, Santos VR, Fernandes A, Marroni SS, Del Vecchio F, Garcia-Cairasco N. Intense olfactory stimulation blocks seizures in an experimental model of epilepsy. Epilepsy Behav 2018; 79:213-224. [PMID: 29346088 DOI: 10.1016/j.yebeh.2017.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
There are reports of patients whose epileptic seizures are prevented by means of olfactory stimulation. Similar findings were described in animal models of epilepsy, such as the electrical kindling of amygdala, where olfactory stimulation with toluene (TOL) suppressed seizures in most rats, even when the stimuli were 20% above the threshold to evoke seizures in already kindled animals. The Wistar Audiogenic Rat (WAR) strain is a model of tonic-clonic seizures induced by acute acoustic stimulation, although it also expresses limbic seizures when repeated acoustic stimulation occurs - a process known as audiogenic kindling (AK). The aim of this study was to evaluate whether or not the olfactory stimulation with TOL would interfere on the behavioral expression of brainstem (acute) and limbic (chronic) seizures in the WAR strain. For this, animals were exposed to TOL or saline (SAL) and subsequently exposed to acoustic stimulation in two conditions that generated: I) acute audiogenic seizures (only one acoustic stimulus, without previous seizure experience before of the odor test) and II) after AK (20 acoustic stimuli [2 daily] before of the protocol test). We observed a decrease in the seizure severity index of animals exposed only to TOL in both conditions, with TOL presented 20s before the acoustic stimulation in both protocols. These findings were confirmed by behavioral sequential analysis (neuroethology), which clearly indicated an exacerbation of clusters of specific behaviors such as exploration and grooming (self-cleaning), as well as significant decrease in the expression of brainstem and limbic seizures in response to TOL. Thus, these data demonstrate that TOL, a strong olfactory stimulus, has anticonvulsant properties, detected by the decrease of acute and AK seizures in WARs.
Collapse
Affiliation(s)
- Polianna Delfino-Pereira
- Neurosciences and Behavioral Sciences Department, Ribeirão Preto School of Medicine, Universiy of São Paulo, Hospital das Clínicas, Campus Universitário S/N, 4° Andar, Ribeirão Preto, SP CEP: 14048-900, Brazil
| | - Poliana Bertti-Dutra
- Neurosciences and Behavioral Sciences Department, Ribeirão Preto School of Medicine, Universiy of São Paulo, Hospital das Clínicas, Campus Universitário S/N, 4° Andar, Ribeirão Preto, SP CEP: 14048-900, Brazil; Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Neurosciences and Behavioral Sciences Department, Ribeirão Preto School of Medicine, Universiy of São Paulo, Hospital das Clínicas, Campus Universitário S/N, 4° Andar, Ribeirão Preto, SP CEP: 14048-900, Brazil; Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - José Antônio Cortes de Oliveira
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - Victor Rodrigues Santos
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - Artur Fernandes
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil; Genetics Department, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - Simone Saldanha Marroni
- Neurosciences and Behavioral Sciences Department, Ribeirão Preto School of Medicine, Universiy of São Paulo, Hospital das Clínicas, Campus Universitário S/N, 4° Andar, Ribeirão Preto, SP CEP: 14048-900, Brazil; Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - Flávio Del Vecchio
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - Norberto Garcia-Cairasco
- Neurosciences and Behavioral Sciences Department, Ribeirão Preto School of Medicine, Universiy of São Paulo, Hospital das Clínicas, Campus Universitário S/N, 4° Andar, Ribeirão Preto, SP CEP: 14048-900, Brazil; Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil.
| |
Collapse
|
20
|
Malloul H, Mahdani FM, Bennis M, Ba-M'hamed S. Prenatal Exposure to Paint Thinner Alters Postnatal Development and Behavior in Mice. Front Behav Neurosci 2017; 11:171. [PMID: 28959195 PMCID: PMC5604056 DOI: 10.3389/fnbeh.2017.00171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/29/2017] [Indexed: 01/17/2023] Open
Abstract
Occupational exposure and sniffing of volatile organic solvents continue to be a worldwide health problem, raising the risk for teratogenic sequelae of maternal inhalant abuse. Real life exposures usually involve simultaneous exposures to multiple solvents, and almost all the abused solvents contain a mixture of two or more different volatile compounds. However, several studies examined the teratogenicity due to industrial exposure to a single volatile solvent but investigating the teratogenic potential of complex chemical mixture such as thinner remains unexplored. This study was undertaken to evaluate developmental neurotoxicity of paint thinner using a mouse model. Mated female mice (N = 21) were, therefore, exposed to repeated and brief inhalation episodes of 0, 300 or 600 ppm of thinner during the entire period of pregnancy. Females weigh was recorded and their standard fertility and reproductive parameters were assessed. After birth postnatal day 1 (PND1), offspring (N = 88) length and body weight were measured in a daily basis. At PND5, the pups were assessed for their postnatal growth, physical maturation, reflex development, neuromotor abilities, sensory function, activity level, anxiety, depression, learning and memory functions. At adulthood, structural changes of the hippocampus were examined by estimating the total volume of the dentate gyrus. Except one case of thinner induced abortion at the higher dose, our results showed that the prenatal exposure to the solvent did not cause any maternal toxicity or decrease in the viability of the offspring. Therefore, a lower birth weight, decrease in the litter size and delayed reflexes ontogeny were registered in prenatally exposed offspring to both 300 ppm and 600 ppm of thinner. In addition, prenatally exposure to thinner resulted in increased anxiolytic- and depression-like behaviors. In contrast, impaired learning and memory functions and decreased hippocampal dentate gyrus volume were revealed only in the prenatally treated offspring by 600 ppm of thinner. Based on these results, we can conclude that prenatally exposure to paint thinner causes a long-lasting developmental neurotoxicity and alters a wide range of behavioral functions in mice. This shows the risk that mothers who abuse thinner paint expose their offspring.
Collapse
Affiliation(s)
- Hanaa Malloul
- Laboratory of Pharmacology, Neurobiology and Behavior (URAC-37), Faculty of Sciences Semlalia, University Cadi AyyadMarrakech, Morocco
| | - Ferdaousse M Mahdani
- Laboratory of Pharmacology, Neurobiology and Behavior (URAC-37), Faculty of Sciences Semlalia, University Cadi AyyadMarrakech, Morocco
| | - Mohammed Bennis
- Laboratory of Pharmacology, Neurobiology and Behavior (URAC-37), Faculty of Sciences Semlalia, University Cadi AyyadMarrakech, Morocco
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, Neurobiology and Behavior (URAC-37), Faculty of Sciences Semlalia, University Cadi AyyadMarrakech, Morocco
| |
Collapse
|
21
|
Montes S, Solís-Guillén RDC, García-Jácome D, Páez-Martínez N. Environmental enrichment reverses memory impairment induced by toluene in mice. Neurotoxicol Teratol 2017; 61:7-16. [DOI: 10.1016/j.ntt.2017.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 01/02/2023]
|
22
|
Toluene's effects on activity and extracellular dopamine in the mouse are altered by GABA A antagonism. Neurosci Lett 2017; 647:67-71. [PMID: 28288863 DOI: 10.1016/j.neulet.2017.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/16/2017] [Accepted: 03/02/2017] [Indexed: 02/02/2023]
Abstract
The abuse of inhalants like toluene continues to be widespread around the world, especially among children and teenagers. Despite its frequency of misuse, the dynamics between dopamine (DA) and gamma-aminobutyric acid (GABA) in response to toluene exposure remains unclear. To further decipher toluene's actions, we used a dynamic exposure system in combination with microdialysis to examine in vivo the effects of acutely inhaled toluene on DA release within the mouse caudate putamen (CPu). Results show that toluene inhalation produced increases in DA levels and locomotor activity. In mice that were pretreated with the GABAA antagonist, bicuculline, there was no change in the locomotor response during toluene but activity was potentiated following toluene exposure. Bicuculline pretreatment increased extracellular DA levels during toluene exposure, suggesting that DA and GABA-releasing neuron interaction may play a role in the rewarding properties of toluene.
Collapse
|
23
|
Bushnell PJ, Ward WO, Morozova TV, Oshiro WM, Lin MT, Judson RS, Hester SD, McKee JM, Higuchi M. Editor's Highlight: Genetic Targets of Acute Toluene Inhalation in Drosophila melanogaster. Toxicol Sci 2017; 156:230-239. [PMID: 28013218 DOI: 10.1093/toxsci/kfw243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interpretation and use of data from high-throughput assays for chemical toxicity require links between effects at molecular targets and adverse outcomes in whole animals. The well-characterized genome of Drosophila melanogaster provides a potential model system by which phenotypic responses to chemicals can be mapped to genes associated with those responses, which may in turn suggest adverse outcome pathways associated with those genes. To determine the utility of this approach, we used the Drosophila Genetics Reference Panel (DGRP), a collection of ∼200 homozygous lines of fruit flies whose genomes have been sequenced. We quantified toluene-induced suppression of motor activity in 123 lines of these flies during exposure to toluene, a volatile organic compound known to induce narcosis in mammals via its effects on neuronal ion channels. We then applied genome-wide association analyses on this effect of toluene using the DGRP web portal (http://dgrp2.gnets.ncsu.edu), which identified polymorphisms in candidate genes associated with the variation in response to toluene exposure. We tested ∼2 million variants and found 82 polymorphisms located in or near 66 candidate genes that were associated with phenotypic variation for sensitivity to toluene at P < 5 × 10-5, and human orthologs for 52 of these candidate Drosophila genes. None of these orthologs are known to be involved in canonical pathways for mammalian neuronal ion channels, including GABA, glutamate, dopamine, glycine, serotonin, and voltage sensitive calcium channels. Thus this analysis did not reveal a genetic signature consistent with processes previously shown to be involved in toluene-induced narcosis in mammals. The list of the human orthologs included Gene Ontology terms associated with signaling, nervous system development and embryonic morphogenesis; these orthologs may provide insight into potential new pathways that could mediate the narcotic effects of toluene.
Collapse
Affiliation(s)
- Philip J Bushnell
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina
| | - William O Ward
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina
| | - Tatiana V Morozova
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Wendy M Oshiro
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina
| | - Mimi T Lin
- Oak Ridge Institute for Science and Engineering, Oak Ridge, Tennessee
| | - Richard S Judson
- National Center for Computational Toxicology, U.S. EPA, Research Triangle Park, North Carolina
| | - Susan D Hester
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina
| | - John M McKee
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina
| | - Mark Higuchi
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina
| |
Collapse
|
24
|
Cruz SL, Gauthereau-Torres MY, Rivera-García MT. Structure-activity relationship for the anticonvulsant effects of organic solvents. Neurotoxicology 2016; 57:121-127. [DOI: 10.1016/j.neuro.2016.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 02/01/2023]
|
25
|
Furlong TM, Duncan JR, Corbit LH, Rae CD, Rowlands BD, Maher AD, Nasrallah FA, Milligan CJ, Petrou S, Lawrence AJ, Balleine BW. Toluene inhalation in adolescent rats reduces flexible behaviour in adulthood and alters glutamatergic and GABAergic signalling. J Neurochem 2016; 139:806-822. [PMID: 27696399 DOI: 10.1111/jnc.13858] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/15/2016] [Accepted: 09/18/2016] [Indexed: 12/24/2022]
Abstract
Toluene is a commonly abused inhalant that is easily accessible to adolescents. Despite the increasing incidence of use, our understanding of its long-term impact remains limited. Here, we used a range of techniques to examine the acute and chronic effects of toluene exposure on glutameteric and GABAergic function, and on indices of psychological function in adult rats after adolescent exposure. Metabolomics conducted on cortical tissue established that acute exposure to toluene produces alterations in cellular metabolism indicative of a glutamatergic and GABAergic profile. Similarly, in vitro electrophysiology in Xenopus oocytes found that acute toluene exposure reduced NMDA receptor signalling. Finally, in an adolescent rodent model of chronic intermittent exposure to toluene (10 000 ppm), we found that, while toluene exposure did not affect initial learning, it induced a deficit in updating that learning when response-outcome relationships were reversed or degraded in an instrumental conditioning paradigm. There were also group differences when more effort was required to obtain the reward; toluene-exposed animals were less sensitive to progressive ratio schedules and to delayed discounting. These behavioural deficits were accompanied by changes in subunit expression of both NMDA and GABA receptors in adulthood, up to 10 weeks after the final exposure to toluene in the hippocampus, prefrontal cortex and ventromedial striatum; regions with recognized roles in behavioural flexibility and decision-making. Collectively, our data suggest that exposure to toluene is sufficient to induce adaptive changes in glutamatergic and GABAergic systems and in adaptive behaviour that may underlie the deficits observed following adolescent inhalant abuse, including susceptibility to further drug-use.
Collapse
Affiliation(s)
- Teri M Furlong
- Brain & Mind Centre, University of Sydney, Sydney, New South Wales, Australia.,School of Psychology, University of Sydney, Sydney, New South Wales, Australia
| | - Jhodie R Duncan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Laura H Corbit
- School of Psychology, University of Sydney, Sydney, New South Wales, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, University of NSW, Kensington, New South Wales, Australia
| | - Benjamin D Rowlands
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, University of NSW, Kensington, New South Wales, Australia
| | - Anthony D Maher
- Neuroscience Research Australia, Randwick, New South Wales, Australia
| | | | - Carol J Milligan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Bernard W Balleine
- Brain & Mind Centre, University of Sydney, Sydney, New South Wales, Australia.,School of Psychology, University of NSW, Kensington, New South Wales, Australia
| |
Collapse
|
26
|
Smothers CT, Woodward JJ. Differential effects of TM4 tryptophan mutations on inhibition of N-methyl-d-aspartate receptors by ethanol and toluene. Alcohol 2016; 56:15-19. [PMID: 27814790 DOI: 10.1016/j.alcohol.2016.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/23/2016] [Accepted: 10/01/2016] [Indexed: 10/20/2022]
Abstract
The voluntary use and abuse of alcohol and inhalants is a recognized health problem throughout the world. Previous studies have shown that these agents affect brain function in a variety of ways including direct inhibition of key ion channels that regulate neuronal excitability. Among these, the N-methyl-d-aspartate (NMDA) receptor is particularly important given its key role in glutamatergic synaptic transmission, neuronal plasticity and learning and memory. Previous studies from this laboratory and others have identified key residues within transmembrane (TM) domains of the NMDA receptor that appear to regulate its sensitivity to alcohol and anesthetics. In this study, we extend these findings and examine the role of a TM4 residue in modulating sensitivity of recombinant NMDA receptors to ethanol and toluene. HEK293 cells were transfected with GluN1-1a and either wild-type or tryptophan-substituted GluN2(A-D) subunits and whole-cell currents were recorded using patch-clamp electrophysiology in the absence or presence of ethanol or toluene. Both ethanol (100 mM) and toluene (1 or 3 mM) reversibly inhibited glutamate-activated currents from wild-type NMDARs with GluN2B containing receptors showing heightened sensitivity to either agent. Substitution of tryptophan (W) at positions 825, 826, 823 or 850 in the TM4 domain of GluN2A, GluN2B, GluN2C or GluN2D subunits; respectively, significantly reduced the degree of inhibition by ethanol. In contrast, toluene inhibition of glutamate-activated currents in cells expressing the TM4-W mutants was not different from that of the wild-type controls. These data suggest that despite similarities in their action on NMDARs, ethanol and toluene may act at different sites to reduce ion flux through NMDA receptors.
Collapse
|
27
|
Nimitvilai S, You C, Arora DS, McElvain MA, Vandegrift BJ, Brodie MS, Woodward JJ. Differential Effects of Toluene and Ethanol on Dopaminergic Neurons of the Ventral Tegmental Area. Front Neurosci 2016; 10:434. [PMID: 27713687 PMCID: PMC5031606 DOI: 10.3389/fnins.2016.00434] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/07/2016] [Indexed: 11/13/2022] Open
Abstract
Drugs of abuse increase the activity of dopaminergic neurons of the ventral tegmental area (VTA), and output from the VTA is critical for both natural and drug-induced reward and reinforcement. Ethanol and the abused inhalant toluene both enhance VTA neuronal firing, but the mechanisms of this effect is not fully known. In this study, we used extracellular recordings to compare the actions of toluene and ethanol on DA VTA neurons. Both ethanol and toluene increased the firing rate of DA neurons, although toluene was ~100 times more potent than ethanol. The mixed ion channel blocker quinine (100 μM) blocked the increases in firing produced by ethanol and toluene, indicating some similarity in mechanisms of excitation. A mixture of antagonists of GABA and cholinergic receptors did not prevent toluene-induced or ethanol-induced excitation, and toluene-induced excitation was not altered by co-administration of ethanol, suggesting independent mechanisms of excitation for ethanol and toluene. Concurrent blockade of NMDA, AMPA, and metabotropic glutamate receptors enhanced the excitatory effect of toluene while having no significant effect on ethanol excitation. Nicotine increased firing of DA VTA neurons, and this was blocked by the nicotinic antagonist mecamylamine (1 μM). Mecamylamine did not alter ethanol or toluene excitation of firing but the muscarinic antagonist atropine (5 μM) or a combination of GABA antagonists (bicuculline and CGP35348, 10 μM each) reduced toluene-induced excitation without affecting ethanol excitation. The Ih current blocker ZD7288 abolished the excitatory effect of toluene but unlike the block of ethanol excitation, the effect of ZD7288 was not reversed by the GIRK channel blocker barium, but was reversed by GABA antagonists. These results demonstrate that the excitatory effects of ethanol and toluene have some similarity, such as block by quinine and ZD7288, but also indicate that there are important differences between these two drugs in their modulation by glutamatergic, cholinergic, and GABAergic receptors. These findings provide important information regarding the actions of abused inhalants on central reward pathways, and suggest that regulation of the activation of central dopamine pathways by ethanol and toluene partially overlap.
Collapse
Affiliation(s)
- Sudarat Nimitvilai
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, USA
| | - Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| | - Devinder S Arora
- School of Pharmacy, Griffith University Southport, QLD, Australia
| | - Maureen A McElvain
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| | - Bertha J Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
28
|
Meulenberg CJW, de Groot A, Westerink RHS, Vijverberg HPM. Organic solvent-induced changes in membrane geometry in human SH-SY5Y neuroblastoma cells - a common narcotic effect? Neurotoxicology 2016; 55:74-82. [PMID: 27235192 DOI: 10.1016/j.neuro.2016.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 05/11/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
Exposure to organic solvents may cause narcotic effects. At the cellular level, these narcotic effects have been associated with a reduction in neuronal excitability caused by changes in membrane structure and function. In order to critically test whether changes in membrane geometry contribute to these narcotic effects, cultured human SH-SY5Y neuroblastoma cells have been exposed to selected organic solvents. The solvent-induced changes in cell membrane capacitance were investigated using the whole-cell patch clamp technique for real-time capacitance measurements. Exposure of SH-SY5Y cells to the cyclic hydrocarbons m-xylene, toluene, and cyclohexane caused a rapid and reversible increase of membrane capacitance. The aliphatic, nonpolar n-hexane did not cause a detectable change of whole-cell membrane capacitance, whereas the amphiphiles n-hexanol and n-hexylamine caused an increase of membrane capacitance and a concomitant reduction in membrane resistance. Despite a large difference in dielectric properties, the chlorinated hydrocarbons 1,1,2,2-tetrachoroethane and tetrachloroethylene caused a similar magnitude increase in membrane capacitance. The theory on membrane capacitance has been applied to deduce changes in membrane geometry caused by solvent partitioning. Although classical observations have shown that solvents increase the membrane capacitance per unit area of membrane, i.e., increase membrane thickness, the present results demonstrate that solvent partitioning predominantly leads to an increase in membrane surface area and to a lesser degree to an increase in membrane thickness. Moreover, the present results indicate that the physicochemical properties of each solvent are important determinants for its specific effects on membrane geometry. This implies that the hypothesis that solvent partitioning is associated with a common perturbation of membrane structure needs to be revisited and cannot account for the commonly observed narcotic effects of different organic solvents.
Collapse
Affiliation(s)
- Cécil J W Meulenberg
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, PO Box 80.177, NL 3508 TD Utrecht, The Netherlands.
| | - Aart de Groot
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, PO Box 80.177, NL 3508 TD Utrecht, The Netherlands
| | - Remco H S Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, PO Box 80.177, NL 3508 TD Utrecht, The Netherlands
| | - Henk P M Vijverberg
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, PO Box 80.177, NL 3508 TD Utrecht, The Netherlands
| |
Collapse
|
29
|
Beckley JT, Randall PK, Smith RJ, Hughes BA, Kalivas PW, Woodward JJ. Phenotype-dependent inhibition of glutamatergic transmission on nucleus accumbens medium spiny neurons by the abused inhalant toluene. Addict Biol 2016; 21:530-46. [PMID: 25752326 DOI: 10.1111/adb.12235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abused inhalants are voluntarily inhaled at high concentrations to produce intoxicating effects. Results from animal studies show that the abused inhalant toluene triggers behaviors, such as self-administration and conditioned place preference, which are commonly associated with addictive drugs. However, little is known about how toluene affects neurons within the nucleus accumbens (NAc), a brain region within the basal ganglia that mediates goal-directed behaviors and is implicated in the development and maintenance of addictive behaviors. Here we report that toluene inhibits a component of the after-hyperpolarization potential, and dose-dependently inhibits N-methyl-D-aspartate (NMDA)-mediated currents in rat NAc medium spiny neurons (MSN). Moreover, using the multivariate statistical technique, partial least squares discriminative analysis to analyze electrophysiological measures from rat NAc MSNs, we show that toluene induces a persistent depression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-mediated currents in one subtype of NAc MSNs, and that the electrophysiological features of MSN neurons predicts their sensitivity to toluene. The CB1 receptor antagonist AM281 blocked the toluene-induced long-term depression of AMPA currents, indicating that this process is dependent on endocannabinoid signaling. The neuronal identity of recorded cells was examined using dual histochemistry and shows that toluene-sensitive NAc neurons are dopamine D2 MSNs that express preproenkephalin mRNA. Overall, the results from these studies indicate that physiological characteristics obtained from NAc MSNs during whole-cell patch-clamp recordings reliably predict neuronal phenotype, and that the abused inhalant toluene differentially depresses excitatory neurotransmission in NAc neuronal subtypes.
Collapse
Affiliation(s)
- Jacob T. Beckley
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
- Center for Drug and Alcohol Programs; Department of Psychiatry; Medical University of South Carolina; Charleston SC USA
| | - Patrick K. Randall
- Center for Drug and Alcohol Programs; Department of Psychiatry; Medical University of South Carolina; Charleston SC USA
| | - Rachel J. Smith
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | - Benjamin A. Hughes
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
- Center for Drug and Alcohol Programs; Department of Psychiatry; Medical University of South Carolina; Charleston SC USA
| | - Peter W. Kalivas
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
- Center for Drug and Alcohol Programs; Department of Psychiatry; Medical University of South Carolina; Charleston SC USA
| | - John J. Woodward
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
- Center for Drug and Alcohol Programs; Department of Psychiatry; Medical University of South Carolina; Charleston SC USA
| |
Collapse
|
30
|
Rivera-García MT, López-Rubalcava C, Cruz SL. Preclinical characterization of toluene as a non-classical hallucinogen drug in rats: participation of 5-HT, dopamine and glutamate systems. Psychopharmacology (Berl) 2015; 232:3797-808. [PMID: 26255180 DOI: 10.1007/s00213-015-4041-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/23/2015] [Indexed: 12/16/2022]
Abstract
RATIONALE Toluene is a misused inhalant with hallucinogenic properties and complex effects. Toluene blocks N-methyl-D-aspartate (NMDA) receptors, releases dopamine (DA), and modifies several neurotransmitter levels; nonetheless, the mechanism by which it produces hallucinations is not well characterized. OBJECTIVES This study aims (a) to study toluene's effects on the 5-HT2A-mediated head-twitch response (HTR), dopamine (DA), and serotonin (5-HT) tissue levels in discrete brain regions; (b) to compare the actions of toluene, ketamine, and 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) on HTR; and (c) to study the pharmacological blockade of toluene's and ketamine's effects by selective drugs. METHODS Independent groups of rats inhaled toluene (500-12,000 ppm) for 30 min during which the occurrence of serotonergic signs was analyzed. Brains were obtained after exposure to determine DA and 5-HT levels by HPLC. RESULTS Toluene concentration-dependently induced HTR. Other serotonin syndrome signs were evident at high concentrations. Toluene (4000 and 8000 ppm), and ketamine (3 and 10 mg/kg), significantly increased 5-HT levels in the frontal cortex (FC) striatum, hippocampus, and brain stem, as well as DA levels in the striatum and FC. Pretreatment with ketanserin (5HT2A/2C receptor antagonist), M100907 (selective 5-HT2A receptor antagonist), D-serine (co-agonist of the NMDA receptor glycine site), and haloperidol (D2 receptor antagonist) significantly decreased toluene's and ketamine's actions. The 5HT1A receptor antagonist WAY100635 had no effect. CONCLUSION Toluene stimulates 5HT2A and 5HT2C receptors, and increases 5-HT and DA levels. These actions are similar to those produced by ketamine and involve activation of a complex neurotransmitter network that includes NMDA receptor antagonism.
Collapse
|
31
|
The group II metabotropic glutamate receptor agonist LY379268 reduces toluene-induced enhancement of brain-stimulation reward and behavioral disturbances. Psychopharmacology (Berl) 2015; 232:3259-68. [PMID: 26044619 PMCID: PMC4536139 DOI: 10.1007/s00213-015-3973-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/24/2015] [Indexed: 01/05/2023]
Abstract
RATIONALE Toluene, a widely abused solvent with demonstrated addictive potential in humans, hasbeen reported to negatively modulate N-methyl-D-aspartate receptors (NMDARs) and alter glutamatergicneurotransmission. The group II metabotropic glutamate receptor (mGluR) agonist LY379268 has beenshown to regulate glutamate release transmission and NMDAR function and block toluene-induced locomotorhyperactivity. However, remaining unknown is whether group II mGluRs are involved in the toluene-induced reward-facilitating effect and other behavioral manifestations. OBJECTIVES The present study evaluated the effects of LY379268 on toluene-induced reward enhancement, motor incoordination, recognition memory impairment, and social interaction deficits. RESULTS Our data demonstrated that LY379268 significantly reversed the toluene-induced lowering of intracranial self-stimulation (ICSS) thresholds and impairments in novel object recognition, rotarod performance, and social interaction with different potencies. CONCLUSIONS These results indicate a negative modulatory role of group II mGluRs in acute toluene-induced reward-facilitating and behavioral effects and suggest that group II mGluR agonists may have therapeutic potential for toluene addiction and the prevention of toluene intoxication caused by occupational or intentional exposure.
Collapse
|
32
|
Campos-Ordonez T, Zarate-Lopez D, Galvez-Contreras AY, Moy-Lopez N, Guzman-Muniz J, Gonzalez-Perez O. Cyclohexane produces behavioral deficits associated with astrogliosis and microglial reactivity in the adult hippocampus mouse brain. Cell Mol Neurobiol 2015; 35:503-12. [PMID: 25433657 PMCID: PMC11486179 DOI: 10.1007/s10571-014-0146-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
Abstract
Cyclohexane is a volatile substance that has been utilized as a safe substitute of several organic solvents in diverse industrial processes, such as adhesives, paints, paint thinners, fingernail polish, lacquers, and rubber industry. A number of these commercial products are ordinarily used as inhaled drugs. However, it is not well known whether cyclohexane has noxious effects in the central nervous system. The aim of this study was to analyze the effects of cyclohexane inhalation on motor behavior, spatial memory, and reactive gliosis in the hippocampus of adult mice. We used a model that mimics recreational drug use in male Balb/C mice (P60), divided into two groups: controls and the cyclohexane group (exposed to 9,000 ppm of cyclohexane for 30 days). Both groups were then evaluated with a functional observational battery (FOB) and the Morris water maze (MWM). Furthermore, the relative expression of AP endonuclease 1 (APE1), and the number of astrocytes (GFAP+ cells) and microglia (Iba1+ cells) were quantified in the hippocampal CA1 and CA3 areas. Our findings indicated that cyclohexane produced severe functional deficits during a recreational exposure as assessed by the FOB. The MWM did not show statistically significant changes in the acquisition and retention of spatial memory. Remarkably, a significant increase in the number of astrocytes and microglia cells, as well as in the cytoplasmic processes of these cells were observed in the hippocampal CA1 and CA3 areas of cyclohexane-exposed mice. This cellular response was associated with an increase in the expression of APE1 in the same brain regions. In summary, cyclohexane exposure produces functional deficits that are associated with an important increase in the APE1 expression as well as the number of astrocytes and microglia cells and their cytoplasmic complexity in the CA1 and CA3 regions of the adult hippocampus.
Collapse
Affiliation(s)
- Tania Campos-Ordonez
- Laboratory of Neuroscience, School of Psychology, Facultad de Psicologia, DES Ciencias de la Salud, University of Colima, Av. Universidad 333, 28040 Colima, Col Mexico
| | - David Zarate-Lopez
- Laboratory of Neuroscience, School of Psychology, Facultad de Psicologia, DES Ciencias de la Salud, University of Colima, Av. Universidad 333, 28040 Colima, Col Mexico
| | - Alma Y. Galvez-Contreras
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara, 44340 Guadalajara, Jal Mexico
| | - Norma Moy-Lopez
- Laboratory of Neuroscience, School of Psychology, Facultad de Psicologia, DES Ciencias de la Salud, University of Colima, Av. Universidad 333, 28040 Colima, Col Mexico
| | - Jorge Guzman-Muniz
- Laboratory of Neuroscience, School of Psychology, Facultad de Psicologia, DES Ciencias de la Salud, University of Colima, Av. Universidad 333, 28040 Colima, Col Mexico
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, Facultad de Psicologia, DES Ciencias de la Salud, University of Colima, Av. Universidad 333, 28040 Colima, Col Mexico
| |
Collapse
|
33
|
|
34
|
Fifel K, Bennis M, Ba-M'hamed S. Effects of acute and chronic inhalation of paint thinner in mice: behavioral and immunohistochemical study. Metab Brain Dis 2014; 29:471-82. [PMID: 24218105 DOI: 10.1007/s11011-013-9449-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/30/2013] [Indexed: 12/26/2022]
Abstract
Abuse of volatile inhalants has become a worldwide issue mainly among adolescents of low income social class. Acute and chronic exposure to these substances results in serious neurological and behavioral impairments. Although real exposure consists largely of simultaneous inhalation of multiple solvents, the vast majority of basic research studies have evaluated the actions of a single volatile component leaving the behavioral and neuronal effects of chemical mixture not fully understood. In this study, we investigated the acute behavioral effects of 300, 450 and 600 ppm of paint thinner inhalation on anxiety, locomotor activity and spatial memory. Additionally, the cognitive impairments related to chronic exposure of the same concentrations of thinner for 45 days were assessed. To understand the neuronal correlates of acute exposure to thinner, we used c-Fos immunohistochemistry as an endogenous marker of neuronal activation following 600 ppm of thinner. The results reveal that (i) chronically thinner exposed mice showed cognitive deficits in Morris water maze and object recognition tasks; (ii) acute inhalation of thinner induces a wide range of behavioral changes. These changes include an anxiolytic effect toward the aversive environmental bright light and a dose dependent effect on explorative locomotion. The wide range of behavioral alterations induced by acute thinner inhalation is consistent with the widespread distribution of thinner-induced c-Fos expression in multiple brain structures.
Collapse
Affiliation(s)
- Karim Fifel
- Lab of Pharmacology, Neurobiology and Behavior, Associated CNRST Unit (URAC-37), Cadi Ayyad University, Marrakech, Morocco,
| | | | | |
Collapse
|
35
|
Juran SA, Johanson G, Ernstgård L, Iregren A, van Thriel C. Neurobehavioral performance in volunteers after inhalation of white spirits with high and low aromatic content. Arch Toxicol 2014; 88:1127-40. [DOI: 10.1007/s00204-014-1236-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 03/26/2014] [Indexed: 11/30/2022]
|
36
|
Kinawy AA, Ezzat AR, Al-Suwaigh BR. Inhalation of air polluted with gasoline vapours alters the levels of amino acid neurotransmitters in the cerebral cortex, hippocampus, and hypothalamus of the rat. ACTA ACUST UNITED AC 2014; 66:219-24. [PMID: 24690269 DOI: 10.1016/j.etp.2014.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/27/2014] [Accepted: 02/07/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND This study was designed to investigate the impact of exposure to the vapours of two kinds of gasoline, a widely used fuel for the internal combustion engines on the levels of the amino acid neurotransmitters of the rat brain. Recent studies provide strong evidence for a causative role for traffic-related air pollution on morbidity outcomes as well as premature death (Health Effects Institute, 2009; Levy et al., 2010; von Stackelberg et al., 2013). Exposure to the vapours of gasoline or its constituents may be accidental, occupational by workers at fuel stations and factories, or through abuse as a mean of mood alteration (Fortenberry, 1985; Mc Garvey et al., 1999). Two kinds of gasoline that are common in Egypt have been used in this study. The first contains octane enhancers in the form of lead derivatives (leaded gasoline; G1) and the other contains methyl-tertiary butyl ether (MTBE) as the octane enhancer (unleaded gasoline; G2). The levels of the major excitatory (aspartic acid and glutamic acid) and the inhibitory (GABA and glycine) amino acid neurotransmitters were determined in the cerebral cortex, hippocampus, and hypothalamus. RESULTS The current study revealed that the acute inhalation of air polluted with the two types of gasoline vapours (1/2 LC50 for 30 min) induced elevation in the levels of aspartic and glutamic acids along with a decrease in glycine and GABA in most studied brain areas. Chronic inhalation of both types of gasoline (a single daily 30-min session of 1/5 LC50 for 60 days) caused a significant increase in the aspartic and glutamic acid concentrations of the hippocampus without affecting the levels of GABA or glycine. CONCLUSION Acute and chronic inhalation of either one of G1 and G2 vapours induced a disturbance and fluctuation in the levels of the free amino acids that act as excitatory and inhibitory neurotransmitters in the brain areas under investigation. These neurotransmitters are fundamental for the communicative functioning of the neurons and such effects may have a profound impact on the cognitive and sensorimotor functions of the brain resulting in serious psychological and physiological disorders..
Collapse
Affiliation(s)
- Amal A Kinawy
- Biology Department, College of Science, Dammam University, Postal Code 31113, P.O. Box 838, Dammam, Saudi Arabia.
| | - Ahmed R Ezzat
- Zoology Department, Faculty of Science, Ain Shams University, Postal Code 11566, Cairo, Egypt.
| | - Badryah R Al-Suwaigh
- Biology Department, College of Science, Dammam University, Postal Code 31113, P.O. Box 838, Dammam, Saudi Arabia.
| |
Collapse
|
37
|
Duncan JR, Gibbs SJ, Lawrence AJ. Chronic intermittent toluene inhalation in adolescent rats alters behavioural responses to amphetamine and MK801. Eur Neuropsychopharmacol 2014; 24:480-6. [PMID: 23810580 DOI: 10.1016/j.euroneuro.2013.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/29/2013] [Accepted: 06/04/2013] [Indexed: 02/03/2023]
Abstract
Abuse of toluene-containing inhalants is common during adolescence, with ongoing chronic misuse associated with adverse outcomes and increased risk for addictive behaviours in adulthood. However, the mechanisms mediating the adaptive processes related to these outcomes are not well defined. To model human abuse patterns we exposed male adolescent Wistar rats (postnatal day 27) to chronic intermittent inhaled toluene (CIT, 10,000 ppm) or air (control) for 1h/day, three times/week for 3 weeks. The effects of CIT on behaviour and recovery were monitored. Locomotor activity was recorded following two consecutive injections of amphetamine (1mg/kg, i.p.) 72 and 96 h after the last exposure. This was followed with injection of the NMDA receptor antagonist MK801 (0.5mg/kg, i.p.) 20 days after the last exposure. CIT resulted in a significant and persistent retardation in weight gain during the exposure period and abstinence (p<0.05). Repeated exposure resulted in tolerance to the onset of toluene-induced behaviours and recovery latency. There was a reduction in the acute stimulant effects of amphetamine in CIT-exposed animals and an increase in the magnitude of locomotor activity (p<0.0125) following a subsequent exposure when compared to the responses observed in controls; this was associated with altered locomotor responses to MK801. Repeated exposure to CIT during adolescence alters parameters of growth, as measured by body weight, and leads to tolerance, indicating that increasing concentrations of the compound may be needed to reach the same behavioural state. Toluene during this period also alters responses to a psychostimulant which may be related to long-term glutamatergic dysfunction.
Collapse
Affiliation(s)
- Jhodie Rubina Duncan
- Division of Behavioural Neuroscience, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic. 3010, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Vic. 3010, Australia.
| | - Sarah Jane Gibbs
- Division of Behavioural Neuroscience, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic. 3010, Australia
| | - Andrew John Lawrence
- Division of Behavioural Neuroscience, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic. 3010, Australia; Centre for Neuroscience Research, University of Melbourne, Melbourne, Vic. 3010, Australia
| |
Collapse
|
38
|
Shelton KL, Nicholson KL. Pharmacological classification of the abuse-related discriminative stimulus effects of trichloroethylene vapor. ACTA ACUST UNITED AC 2014; 3:235839. [PMID: 25202471 DOI: 10.4303/jdar/235839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inhalants are distinguished as a class primarily based upon a shared route of administration. Grouping inhalants according to their abuse-related in vivo pharmacological effects using the drug discrimination procedure has the potential to provide a more relevant classification scheme to the research and treatment community. Mice were trained to differentiate the introceptive effects of the trichloroethylene vapor from air using an operant procedure. Trichloroethylene is a chlorinated hydrocarbon solvent once used as an anesthetic as well as in glues and other consumer products. It is now primarily employed as a metal degreaser. We found that the stimulus effects of trichloroethylene were similar to those of other chlorinated hydrocarbon vapors, the aromatic hydrocarbon toluene and the vapor anesthetics methoxyflurane and isoflurane. The stimulus effects of trichloroethylene overlapped with those of the barbiturate methohexital, to a lesser extent the benzodiazepine midazolam and to ethanol. NMDA antagonists, the kappa opioid agonist U50,488 and the mixed 5-HT agonist mCPP largely failed to substitute for trichloroethylene. These data suggest that stimulus effects of chlorinated hydrocarbon vapors are mediated at least partially by GABAA receptor positive modulatory effects.
Collapse
Affiliation(s)
- Keith L Shelton
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, P.O. Box 980613, Richmond, Virginia 23298-0613
| | - Katherine L Nicholson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, P.O. Box 980613, Richmond, Virginia 23298-0613
| |
Collapse
|
39
|
Cruz SL, Rivera-García MT, Woodward JJ. Review of toluene action: clinical evidence, animal studies and molecular targets. ACTA ACUST UNITED AC 2014; 3. [PMID: 25360325 DOI: 10.4303/jdar/235840] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It has long been known that individuals will engage in voluntary inhalation of volatile solvents for their rewarding effects. However, research into the neurobiology of these agents has lagged behind that of more commonly used drugs of abuse such as psychostimulants, alcohol and nicotine. This imbalance has begun to shift in recent years as the serious effects of abused inhalants, especially among children and adolescents, on brain function and behavior have become appreciated and scientifically documented. In this review, we discuss the physicochemical and pharmacological properties of toluene, a representative member of a large class of organic solvents commonly used as inhalants. This is followed by a brief summary of the clinical and pre-clinical evidence showing that toluene and related solvents produce significant effects on brain structures and processes involved in the rewarding aspects of drugs. This is highlighted by tables highlighting toluene's effect on behaviors (reward, motor effects, learning, etc.) and cellular proteins (e.g. voltage and ligand-gated ion channels) closely associated the actions of abused substances. These sections demonstrate not only the significant progress that has been made in understanding the neurobiological basis for solvent abuse but also reveal the challenges that remain in developing a coherent understanding of this often overlooked class of drugs of abuse.
Collapse
Affiliation(s)
- Silvia L Cruz
- Departamento de Farmacobiología, Cinvestav, México, D.F., University of South Carolina, Charleston, SC
| | | | - John J Woodward
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
40
|
Beckley JT, Woodward JJ. Volatile solvents as drugs of abuse: focus on the cortico-mesolimbic circuitry. Neuropsychopharmacology 2013; 38:2555-67. [PMID: 23954847 PMCID: PMC3828545 DOI: 10.1038/npp.2013.206] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/15/2022]
Abstract
Volatile solvents such as those found in fuels, paints, and thinners are found throughout the world and are used in a variety of industrial applications. However, these compounds are also often intentionally inhaled at high concentrations to produce intoxication. While solvent use has been recognized as a potential drug problem for many years, research on the sites and mechanisms of action of these compounds lags behind that of other drugs of abuse. In this review, we first discuss the epidemiology of voluntary solvent use throughout the world and then consider what is known about their basic pharmacology and how this may explain their use as drugs of abuse. We next present data from preclinical and clinical studies indicating that these substances induce common addiction sequelae such as dependence, withdrawal, and cognitive impairments. We describe how toluene, the most commonly studied psychoactive volatile solvent, alters synaptic transmission in key brain circuits such as the mesolimbic dopamine system and medial prefrontal cortex (mPFC) that are thought to underlie addiction pathology. Finally, we make the case that activity in mPFC circuits is a critical regulator of the mesolimbic dopamine system's ability to respond to volatile solvents like toluene. Overall, this review provides evidence that volatile solvents have high abuse liability because of their selective effects on critical nodes of the addiction neurocircuitry, and underscores the need for more research into how these compounds induce adaptations in neural circuits that underlie addiction pathology.
Collapse
Affiliation(s)
- Jacob T Beckley
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA,Center for Drug and Alcohol Programs, Department of Psychiatry/Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - John J Woodward
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA,Center for Drug and Alcohol Programs, Department of Psychiatry/Neurosciences, Medical University of South Carolina, Charleston, SC, USA,Department of Neurosciences, Medical University of South Carolina, IOP 4 North, 67 President Street, MSC 861, Charleston, SC 29425, USA, Tel: +(843) 792 5225, Fax: +(843) 792 7353, E-mail:
| |
Collapse
|
41
|
den Hartog CR, Beckley JT, Smothers TC, Lench DH, Holseberg ZL, Fedarovich H, Gilstrap MJ, Homanics GE, Woodward JJ. Alterations in ethanol-induced behaviors and consumption in knock-in mice expressing ethanol-resistant NMDA receptors. PLoS One 2013; 8:e80541. [PMID: 24244696 PMCID: PMC3828265 DOI: 10.1371/journal.pone.0080541] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/14/2013] [Indexed: 01/03/2023] Open
Abstract
Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined how expression of a mutant GluN1 subunit (F639A) that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl) significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75-2.0 g/kg; i.p.) increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg) reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg). In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg) as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol.
Collapse
Affiliation(s)
- Carolina R. den Hartog
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jacob T. Beckley
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Thetford C. Smothers
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Daniel H. Lench
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Zack L. Holseberg
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Hleb Fedarovich
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Meghin J. Gilstrap
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Gregg E. Homanics
- Departments of Anesthesiology and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John J. Woodward
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
42
|
Environmental enrichment increases doublecortin-associated new neurons and decreases neuronal death without modifying anxiety-like behavior in mice chronically exposed to toluene. Behav Brain Res 2013; 256:432-40. [DOI: 10.1016/j.bbr.2013.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 08/28/2013] [Accepted: 09/01/2013] [Indexed: 11/20/2022]
|
43
|
Duncan JR, Lawrence AJ. Conventional Concepts and New Perspectives for Understanding the Addictive Properties of Inhalants. J Pharmacol Sci 2013; 122:237-43. [DOI: 10.1254/jphs.13r04cp] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
44
|
Volatile substance misuse : clinical considerations, neuropsychopharmacology and potential role of pharmacotherapy in management. CNS Drugs 2012; 26:927-35. [PMID: 23018545 DOI: 10.1007/s40263-012-0001-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Volatile substance misuse is among the most prevalent and toxic forms of psychoactive drug use, and often results in highly deleterious social, psychological and medical consequences. The prevalence of this pernicious form of substance misuse owes in part to the fact that volatile substances of misuse are ubiquitous in the natural environment. Commonly misused commercial products include glue, shoe polish, nail polish remover, butane lighter fluid, gasoline and computer duster spray. National samples of volatile substance misusers tend to exhibit high rates of psychiatric problems and antisocial behaviour. In addition, cognitive impairments and affective dysregulation are often observed among these individuals. Volatile substances exert their complex neuropharmacological effects on dopaminergic, glutamatergic, GABAergic and serotoninergic receptor systems, as well as on cell membranes and ion channels. Concomitantly, pharmacotherapies for volatile substance abuse might profitably target a number of mechanisms, including reward circuitry in the brain, symptoms of craving and withdrawal, neuropsychiatric and emotional impairments that promote volatile substance abuse, and cognitive enhancement to rectify deficits in executive function. This review details the modes of use, subjective effects, epidemiology, adverse consequences, neuropsychopharmacology and drug treatment of volatile substance misuse, and discusses the potential role of novel forms of pharmacological intervention for this oft-overlooked public health threat of epidemic proportions.
Collapse
|
45
|
Paez-Martinez N, Aldrete-Audiffred J, Gallardo-Tenorio A, Castro-Garcia M, Estrada-Camarena E, Lopez-Rubalcava C. Participation of GABAA, GABA(B) receptors and neurosteroids in toluene-induced hypothermia: evidence of concentration-dependent differences in the mechanism of action. Eur J Pharmacol 2012; 698:178-85. [PMID: 23085024 DOI: 10.1016/j.ejphar.2012.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 09/21/2012] [Accepted: 10/06/2012] [Indexed: 12/12/2022]
Abstract
Toluene is a misused substance that modifies γ-aminobutyric acid (GABA) release and shares behavioral and molecular effects with GABA(A) and GABA(B) receptor agonists. GABAergic compounds are involved in thermoregulation processes and volatile substance users have reported that one of the reasons to inhale is to avoid feeling cold. At present, no studies have analyzed the effects of inhalants on body temperature and the mechanism of action involved. Thus, the main purpose of this study was to evaluate the effects of a (60 min) acute toluene inhalation (2000, 4000 and 6000 ppm) in core temperature. In addition, we tried to prevent the changes of temperature induced by toluene with the specific GABA(A) receptor blockers picrotoxin (0.01-0.1mg/kg), bicuculline (0.1-0.3mg/kg), and flumazenil (3-30 mg/kg); the GABA(B) receptor antagonist phaclofen (10-30 mg/kg) and the neurosteroid synthesis inhibitor finasteride (10-30 mg/kg). Results show that toluene reduced core temperature in mice in a concentration-dependent manner. The hypothermia produced by 4000 ppm toluene was prevented by picrotoxin, bicuculline, phaclofen and finasteride but not by flumazenil. In contrast none of these antagonists tested blocked the effects of 6000 ppm toluene. In conclusion, toluene decreases core temperature, GABA receptors and neurosteroids participate in toluene's action at 4000 ppm; but other mechanisms of action are involved in the hypothermic effects of 6000 ppm toluene.
Collapse
Affiliation(s)
- Nayeli Paez-Martinez
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Santo Tomás, CP 11340 Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|
46
|
Conti AC, Lowing JL, Susick LL, Bowen SE. Investigation of calcium-stimulated adenylyl cyclases 1 and 8 on toluene and ethanol neurobehavioral actions. Neurotoxicol Teratol 2012; 34:481-8. [PMID: 22789433 DOI: 10.1016/j.ntt.2012.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 06/25/2012] [Accepted: 06/29/2012] [Indexed: 11/26/2022]
Abstract
The abused inhalant toluene has potent behavioral effects, but only recently has progress been made in understanding the molecular pathways that mediate the action of toluene in the brain. Toluene and ethanol induce similar behavioral effects and share some targets including NMDA and GABA receptors. In studies examining neuronal actions of ethanol, mice lacking the calcium-stimulated adenylyl cyclases (ACs), AC1 and AC8 (DKO), show increased sedation durations and impaired protein kinase A (PKA) phosphorylation following acute ethanol treatment. Therefore, using DKO mice, we compared the neurobehavioral responses following toluene exposure to that of ethanol exposure to determine if these abused substances share molecular mechanisms of action. In the present study, acute sensitivity to toluene- or ethanol-induced changes in locomotor activity was evaluated in DKO and wild type (WT) mice. Mice were exposed to toluene vapor (0, 500, 1000, 2000, 6000, or 8000ppm) for 30min in static exposure chambers equipped with activity monitors. Both WT and DKO mice demonstrated increased ambulatory distance during exposure to a 2000-ppm concentration of toluene compared to respective air-exposed (0ppm) controls. Significant increases in locomotor activity were also observed during an air-only recovery period following toluene exposure in WT and DKO mice that had been exposed to 2000ppm of toluene compared to respective air controls. Sedative effects of toluene were equivalent in WT and DKO mice, both during exposure and afterwards during recovery. Although no significant differences in locomotor activity were detected in DKO compared to WT mice at individual doses tested, a significant main effect of toluene was achieved, with DKO mice demonstrating a generalized reduction in locomotor activity during the post-toluene recovery period compared to WT mice (when analyzing all doses collectively). For comparison to toluene, additional WT and DKO mice were treated with 1.0 or 2.0g/kg ethanol (i.p.) and monitored for locomotor activation. In WT mice, both doses of ethanol increased distance traveled compared to saline controls. Conversely, DKO mice demonstrated no increase in locomotor activation at 1.0g/kg, with significantly reduced distances traveled at both doses compared to ethanol-treated WT mice. These behavioral activity results suggest that acute effects of ethanol and toluene are distinct in the mechanisms by which they induce acute sedating effects with respect to AC1 and AC8 activity, but may be similar in the mechanisms subserving locomotor stimulation.
Collapse
Affiliation(s)
- Alana C Conti
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
47
|
Gmaz JM, Matthews BA, McKay BE. Toluene inhalation modulates dentate gyrus granule cell output in vivo. Neurotoxicol Teratol 2012; 34:403-12. [DOI: 10.1016/j.ntt.2012.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/30/2012] [Accepted: 04/30/2012] [Indexed: 01/10/2023]
|
48
|
Huerta-Rivas A, López-Rubalcava C, Sánchez-Serrano SL, Valdez-Tapia M, Lamas M, Cruz SL. Toluene impairs learning and memory, has antinociceptive effects, and modifies histone acetylation in the dentate gyrus of adolescent and adult rats. Pharmacol Biochem Behav 2012; 102:48-57. [DOI: 10.1016/j.pbb.2012.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/14/2012] [Accepted: 03/24/2012] [Indexed: 12/18/2022]
|
49
|
Davies AG, Friedberg RI, Gupta H, Chan CL, Shelton KL, Bettinger JC. Different genes influence toluene- and ethanol-induced locomotor impairment in C. elegans. Drug Alcohol Depend 2012; 122:47-54. [PMID: 21945072 PMCID: PMC3260412 DOI: 10.1016/j.drugalcdep.2011.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/12/2011] [Accepted: 08/31/2011] [Indexed: 01/25/2023]
Abstract
BACKGROUND The abused volatile solvent toluene shares many behavioral effects with classic central nervous system depressants such as ethanol. Similarities between toluene and ethanol have also been demonstrated using in vitro electrophysiology. Together, these studies suggest that toluene and ethanol may be acting, at least in part, via common mechanisms. METHODS We used the genetic model, Caenorhabditis elegans, to examine the behavioral effects of toluene in a simple system, and used mutant strains known to have altered responses to other CNS depressants to examine the involvement of those genes in the motor effects induced by toluene. RESULTS Toluene vapor brings about an altered pattern of locomotion in wild-type worms that is visibly distinct from that generated by ethanol. Mutants of the slo-1, rab-3 and unc-64 genes that are resistant to ethanol or the volatile anesthetic halothane show no resistance to toluene. A mutation in the unc-79 gene results in hypersensitivity to ethanol, halothane and toluene indicating a possible convergence of mechanisms of the three compounds. We screened for, and isolated, two mutations that generate resistance to the locomotor depressing effects of toluene and do not alter sensitivity to ethanol. CONCLUSIONS In C. elegans, ethanol and toluene have distinct behavioral effects and minimal overlap in terms of the genes responsible for these effects. These findings demonstrate that the C. elegans model system provides a unique and sensitive means of delineating both the commonalities as well as the differences in the neurochemical effects of classical CNS depressants and abused volatile inhalants.
Collapse
Affiliation(s)
- Andrew G. Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Richmond, VA 23298-0613 USA,Department of Psychiatry, Virginia Commonwealth University Richmond, VA 23298-0613 USA,Institute for Drug and Alcohol Studies, Virginia Commonwealth University Richmond, VA 23298-0613 USA,Virginia Commonwealth University – Alcohol Research Center Virginia Commonwealth University Richmond, VA 23298-0613 USA,Corresponding author Andrew G. Davies, Ph.D. Department of Pharmacology and Toxicology Virginia Commonwealth University P.O. Box 980613 Richmond VA, 23298-0613 (804) 828-2068 (w) (804) 828-4794 (fax)
| | - Ryan I. Friedberg
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Richmond, VA 23298-0613 USA
| | - Hersh Gupta
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Richmond, VA 23298-0613 USA
| | - Chung-Lung Chan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Richmond, VA 23298-0613 USA
| | - Keith L. Shelton
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Richmond, VA 23298-0613 USA,Institute for Drug and Alcohol Studies, Virginia Commonwealth University Richmond, VA 23298-0613 USA
| | - Jill C. Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Richmond, VA 23298-0613 USA,Department of Psychiatry, Virginia Commonwealth University Richmond, VA 23298-0613 USA,Institute for Drug and Alcohol Studies, Virginia Commonwealth University Richmond, VA 23298-0613 USA,Virginia Commonwealth University – Alcohol Research Center Virginia Commonwealth University Richmond, VA 23298-0613 USA
| |
Collapse
|
50
|
Zhvania MG, Chilachava LR, Japaridze NJ, Gelazonia LK, Lordkipanidze TG. Immediate and persisting effect of toluene chronic exposure on hippocampal cell loss in adolescent and adult rats. Brain Res Bull 2012; 87:187-92. [DOI: 10.1016/j.brainresbull.2011.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/26/2011] [Accepted: 10/30/2011] [Indexed: 01/13/2023]
|