1
|
Matsumoto Y, Matsumoto CS, Mizunami M. Critical roles of nicotinic acetylcholine receptors in olfactory memory formation and retrieval in crickets. Front Physiol 2024; 15:1345397. [PMID: 38405118 PMCID: PMC10884312 DOI: 10.3389/fphys.2024.1345397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Acetylcholine (ACh) is a major excitatory neurotransmitter in the insect central nervous system, and insect neurons express several types of ACh receptors (AChRs). AChRs are classified into two subgroups, muscarinic AChRs and nicotinic AChRs (nAChRs). nAChRs are also divided into two subgroups by sensitivity to α-bungarotoxin (α-BGT). The cricket Gryllus bimaculatus is one of the useful insects for studying the molecular mechanisms in olfactory learning and memory. However, the roles of nAChRs in olfactory learning and memory of the cricket are still unknown. In the present study, to investigate whether nAChRs are involved in cricket olfactory learning and memory, we tested the effects of two different AChR antagonists on long-term memory (LTM) formation and retrieval in a behavioral assay. The two AChR antagonists that we used are mecamylamine (MEC), an α-BGT-insensitive nAChR antagonist, and methyllycaconitine (MLA), an α-BGT-sensitive nAChR antagonist. In crickets, multiple-trial olfactory conditioning induced 1-day memory (LTM), whereas single-trial olfactory conditioning induced 1-h memory (mid-term memory, MTM) but not 1-day memory. Crickets injected with MEC 20 min before the retention test at 1 day after the multiple-trial conditioning exhibited no memory retrieval. This indicates that α-BGT-insensitive nAChRs participate in memory retrieval. In addition, crickets injected with MLA before the multiple-trial conditioning exhibited MTM but not LTM, indicating that α-BGT-sensitive nAChRs participate in the formation of LTM. Moreover, injection of nicotine (an nAChR agonist) before the single-trial conditioning induced LTM. Finally, the nitric oxide (NO)-cGMP signaling pathway is known to participate in the formation of LTM in crickets, and we conducted co-injection experiments with an agonist or inhibitor of the nAChR and an activator or inhibitor of the NO-cGMP signaling pathway. The results suggest that nAChR works upstream of the NO-cGMP signaling system in the LTM formation process.
Collapse
Affiliation(s)
- Yukihisa Matsumoto
- Institute of Education, Liberal Arts and Sciences Division, Tokyo Medical and Dental University, Ichikawa, Chiba, Japan
| | | | - Makoto Mizunami
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Mustard JA, Dobb R, Wright GA. Chronic nicotine exposure influences learning and memory in the honey bee. JOURNAL OF INSECT PHYSIOLOGY 2023; 151:104582. [PMID: 37918514 DOI: 10.1016/j.jinsphys.2023.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
In insects, nicotine activates nicotinic acetylcholine receptors, which are expressed throughout the central nervous system. However, little work has been done to investigate the effects of chronic nicotine treatment on learning or other behaviors in non-herbivorous insects. To examine the effects of long term nicotine consumption on learning and memory, honey bees were fed nicotine containing solutions over four days. Bees were able to detect nicotine at 0.1 mM in sucrose solutions, and in a no choice assay, bees reduced food intake when nicotine was 1 mM or higher. Treatment with a low dose of nicotine decreased the proportion of bees able to form an associative memory when bees were conditioned with either a massed or spaced appetitive olfactory training paradigm. On the other hand, higher doses of nicotine increased memory retention and the proportion of bees responding to the odor during 10 min and 24 h recall tests. The reduction in nicotine containing food consumed may also impact response levels during learning and recall tests. These data suggest that long term exposure to nicotine has complex effects on learning and memory.
Collapse
Affiliation(s)
- Julie A Mustard
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Rachel Dobb
- Centre for Behaviour and Evolution, Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | |
Collapse
|
3
|
Kim S, Seong KM, Lee SH. Acetylcholine titre regulation by non-neuronal acetylcholinesterase 1 and its putative roles in honey bee physiology. INSECT MOLECULAR BIOLOGY 2023. [PMID: 37130064 DOI: 10.1111/imb.12845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Similar to other insects, honey bees have two acetylcholinesterases (AChEs), AmAChE1 and AmAChE2. The primary catalytic enzyme for acetylcholine (ACh) hydrolysis in synapses is AmAChE2, which is predominantly expressed in neuronal tissues, whereas AmAChE1 is expressed in both neuronal and non-neuronal tissues, with limited catalytic activity. Unlike constitutively expressed AmAChE2, AmAChE1 expression is induced under stressful conditions such as heat shock and brood rearing suppression, but its role in regulating ACh titre remains unclear. In this paper, to elucidate the role of AmAChE1, the expression of AmAChE1 was suppressed via RNA interference (RNAi) in AmAChE1-induced worker bees. The ACh titre measurement following RNAi revealed that the expression of AmAChE1 downregulated the overall ACh titre in all tissues examined without altering AmAChE2 expression. Transcriptome analysis showed that AmAChE1 knockdown upregulated protein biosynthesis, cell respiration, and thermogenesis in the head. These findings suggest that AmAChE1 is involved in decreasing neuronal activity, enhancing energy conservation, and potentially extending longevity under stressful conditions via ACh titre regulation.
Collapse
Affiliation(s)
- Sanghyeon Kim
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Keon Mook Seong
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Si Hyeock Lee
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
4
|
Nicholls E, Rands SA, Botías C, Hempel de Ibarra N. Flower sharing and pollinator health: a behavioural perspective. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210157. [PMID: 35491598 DOI: 10.1098/rstb.2021.0157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Disease is an integral part of any organisms' life, and bees have evolved immune responses and a suite of hygienic behaviours to keep them at bay in the nest. It is now evident that flowers are another transmission hub for pathogens and parasites, raising questions about adaptations that help pollinating insects stay healthy while visiting hundreds of plants over their lifetime. Drawing on recent advances in our understanding of how bees of varying size, dietary specialization and sociality differ in their foraging ranges, navigational strategies and floral resource preferences, we explore the behavioural mechanisms and strategies that may enable foraging bees to reduce disease exposure and transmission risks at flowers by partitioning overlapping resources in space and in time. By taking a novel behavioural perspective, we highlight the missing links between disease biology and the ecology of plant-pollinator relationships, critical for improving the understanding of disease transmission risks and the better design and management of habitat for pollinator conservation. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- E Nicholls
- Evolution, Behaviour and Environment, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - S A Rands
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - C Botías
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), CIAPA de Marchamalo, 19180 Guadalajara, Spain
| | - N Hempel de Ibarra
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| |
Collapse
|
5
|
Cuesta-Maté A, Renelies-Hamilton J, Kryger P, Jensen AB, Sinotte VM, Poulsen M. Resistance and Vulnerability of Honeybee ( Apis mellifera) Gut Bacteria to Commonly Used Pesticides. Front Microbiol 2021; 12:717990. [PMID: 34539609 PMCID: PMC8446526 DOI: 10.3389/fmicb.2021.717990] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/30/2021] [Indexed: 01/04/2023] Open
Abstract
Agricultural and apicultural practices expose honeybees to a range of pesticides that have the potential to negatively affect their physiology, neurobiology, and behavior. Accumulating evidence suggests that these effects extend to the honeybee gut microbiome, which serves important functions for honeybee health. Here we test the potential effects of the pesticides thiacloprid, acetamiprid, and oxalic acid on the gut microbiota of honeybees, first in direct in vitro inhibition assays and secondly in an in vivo caged bee experiment to test if exposure leads to gut microbiota community changes. We found that thiacloprid did not inhibit the honeybee core gut bacteria in vitro, nor did it affect overall community composition or richness in vivo. Acetamiprid did also not inhibit bacterial growth in vitro, but it did affect community structure within bees. The eight bacterial genera tested showed variable levels of susceptibility to oxalic acid in vitro. In vivo, treatment with this pesticide reduced amplicon sequence variant (ASV) richness and affected gut microbiome composition, with most marked impact on the common crop bacteria Lactobacillus kunkeei and the genus Bombella. We conducted network analyses which captured known associations between bacterial members and illustrated the sensitivity of the microbiome to environmental stressors. Our findings point to risks of honeybee exposure to oxalic acid, which has been deemed safe for use in treatment against Varroa mites in honeybee colonies, and we advocate for more extensive assessment of the long-term effects that it may have on honeybee health.
Collapse
Affiliation(s)
- Ana Cuesta-Maté
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Justinn Renelies-Hamilton
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Per Kryger
- Entomology and Plant Pathology, Department of Agroecology, Aarhus University, Aarhus, Denmark
| | - Annette Bruun Jensen
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Veronica M. Sinotte
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
The Combined Effects of Varroa destructor Parasitism and Exposure to Neonicotinoids Affects Honey Bee ( Apis mellifera L.) Memory and Gene Expression. BIOLOGY 2020; 9:biology9090237. [PMID: 32825259 PMCID: PMC7565275 DOI: 10.3390/biology9090237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 01/27/2023]
Abstract
Honey bees (Apis mellifera L.) are exposed biotic and abiotic stressors but little is known about their combined effect and impact on neural processes such as learning and memory, which could affect behaviours that are important for individual and colony survival. This study measured memory with the proboscis extension response (PER) assay as well as the expression of neural genes in bees chronically exposed to three different sublethal doses of the insecticide clothianidin and/or the parasitic mite Varroa destructor. The proportion of bees that positively responded to PER at 24 and 48 h post-training (hpt) was significantly reduced when exposed to clothianidin. V. destructor parasitism reduced the proportion of bees that responded to PER at 48 hpt. Combined effects between the lowest clothianidin dose and V. destructor for the proportion of bees that responded to PER were found at 24 hpt. Clothianidin, V. destructor and their combination differentially affected the expression of the neural-related genes, AmNrx-1 (neurexin), AmNlg-1 (neuroligin), and AmAChE-2 (acetylcholinesterase). Different doses of clothianidin down-regulated or up-regulated the genes, whereas V. destructor tended to have a down-regulatory effect. It appears that clothianidin and V. destructor affected neural processes in honey bees through different mechanisms.
Collapse
|
7
|
Bertucci F, Jacob H, Mignucci A, Gache C, Roux N, Besson M, Berthe C, Metian M, Lecchini D. Decreased retention of olfactory predator recognition in juvenile surgeon fish exposed to pesticide. CHEMOSPHERE 2018; 208:469-475. [PMID: 29886335 DOI: 10.1016/j.chemosphere.2018.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
Dory, the animated surgeonfish created by the Pixar Animation studios, famously suffered from short-term memory loss leading to many adventures. In reality, many fishes have excellent cognitive abilities and are able to learn and retain important information such as the identity of predators. However, if and how cognition can be affected by anthropogenically altered oceanic conditions is poorly understood. Here, we examine the effect of a widely used pesticide, chlorpyrifos, on the retention of acquired predator recognition in post-larval stage of the surgeonfish Acanthurus triostegus. Through associative learning, post-larvae of A. triostegus were first observed to forage significantly less in the presence of conspecific alarm cues and alarm cues associated to a predator's odor. The retention of this anti-predator behavior was estimated to last between 2 and 5 days in the absence of pesticide. However, environmentally-relevant concentrations of chlorpyrifos (1 μg.L-1) induced the loss of this acquired predator recognition. This reduced ability to recognize learned predators is discussed as it may lead to more vulnerable fish communities in coastal areas subjected to organophosphate pesticide pollution.
Collapse
Affiliation(s)
- Frédéric Bertucci
- PSL University Paris, EPHE-UPVD-CNRS, USR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia; Laboratoire de Morphologie Fonctionnelle et Evolutive, Université de Liège, Campus Sart Tilman, Bât. B6c, Allée de la Chimie 3, 4000 Liège, Belgium.
| | - Hugo Jacob
- PSL University Paris, EPHE-UPVD-CNRS, USR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia; International Atomic Energy Agency, Environment Laboratories, 4a, Quai Antoine 1er, Principality of Monaco, Monaco
| | - Alexandre Mignucci
- PSL University Paris, EPHE-UPVD-CNRS, USR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia
| | - Camille Gache
- PSL University Paris, EPHE-UPVD-CNRS, USR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia
| | - Natacha Roux
- PSL University Paris, EPHE-UPVD-CNRS, USR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia; Observatoire Océanologique de Banyuls-sur-Mer, UMR7232, Université Pierre et Marie Curie Paris, 1 avenue du Fontaulé, 66650 Banyuls-sur-Mer, France
| | - Marc Besson
- PSL University Paris, EPHE-UPVD-CNRS, USR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia; Observatoire Océanologique de Banyuls-sur-Mer, UMR7232, Université Pierre et Marie Curie Paris, 1 avenue du Fontaulé, 66650 Banyuls-sur-Mer, France
| | - Cécile Berthe
- PSL University Paris, EPHE-UPVD-CNRS, USR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia
| | - Marc Metian
- International Atomic Energy Agency, Environment Laboratories, 4a, Quai Antoine 1er, Principality of Monaco, Monaco
| | - David Lecchini
- PSL University Paris, EPHE-UPVD-CNRS, USR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia; Laboratoire d'Excellence "CORAIL", Moorea, French Polynesia
| |
Collapse
|
8
|
Tison L, Holtz S, Adeoye A, Kalkan Ö, Irmisch NS, Lehmann N, Menzel R. Effects of sublethal doses of thiacloprid and its formulation Calypso ® on the learning and memory performance of honey bees. ACTA ACUST UNITED AC 2017; 220:3695-3705. [PMID: 28819056 DOI: 10.1242/jeb.154518] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 08/09/2017] [Indexed: 11/20/2022]
Abstract
Learning and memory play a central role in the behavior and communication of foraging bees. We have previously shown that chronic uptake of the neonicotinoid thiacloprid affects the behavior of honey bees in the field. Foraging behavior, homing success, navigation performance and social communication were impaired. Thiacloprid collected at a feeding site at low doses accumulates in foragers over time. Here, we applied a laboratory standard procedure (the proboscis-extension response conditioning) in order to assess which processes, acquisition, memory consolidation and/or memory retrieval were compromised after bees were fed either with thiacloprid or the formulation of thiacloprid named Calypso® at different sublethal doses. Extinction and generalization tests allowed us to investigate whether bees respond to a learned stimulus, and how selectively. We showed that thiacloprid, as active substance and as formulation, poses a substantial risk to honey bees by disrupting learning and memory functions. These data support and specify the data collected in the field.
Collapse
Affiliation(s)
- Léa Tison
- Department of Biology, Chemistry and Pharmacy, Institute of Biology-Neurobiology, Free University, 14195 Berlin, Germany
| | - Sophie Holtz
- Department of Biology, Chemistry and Pharmacy, Institute of Biology-Neurobiology, Free University, 14195 Berlin, Germany
| | - Amy Adeoye
- Department of Biology, Chemistry and Pharmacy, Institute of Biology-Neurobiology, Free University, 14195 Berlin, Germany
| | - Önder Kalkan
- Department of Biology, Chemistry and Pharmacy, Institute of Biology-Neurobiology, Free University, 14195 Berlin, Germany
| | - Nina S Irmisch
- Department of Biology, Chemistry and Pharmacy, Institute of Biology-Neurobiology, Free University, 14195 Berlin, Germany
| | - Nadja Lehmann
- Department of Biology, Chemistry and Pharmacy, Institute of Biology-Neurobiology, Free University, 14195 Berlin, Germany
| | - Randolf Menzel
- Department of Biology, Chemistry and Pharmacy, Institute of Biology-Neurobiology, Free University, 14195 Berlin, Germany
| |
Collapse
|
9
|
Xu G, Wu SF, Teng ZW, Yao HW, Fang Q, Huang J, Ye GY. Molecular characterization and expression profiles of nicotinic acetylcholine receptors in the rice striped stem borer, Chilo suppressalis (Lepidoptera: Crambidae). INSECT SCIENCE 2017; 24:371-384. [PMID: 26847606 DOI: 10.1111/1744-7917.12324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are members of the cys-loop ligand-gated ion channel (cysLGIC) superfamily, mediating fast synaptic cholinergic transmission in the central nervous system in insects. Insect nAChRs are the molecular targets of economically important insecticides, such as neonicotinoids and spinosad. Identification and characterization of the nAChR gene family in the rice striped stem borer, Chilo suppressalis, could provide beneficial information about this important receptor gene family and contribute to the investigation of the molecular modes of insecticide action and resistance for current and future chemical control strategies. We searched our C. suppressalis transcriptome database using Bombyx mori nAChR sequences in local BLAST searches and obtained the putative nAChR subunit complementary DNAs (cDNAs) via reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends methods. Similar to B. mori, C. suppressalis possesses 12 nAChR subunits, including nine α-type and three β-type subunits. Quantitative RT-PCR analysis revealed the expression profiles of the nAChR subunits in various tissues, including the brain, subesophageal ganglion, thoracic ganglion, abdominal ganglion, hemocytes, fat body, foregut, midgut, hindgut and Malpighian tubules. Developmental expression analyses showed clear differential expression of nAChR subunits throughout the C. suppressalis life cycle. The identification of nAChR subunits in this study will provide a foundation for investigating the diverse roles played by nAChRs in C. suppressalis and for exploring specific target sites for chemicals that control agricultural pests while sparing beneficial species.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shun-Fan Wu
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zi-Wen Teng
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hong-Wei Yao
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jia Huang
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Piiroinen S, Goulson D. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees. Proc Biol Sci 2016; 283:rspb.2016.0246. [PMID: 27053744 DOI: 10.1098/rspb.2016.0246] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022] Open
Abstract
Learning and memory are crucial functions which enable insect pollinators to efficiently locate and extract floral rewards. Exposure to pesticides or infection by parasites may cause subtle but ecologically important changes in cognitive functions of pollinators. The potential interactive effects of these stressors on learning and memory have not yet been explored. Furthermore, sensitivity to stressors may differ between species, but few studies have compared responses in different species. Here, we show that chronic exposure to field-realistic levels of the neonicotinoid clothianidin impaired olfactory learning acquisition in honeybees, leading to potential impacts on colony fitness, but not in bumblebees. Infection by the microsporidian parasite Nosema ceranae slightly impaired learning in honeybees, but no interactive effects were observed. Nosema did not infect bumblebees (3% infection success). Nevertheless, Nosema-treated bumblebees had a slightly lower rate of learning than controls, but faster learning in combination with neonicotinoid exposure. This highlights the potential for complex interactive effects of stressors on learning. Our results underline that one cannot readily extrapolate findings from one bee species to others. This has important implications for regulatory risk assessments which generally use honeybees as a model for all bees.
Collapse
Affiliation(s)
- Saija Piiroinen
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
11
|
Matsumoto Y, Matsumoto CS, Takahashi T, Mizunami M. Activation of NO-cGMP Signaling Rescues Age-Related Memory Impairment in Crickets. Front Behav Neurosci 2016; 10:166. [PMID: 27616985 PMCID: PMC4999442 DOI: 10.3389/fnbeh.2016.00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/15/2016] [Indexed: 12/02/2022] Open
Abstract
Age-related memory impairment (AMI) is a common feature and a debilitating phenotype of brain aging in many animals. However, the molecular mechanisms underlying AMI are still largely unknown. The cricket Gryllus bimaculatus is a useful experimental animal for studying age-related changes in learning and memory capability; because the cricket has relatively short life-cycle and a high capability of olfactory learning and memory. Moreover, the molecular mechanisms underlying memory formation in crickets have been examined in detail. In the present study, we trained male crickets of different ages by multiple-trial olfactory conditioning to determine whether AMI occurs in crickets. Crickets 3 weeks after the final molt (3-week-old crickets) exhibited levels of retention similar to those of 1-week-old crickets at 30 min or 2 h after training; however they showed significantly decreased levels of 1-day retention, indicating AMI in long-term memory (LTM) but not in anesthesia-resistant memory (ARM) in olfactory learning of crickets. Furthermore, 3-week-old crickets injected with a nitric oxide (NO) donor, a cyclic GMP (cGMP) analog or a cyclic AMP (cAMP) analog into the hemolymph before conditioning exhibited a normal level of LTM, the same level as that in 1-week-old crickets. The rescue effect by NO donor or cGMP analog injection was absent when the crickets were injected after the conditioning. For the first time, an NO donor and a cGMP analog were found to antagonize the age-related impairment of LTM formation, suggesting that deterioration of NO synthase (NOS) or molecules upstream of NOS activation is involved in brain-aging processes.
Collapse
Affiliation(s)
- Yukihisa Matsumoto
- College of Liberal Arts and Science, Tokyo Medical and Dental UniversityIchikawa, Japan; Graduate School of Life Science, Hokkaido UniversitySapporo, Japan
| | | | | | - Makoto Mizunami
- Graduate School of Life Science, Hokkaido University Sapporo, Japan
| |
Collapse
|
12
|
Alkassab AT, Kirchner WH. Impacts of chronic sublethal exposure to clothianidin on winter honeybees. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1000-1010. [PMID: 27090425 DOI: 10.1007/s10646-016-1657-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
A wide application of systemic pesticides and detection of their residues in bee-collected pollen and nectar at sublethal concentrations led to the emergence of concerns about bees' chronic exposure and possible sublethal effects on insect pollinators. Therefore, special attention was given to reducing unintentional intoxications under field conditions. The sensitivity of winter bees throughout their long lifespan to residual exposure of pesticides is not well known, since most previous studies only looked at the effects on summer bees. Here, we performed various laboratory bioassays to assess the effects of clothianidin on the survival and behavior of winter bees. Oral lethal and sublethal doses were administered throughout 12-day. The obtained LD50 values at 48, 72, 96 h and 10 days were 26.9, 18.0, 15.1 and 9.5 ng/bee, respectively. Concentrations <20 µg/kg were found to be sublethal. Oral exposure to sublethal doses was carried out for 12-day and, the behavioral functions were tested on the respective 13th day. Although slight reductions in the responses at the concentrations 10 and 15 µg/kg were observed, all tested sublethal concentrations had showed non-significant effects on the sucrose responsiveness, habitation of the proboscis extension reflex and olfactory learning performance. Nevertheless, chronic exposure to 15 µg/kg affected the specificity of the early long-term memory (24 h). Since the tested concentrations were in the range of field-relevant concentrations, our results strongly suggest that related-effects on winter and summer bees' sensitivity should also be studied under realistic conditions.
Collapse
Affiliation(s)
- Abdulrahim T Alkassab
- Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.
| | - Wolfgang H Kirchner
- Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| |
Collapse
|
13
|
Cys-loop ligand-gated ion channel gene discovery in the Locusta migratoria manilensis through the neuron transcriptome. Gene 2015; 561:276-82. [DOI: 10.1016/j.gene.2015.02.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/26/2015] [Accepted: 02/14/2015] [Indexed: 11/23/2022]
|
14
|
Frost EH, Shutler D, Hillier NK. Effects of fluvalinate on honey bee learning, memory, responsiveness to sucrose, and survival. ACTA ACUST UNITED AC 2013; 216:2931-8. [PMID: 23619403 DOI: 10.1242/jeb.086538] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Contaminants can affect organisms' behaviour and, as a consequence, survival. Tau-fluvalinate (hereafter fluvalinate) is the active ingredient in a pesticide commonly used in North America to control Varroa destructor mites in honey bee (Apis mellifera) colonies. Fluvalinate's effects on honey bees are not well known. Honey bee cognitive and neural function can be assessed using the proboscis extension reflex (PER), which applies Pavlovian conditioning techniques. This study used PER to evaluate effects of fluvalinate on honey bee acquisition learning, (long-term) memory recall, responsiveness to sucrose, and mortality. We also evaluated how exclusion criteria for honey bees that did not exhibit PER during training and memory trials affected interpretation of results. Fluvalinate was administered both orally and dermally at high and low doses to mimic routes by which honey bees are exposed. We found negative effects of fluvalinate on honey bee learning, memory, responsiveness to sucrose, and survival, especially in high oral doses. We also found significant consequences to interpretation of results using different exclusion criteria. For example, almost 50% of individuals that failed to show evidence of learning subsequently showed evidence of memory. The latter results have important implications regarding traditional assessment of PER-based learning and memory; the former results suggest that evaluation of honey bee exposure to fluvalinate and attendant consequences warrants further investigation.
Collapse
Affiliation(s)
- Elisabeth H Frost
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, Nova Scotia, B4P 2R6, Canada
| | | | | |
Collapse
|
15
|
Williamson SM, Wright GA. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. ACTA ACUST UNITED AC 2013; 216:1799-807. [PMID: 23393272 DOI: 10.1242/jeb.083931] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pesticides are important agricultural tools often used in combination to avoid resistance in target pest species, but there is growing concern that their widespread use contributes to the decline of pollinator populations. Pollinators perform sophisticated behaviours while foraging that require them to learn and remember floral traits associated with food, but we know relatively little about the way that combined exposure to multiple pesticides affects neural function and behaviour. The experiments reported here show that prolonged exposure to field-realistic concentrations of the neonicotinoid imidacloprid and the organophosphate acetylcholinesterase inhibitor coumaphos and their combination impairs olfactory learning and memory formation in the honeybee. Using a method for classical conditioning of proboscis extension, honeybees were trained in either a massed or spaced conditioning protocol to examine how these pesticides affected performance during learning and short- and long-term memory tasks. We found that bees exposed to imidacloprid, coumaphos, or a combination of these compounds, were less likely to express conditioned proboscis extension towards an odor associated with reward. Bees exposed to imidacloprid were less likely to form a long-term memory, whereas bees exposed to coumaphos were only less likely to respond during the short-term memory test after massed conditioning. Imidacloprid, coumaphos and a combination of the two compounds impaired the bees' ability to differentiate the conditioned odour from a novel odour during the memory test. Our results demonstrate that exposure to sublethal doses of combined cholinergic pesticides significantly impairs important behaviours involved in foraging, implying that pollinator population decline could be the result of a failure of neural function of bees exposed to pesticides in agricultural landscapes.
Collapse
Affiliation(s)
- Sally M Williamson
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | | |
Collapse
|
16
|
Farooqui T. A potential link among biogenic amines-based pesticides, learning and memory, and colony collapse disorder: A unique hypothesis. Neurochem Int 2013; 62:122-36. [DOI: 10.1016/j.neuint.2012.09.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 09/27/2012] [Accepted: 09/30/2012] [Indexed: 12/13/2022]
|
17
|
Yang EC, Chang HC, Wu WY, Chen YW. Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage. PLoS One 2012; 7:e49472. [PMID: 23166680 PMCID: PMC3498130 DOI: 10.1371/journal.pone.0049472] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 10/11/2012] [Indexed: 11/18/2022] Open
Abstract
The residue of imidacloprid in the nectar and pollens of the plants is toxic not only to adult honeybees but also the larvae. Our understanding of the risk of imidacloprid to larvae of the honeybees is still in a very early stage. In this study, the capped-brood, pupation and eclosion rates of the honeybee larvae were recorded after treating them directly in the hive with different dosages of imidacloprid. The brood-capped rates of the larvae decreased significantly when the dosages increased from 24 to 8000 ng/larva. However, there were no significant effects of DMSO or 0.4 ng of imidacloprid per larva on the brood-capped, pupation and eclosion rates. Although the sublethal dosage of imidacloprid had no effect on the eclosion rate, we found that the olfactory associative behavior of the adult bees was impaired if they had been treated with 0.04 ng/larva imidacloprid in the larval stage. These results demonstrate that a sublethal dosage of imidacloprid given to the larvae affects the subsequent associative ability of the adult honeybee workers. Thus, a low dose of imidacloprid may affect the survival condition of the entire colony, even though the larvae survive to adulthood.
Collapse
Affiliation(s)
- En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| | - Hui-Chun Chang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Wen-Yen Wu
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Yu-Wen Chen
- Department of Animal Science, National Ilan University, Ilan, Taiwan
| |
Collapse
|
18
|
Louis T, Musso PY, de Oliveira SB, Garreau L, Giurfa M, Raymond V, Gauthier M. Amelα8 subunit knockdown in the mushroom body vertical lobes impairs olfactory retrieval in the honeybee,Apis mellifera. Eur J Neurosci 2012; 36:3438-50. [DOI: 10.1111/j.1460-9568.2012.08261.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Frost EH, Shutler D, Hillier NK. The proboscis extension reflex to evaluate learning and memory in honeybees (Apis mellifera): some caveats. Naturwissenschaften 2012; 99:677-86. [PMID: 22869163 DOI: 10.1007/s00114-012-0955-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 11/25/2022]
Abstract
The proboscis extension reflex (PER) is widely used in a classical conditioning (Pavlovian) context to evaluate learning and memory of a variety of insect species. The literature is particularly prodigious for honeybees (Apis mellifera) with more than a thousand publications. Imagination appears to be the only limit to the types of challenges to which researchers subject honeybees, including all the sensory modalities and a broad diversity of environmental treatments. Accordingly, some remarkable insights have been achieved using PER. However, there are several challenges to evaluating the PER literature that warrant a careful and thorough review. We assess here variation in methods that makes interpretation of studies, even those researching the same question, tenuous. We suggest that the numerous variables that might influence experimental outcomes from PER be thoroughly detailed by researchers. Moreover, the influence of individual variables on results needs to carefully evaluated, as well as among two or more variables. Our intent is to encourage investigation of the influence of numerous variables on PER results.
Collapse
Affiliation(s)
- Elisabeth H Frost
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, Nova Scotia, B4P 2R6, Canada
| | | | | |
Collapse
|
20
|
Dupuis J, Louis T, Gauthier M, Raymond V. Insights from honeybee (Apis mellifera) and fly (Drosophila melanogaster) nicotinic acetylcholine receptors: from genes to behavioral functions. Neurosci Biobehav Rev 2012; 36:1553-64. [PMID: 22525891 DOI: 10.1016/j.neubiorev.2012.04.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/26/2012] [Accepted: 04/04/2012] [Indexed: 11/25/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed throughout the central nervous system of insects where they supply fast synaptic excitatory transmission and represent a major target for several insecticides. The unbalance is striking between the abundant literature on nAChR sensitivity to insecticides and the rarity of information regarding their molecular properties and cognitive functions. The recent advent of genome sequencing disclosed that nAChR gene families of insects are rather small-sized compared to vertebrates. Behavioral experiments performed in the honeybee demonstrated that a subpopulation of nAChRs sensitive to the venom α-bungarotoxin and permeant to calcium is necessary for the formation of long-term memory. Concomitant data in Drosophila reported that repetitive exposure to nicotine results in a calcium-dependent plasticity of the nAChR-mediated response involving cAMP signaling cascades and indicated that ACh-induced Ca++ currents are modulated by monoamines involved in aversive and appetitive learning. As in vertebrates, in which glutamate and NMDA-type glutamate receptors are involved in experience-associated synaptic plasticity and memory formation, insects could display a comparable system based on ACh and α-Bgt-sensitive nAChRs.
Collapse
Affiliation(s)
- Julien Dupuis
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale (CRCA), 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | | | | | | |
Collapse
|
21
|
Giurfa M, Sandoz JC. Invertebrate learning and memory: Fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learn Mem 2012; 19:54-66. [DOI: 10.1101/lm.024711.111] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Dupuis JP, Gauthier M, Raymond-Delpech V. Expression patterns of nicotinic subunits α2, α7, α8, and β1 affect the kinetics and pharmacology of ACh-induced currents in adult bee olfactory neuropiles. J Neurophysiol 2011; 106:1604-13. [DOI: 10.1152/jn.00126.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acetylcholine (ACh) is the main excitatory neurotransmitter of the insect brain, where nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission. In the honeybee Apis mellifera, nAChRs are expressed in diverse structures including the primary olfactory centers of the brain, the antennal lobes (ALs) and the mushroom bodies (MBs), where they participate in olfactory information processing. To understand the nature and properties of the nAChRs involved in these processes, we performed a pharmacological and molecular characterization of nAChRs on cultured Kenyon cells of the MBs, using whole cell patch-clamp recordings combined with single-cell RT-PCR. In all cells, applications of ACh as well as nicotinic agonists such as nicotine and imidacloprid induced inward currents with fast desensitization. These currents were fully blocked by saturating doses of the antagonists α-bungarotoxin (α-BGT), dihydroxy-β-erythroidine (DHE), and methyllycaconitine (MLA) (MLA ≥ α-BGT ≥ DHE). Molecular analysis of ACh-responding cells revealed that of the 11 nicotinic receptor subunits encoded within the honeybee genome, α2, α8, and β1 subunits were expressed in adult Kenyon cells. Comparison with the expression pattern of adult AL cells revealed the supplementary presence of subunit α7, which could be responsible for the kinetic and pharmacological differences observed when comparing ACh-induced currents from AL and Kenyon cells. Together, our data demonstrate the existence of functional nAChRs on adult MB Kenyon cells that differ from nAChRs on AL cells in both their molecular composition and pharmacological properties, suggesting that changing receptor subsets could mediate different processing functions depending on the brain structure within the olfactory pathway.
Collapse
Affiliation(s)
- Julien Pierre Dupuis
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale (CRCA), CNRS UMR 5169, Toulouse Cedex, France
| | - Monique Gauthier
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale (CRCA), CNRS UMR 5169, Toulouse Cedex, France
| | - Valérie Raymond-Delpech
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale (CRCA), CNRS UMR 5169, Toulouse Cedex, France
| |
Collapse
|
23
|
Frost EH, Shutler D, Hillier NK. Effects of cold immobilization and recovery period on honeybee learning, memory, and responsiveness to sucrose. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1385-1390. [PMID: 21767543 DOI: 10.1016/j.jinsphys.2011.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/27/2011] [Accepted: 07/05/2011] [Indexed: 05/31/2023]
Abstract
In addition to human error and variation in laboratory conditions, there are numerous factors that can complicate comparisons among studies. Furthermore, differences in how experimental methods are executed can make it difficult to distinguish between effects of focal versus extraneous variables. Insect neural function is commonly evaluated using Pavlovian conditioning techniques; learning and memory in many species can be assessed using the proboscis extension reflex (PER). However, there are significant inconsistencies in methods used to immobilize insects prior to PER tests. We compared responses of honeybees immobilized in a refrigerator, on ice, and in a freezer, and evaluated influence of recovery interval before testing. Ice-chilling weakly decreased learning (response to an originally neutral odor) more so than refrigeration or freezing, but not 24-h recall of odor. We found no significant differences in responsiveness to sucrose relative to cooling method, but responsiveness was significantly lower among honeybees left to recover for only 0.75h versus 1.5 or 3h. Finally, we observed increased responsiveness to sucrose and geraniol between June and August. Our results suggest that inconsistencies in cold immobilization methods could confound interpretation and comparison of results from a large body of work on honeybee learning and memory.
Collapse
Affiliation(s)
- Elisabeth H Frost
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, Nova Scotia, Canada.
| | | | | |
Collapse
|
24
|
State of the Art on Insect Nicotinic Acetylcholine Receptor Function in Learning and Memory. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 683:97-115. [DOI: 10.1007/978-1-4419-6445-8_9] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Jones AK, Sattelle DB. Diversity of Insect Nicotinic Acetylcholine Receptor Subunits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 683:25-43. [DOI: 10.1007/978-1-4419-6445-8_3] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
26
|
Thany SH. Electrophysiological Studies and Pharmacological Properties of Insect Native Nicotinic Acetylcholine Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 683:53-63. [DOI: 10.1007/978-1-4419-6445-8_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Bernadou A, Démares F, Couret-Fauvel T, Sandoz JC, Gauthier M. Effect of fipronil on side-specific antennal tactile learning in the honeybee. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:1099-1106. [PMID: 19723527 DOI: 10.1016/j.jinsphys.2009.08.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/30/2009] [Accepted: 08/03/2009] [Indexed: 05/28/2023]
Abstract
In the honeybee, the conditioning of the proboscis extension response using tactile antennal stimulations is well suited for studying the side-specificity of learning including the possible bilateral transfer of memory traces in the brain, and the role of inhibitory networks. A tactile stimulus was presented to one antenna in association with a sucrose reward to the proboscis. The other antenna was either not stimulated (A+/0 training), stimulated with a non-reinforced tactile stimulus B (A+/B- training) or stimulated with B reinforced with sucrose to the proboscis (A+/B+ training). Memory tests performed 3 and 24h after training showed in all situations that a tactile stimulus learnt on one side was only retrieved ipsilaterally, indicating no bilateral transfer of information. In all these groups, we investigated the effect of the phenylpyrazole insecticide fipronil by applying a sublethal dose (0.5 ng/bee) on the thorax 15 min before training. This treatment decreased acquisition success and the subsequent memory performances were lowered but the distribution of responses to the tactile stimuli between sides was not affected. These results underline the role of the inhibitory networks targeted by fipronil on tactile learning and memory processes.
Collapse
Affiliation(s)
- A Bernadou
- Centre de Recherches sur la Cognition Animale, UMR CNRS 5169, Université Paul Sabatier, 31062 Toulouse Cedex, France
| | | | | | | | | |
Collapse
|
28
|
Dacher M, Smith BH. Olfactory interference during inhibitory backward pairing in honey bees. PLoS One 2008; 3:e3513. [PMID: 18946512 PMCID: PMC2568944 DOI: 10.1371/journal.pone.0003513] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 09/30/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Restrained worker honey bees are a valuable model for studying the behavioral and neural bases of olfactory plasticity. The proboscis extension response (PER; the proboscis is the mouthpart of honey bees) is released in response to sucrose stimulation. If sucrose stimulation is preceded one or a few times by an odor (forward pairing), the bee will form a memory for this association, and subsequent presentations of the odor alone are sufficient to elicit the PER. However, backward pairing between the two stimuli (sucrose, then odor) has not been studied to any great extent in bees, although the vertebrate literature indicates that it elicits a form of inhibitory plasticity. METHODOLOGY/PRINCIPAL FINDINGS If hungry bees are fed with sucrose, they will release a long lasting PER; however, this PER can be interrupted if an odor is presented 15 seconds (but not 7 or 30 seconds) after the sucrose (backward pairing). We refer to this previously unreported process as olfactory interference. Bees receiving this 15 second backward pairing show reduced performance after a subsequent single forward pairing (excitatory conditioning) trial. Analysis of the results supported a relationship between olfactory interference and a form of backward pairing-induced inhibitory learning/memory. Injecting the drug cimetidine into the deutocerebrum impaired olfactory interference. CONCLUSIONS/SIGNIFICANCE Olfactory interference depends on the associative link between odor and PER, rather than between odor and sucrose. Furthermore, pairing an odor with sucrose can lead either to association of this odor to PER or to the inhibition of PER by this odor. Olfactory interference may provide insight into processes that gate how excitatory and inhibitory memories for odor-PER associations are formed.
Collapse
Affiliation(s)
- Matthieu Dacher
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | | |
Collapse
|
29
|
Involvement of NO-synthase and nicotinic receptors in learning in the honey bee. Physiol Behav 2008; 95:200-7. [PMID: 18599094 DOI: 10.1016/j.physbeh.2008.05.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 05/27/2008] [Accepted: 05/28/2008] [Indexed: 01/10/2023]
Abstract
Restrained worker honey bees (Apis mellifera) are one of the main models for the comparative study of learning and memory processes. Bees easily learn to associate a sucrose reward to antennal tactile scanning of a small metal plate (associative learning). Their proboscis extension response can also be habituated through repeated sucrose stimulations (non-associative learning). We studied the role of nitric oxide synthase and nicotinic acetylcholine receptors in these two forms of learning. The nicotinic antagonist MLA or the nitric oxide synthase inhibitor l-NAME impaired the formation of tactile associative long-term memory that specifically occurs during multiple-trial training; however these drugs had no effect on single-trial training. None of the drugs affected retrieval processes. These pharmacological results are consistent with data previously obtained with olfactory conditioning and indicate that MLA-sensitive nicotinic receptors and NO-synthase are specifically involved in long-term memory. MLA and l-NAME both reduced the number of trials required for habituation to occur. This result suggests that a reduction of cholinergic nicotinic neurotransmission promotes PER habituation in the honey bee.
Collapse
|
30
|
El Hassani AK, Dacher M, Gary V, Lambin M, Gauthier M, Armengaud C. Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2008; 54:653-661. [PMID: 18026773 DOI: 10.1007/s00244-007-9071-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 10/10/2007] [Indexed: 05/25/2023]
Abstract
Acetamiprid and thiamethoxam are insecticides introduced for pest control, but they can also affect non-target insects such as honeybees. In insects, these neonicotinoid insecticides are known to act on acetylcholine nicotinic receptors but the behavioral effects of low doses are not yet fully understood. The effects of acetamiprid and thiamethoxam were studied after acute sublethal treatment on the behavior of the honeybee (Apis mellifera) under controlled laboratory conditions. The drugs were either administered orally or applied topically on the thorax. After oral consumption acetamiprid increased sensitivity to antennal stimulation by sucrose solutions at doses of 1 microg/bee and impaired long-term retention of olfactory learning at the dose of 0.1 microg/bee. Acetamiprid thoracic application induced no effect in these behavioral assays but increased locomotor activity (0.1 and 0.5 microg/bee) and water-induced proboscis extension reflex (0.1, 0.5, and 1 microg/bee). Unlike acetamiprid, thiamethoxam had no effect on bees' behavior under the conditions used. Our results suggest a particular vulnerability of honeybee behavior to sublethal doses of acetamiprid.
Collapse
Affiliation(s)
- Abdessalam Kacimi El Hassani
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, CNRS UMR 5169, 118 Route de Narbonne, 31062, Toulouse Cedex 04, France
| | | | | | | | | | | |
Collapse
|
31
|
Barbara GS, Grünewald B, Paute S, Gauthier M, Raymond-Delpech V. Study of nicotinic acetylcholine receptors on cultured antennal lobe neurones from adult honeybee brains. INVERTEBRATE NEUROSCIENCE 2007; 8:19-29. [PMID: 18004599 DOI: 10.1007/s10158-007-0062-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 10/25/2007] [Indexed: 12/21/2022]
Abstract
In insects, acetylcholine (ACh) is the main neurotransmitter, and nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission. In the honeybee, nAChRs are expressed in diverse structures including the primary olfactory centres of the brain, the antennal lobes (AL) and the mushroom bodies. Whole-cell, voltage-clamp recordings were used to characterize the nAChRs present on cultured AL cells from adult honeybee, Apis mellifera. In 90% of the cells, applications of ACh induced fast inward currents that desensitized slowly. The classical nicotinic agonists nicotine and imidacloprid elicited respectively 45 and 43% of the maximum ACh-induced currents. The ACh-elicited currents were blocked by nicotinic antagonists methyllycaconitine, dihydroxy-beta-erythroidine and alpha-bungarotoxin. The nAChRs on adult AL cells are cation permeable channels. Our data indicate the existence of functional nAChRs on adult AL cells that differ from nAChRs on pupal Kenyon cells from mushroom bodies by their pharmacological profile and ionic permeability, suggesting that these receptors could be implicated in different functions.
Collapse
Affiliation(s)
- Guillaume Stéphane Barbara
- Centre de Recherches sur la Cognition Animale-CNRS, Université Paul Sabatier, 118 rte de Narbonne, 31062, Toulouse, France
| | | | | | | | | |
Collapse
|
32
|
Jones AK, Sattelle DB. The cys-loop ligand-gated ion channel gene superfamily of the red flour beetle, Tribolium castaneum. BMC Genomics 2007; 8:327. [PMID: 17880682 PMCID: PMC2064938 DOI: 10.1186/1471-2164-8-327] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 09/19/2007] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Members of the cys-loop ligand-gated ion channel (cys-loop LGIC) superfamily mediate chemical neurotransmission and are studied extensively as potential targets of drugs used to treat neurological disorders such as Alzheimer's disease. Insect cys-loop LGICs are also of interest as they are targets of highly successful insecticides. The red flour beetle, Tribolium castaneum, is a major pest of stored agricultural products and is also an important model organism for studying development. RESULTS As part of the T. castaneum genome sequencing effort, we have characterized the beetle cys-loop LGIC superfamily which is the third insect superfamily to be described after those of Drosophila melanogaster and Apis mellifera, and also the largest consisting of 24 genes. As with Drosophila and Apis, Tribolium possesses ion channels gated by acetylcholine, gamma-amino butyric acid (GABA), glutamate and histamine as well as orthologs of the Drosophila pH-sensitive chloride channel subunit (pHCl), CG8916 and CG12344. Similar to Drosophila and Apis, Tribolium cys-loop LGIC diversity is broadened by alternative splicing although the beetle orthologs of RDL and GluCl possess more variants of exon 3. Also, RNA A-to-I editing was observed in two Tribolium nicotinic acetylcholine receptor subunits, Tcasalpha6 and Tcasbeta1. Editing in Tcasalpha6 is evolutionarily conserved with D. melanogaster, A. mellifera and Heliothis virescens, whereas Tcasbeta1 is edited at a site so far only observed in the beetle. CONCLUSION Our findings reveal that in diverse insect species the cys-loop LGIC superfamily has remained compact with only minor changes in gene numbers. However, alternative splicing, RNA editing and the presence of divergent subunits broadens the cys-loop LGIC proteome and generates species-specific receptor isoforms. These findings on Tribolium castaneum enhance our understanding of cys-loop LGIC functional genomics and provide a useful basis for the development of improved insecticides that target an important agricultural pest.
Collapse
Affiliation(s)
- Andrew K Jones
- MRC Functional Genetics Unit, Department of Physiology Anatomy and Genetics, The Sherrington Building, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - David B Sattelle
- MRC Functional Genetics Unit, Department of Physiology Anatomy and Genetics, The Sherrington Building, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| |
Collapse
|
33
|
Giurfa M. Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:801-24. [PMID: 17639413 DOI: 10.1007/s00359-007-0235-9] [Citation(s) in RCA: 311] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Revised: 04/21/2007] [Accepted: 04/22/2007] [Indexed: 10/23/2022]
Abstract
Equipped with a mini brain smaller than one cubic millimeter and containing only 950,000 neurons, honeybees could be indeed considered as having rather limited cognitive abilities. However, bees display a rich and interesting behavioral repertoire, in which learning and memory play a fundamental role in the framework of foraging activities. We focus on the question of whether adaptive behavior in honeybees exceeds simple forms of learning and whether the neural mechanisms of complex learning can be unraveled by studying the honeybee brain. Besides elemental forms of learning, in which bees learn specific and univocal links between events in their environment, bees also master different forms of non-elemental learning, including categorization, contextual learning and rule abstraction, both in the visual and in the olfactory domain. Different protocols allow accessing the neural substrates of some of these learning forms and understanding how complex problem solving can be achieved by a relatively simple neural architecture. These results underline the enormous richness of experience-dependent behavior in honeybees, its high flexibility, and the fact that it is possible to formalize and characterize in controlled laboratory protocols basic and higher-order cognitive processing using an insect as a model.
Collapse
Affiliation(s)
- Martin Giurfa
- Research Centre on Animal Cognition, CNRS - University Paul Sabatier, 118 route de Narbonne, 31062, Toulouse cedex 9, France.
| |
Collapse
|
34
|
Vidovic M, Nighorn A, Koblar S, Maleszka R. Eph receptor and ephrin signaling in developing and adult brain of the honeybee (Apis mellifera). Dev Neurobiol 2007; 67:233-51. [PMID: 17443785 PMCID: PMC2084376 DOI: 10.1002/dneu.20341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Roles for Eph receptor tyrosine kinase and ephrin signaling in vertebrate brain development are well established. Their involvement in the modulation of mammalian synaptic structure and physiology is also emerging. However, less is known of their effects on brain development and their function in adult invertebrate nervous systems. Here, we report on the characterization of Eph receptor and ephrin orthologs in the honeybee, Apis mellifera (Am), and their role in learning and memory. In situ hybridization for mRNA expression showed a uniform distribution of expression of both genes across the developing pupal and adult brain. However, in situ labeling with Fc fusion proteins indicated that the AmEphR and Amephrin proteins were differentially localized to cell body regions in the mushroom bodies and the developing neuropiles of the antennal and optic lobes. In adults, AmEphR protein was localized to regions of synaptic contacts in optic lobes, in the glomeruli of antennal lobes, and in the medial lobe of the mushroom body. The latter two regions are involved in olfactory learning and memory in the honeybee. Injections of EphR-Fc and ephrin-Fc proteins into the brains of adult bees, 1 h before olfactory conditioning of the proboscis extension reflex, significantly reduced memory 24 h later. Experimental amnesia in the group injected with ephrin-Fc was apparent 1 h post-training. Experimental amnesia was also induced by post-training injections with ephrin-Fc suggesting a role in recall. This is the first demonstration that Eph molecules function to regulate the formation of memory in insects.
Collapse
Affiliation(s)
- Maria Vidovic
- Visual Sciences, Research School of Biological Sciences and ARC Centre for the Molecular Genetics of Development, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | |
Collapse
|
35
|
Abstract
Memory reconsolidation has been argued to be a distinct process that serves to maintain, strengthen or modify memories. Specifically, the retrieval of a previously consolidated memory has been hypothesized to induce an additional activity-dependent labile period during which the memory can be modified. Understanding the molecular mechanisms of reconsolidation could provide crucial insights into the dynamic aspects of normal mnemonic function and psychiatric disorders that are characterized by exceptionally strong and salient emotional memories.
Collapse
Affiliation(s)
- Natalie C Tronson
- Department of Psychiatry, Division of Molecular Psychiatry, Center for Genes and Behavior, Yale University School of Medicine, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, 34 Park Street, New Haven, Connecticut 06508, USA
| | | |
Collapse
|
36
|
Haupt SS. Central gustatory projections and side-specificity of operant antennal muscle conditioning in the honeybee. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:523-35. [PMID: 17265152 DOI: 10.1007/s00359-007-0208-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 12/20/2006] [Accepted: 12/31/2006] [Indexed: 11/29/2022]
Abstract
Gustatory stimuli to the antennae, especially sucrose, are important for bees and are employed in learning paradigms as unconditioned stimulus. The present study identified primary antennal gustatory projections in the bee brain and determined the impact of stimulation of the antennal tip on antennal muscle activity and its plasticity. Central projections of antennal taste hairs contained axons of two morphologies projecting into the dorsal lobe, which is also the antennal motor centre. Putative mechanosensory axons arborised in a dorso-lateral area. Putative gustatory axons projected to a ventro-medial area. Bees scan gustatory and mechanical stimuli with their antennae using variable strategies but sensory input to the motor system has not been investigated in detail. Mechanical, gustatory, and electrical stimulation of the ipsilateral antennal tip were found to evoke short-latency responses in an antennal muscle, the fast flagellum flexor. Contralateral gustatory stimulation induced smaller responses with longer latency. The activity of the fast flagellum flexor was conditioned operantly by pairing high muscle activity with ipsilateral antennal sucrose stimulation. A proboscis reward was unnecessary for learning. With contralateral antennal sucrose stimulation, conditioning was unsuccessful. Thus, muscle activity induced by gustatory stimulation was important for learning success and conditioning was side-specific.
Collapse
Affiliation(s)
- S Shuichi Haupt
- Neurobiologie, Institut für Okologie, TU Berlin FR1-1, Franklinstr. 28/9, 10587, Berlin, Germany.
| |
Collapse
|
37
|
Thany SH, Lenaers G, Raymond-Delpech V, Sattelle DB, Lapied B. Exploring the pharmacological properties of insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 2007; 28:14-22. [PMID: 17156860 DOI: 10.1016/j.tips.2006.11.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 10/05/2006] [Accepted: 11/23/2006] [Indexed: 01/07/2023]
Abstract
Insect nicotinic acetylcholine (nACh) receptors are molecular targets of insecticides such as neonicotinoids that are used to control disease-carrying insects and agricultural pests. To date, several insect nACh receptor subunits have been identified, indicating different nACh receptor subtypes and pharmacological profiles. Because of the difficulty in expressing functional insect nACh receptors in heterologous systems, new research tools are needed. Studies on insects resistant to the insecticide imidacloprid and on laboratory-generated hybrid and chimaeric nACh receptors in vitro have provided information about the molecular basis of receptor diversity, neonicotinoid resistance and selectivity. Additionally, recent results indicate that the sensitivity of insect nACh receptors to imidacloprid can be modulated by intracellular phosphorylation mechanisms, which offers a new approach to studying insect nACh receptor pharmacology.
Collapse
Affiliation(s)
- Steeve H Thany
- Laboratoire Récepteurs et Canaux Ioniques Membranaires, UPRES EA 2647/USC INRA, Université d'Angers, UFR Sciences, 2 Boulevard Lavoisier, 49045 Angers cedex, France.
| | | | | | | | | |
Collapse
|
38
|
Jones AK, Raymond-Delpech V, Thany SH, Gauthier M, Sattelle DB. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera. Genome Res 2006; 16:1422-30. [PMID: 17065616 PMCID: PMC1626644 DOI: 10.1101/gr.4549206] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission and play roles in many cognitive processes. They are under intense research as potential targets of drugs used to treat neurodegenerative diseases and neurological disorders such as Alzheimer's disease and schizophrenia. Invertebrate nAChRs are targets of anthelmintics as well as a major group of insecticides, the neonicotinoids. The honey bee, Apis mellifera, is one of the most beneficial insects worldwide, playing an important role in crop pollination, and is also a valuable model system for studies on social interaction, sensory processing, learning, and memory. We have used the A. mellifera genome information to characterize the complete honey bee nAChR gene family. Comparison with the fruit fly Drosophila melanogaster and the malaria mosquito Anopheles gambiae shows that the honey bee possesses the largest family of insect nAChR subunits to date (11 members). As with Drosophila and Anopheles, alternative splicing of conserved exons increases receptor diversity. Also, we show that in one honey bee nAChR subunit, six adenosine residues are targeted for RNA A-to-I editing, two of which are evolutionarily conserved in Drosophila melanogaster and Heliothis virescens orthologs, and that the extent of editing increases as the honey bee lifecycle progresses, serving to maximize receptor diversity at the adult stage. These findings on Apis mellifera enhance our understanding of nAChR functional genomics and provide a useful basis for the development of improved insecticides that spare a major beneficial insect species.
Collapse
Affiliation(s)
- Andrew K. Jones
- MRC Functional Genetics Unit, Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Valerie Raymond-Delpech
- Centre de Recherches sur la Cognition Animale, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5169, Université Paul Sabatier, 31062 Toulouse, France
| | - Steeve H. Thany
- Centre de Recherches sur la Cognition Animale, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5169, Université Paul Sabatier, 31062 Toulouse, France
| | - Monique Gauthier
- Centre de Recherches sur la Cognition Animale, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5169, Université Paul Sabatier, 31062 Toulouse, France
| | - David B. Sattelle
- MRC Functional Genetics Unit, Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
- Corresponding author.
E-mail ; fax 44-1865-282-651
| |
Collapse
|
39
|
Gauthier M, Dacher M, Thany SH, Niggebrügge C, Déglise P, Kljucevic P, Armengaud C, Grünewald B. Involvement of α-bungarotoxin-sensitive nicotinic receptors in long-term memory formation in the honeybee (Apis mellifera). Neurobiol Learn Mem 2006; 86:164-74. [PMID: 16616529 DOI: 10.1016/j.nlm.2006.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 02/16/2006] [Accepted: 02/22/2006] [Indexed: 11/18/2022]
Abstract
In the honeybee Apis mellifera, multiple-trial olfactory conditioning of the proboscis extension response specifically leads to long-term memory (LTM) which can be retrieved more than 24 h after learning. We studied the involvement of nicotinic acetylcholine receptors in the establishment of LTM by injecting the nicotinic antagonists mecamylamine (1 mM), alpha-bungarotoxin (alpha-BGT, 0.1 mM) or methyllycaconitine (MLA, 0.1 mM) into the brain through the median ocellus 20 min before or 20 min after multiple-trial learning. The retention tests were performed 1, 3, and 24 h after learning. Pre-training injections of mecamylamine induced a lower performance during conditioning but had no effect on LTM formation. Post-training injections of mecamylamine did not affect honeybees' performances. Pre-training injections of MLA or post-training injection of alpha-BGT specifically induced LTM impairment whereas acquisition as well as memory retrieval tested 1 or 3 h after learning was normal. This indicates that brain injections of alpha-BGT and MLA did not interfere with learning or medium-term memory. Rather, these blockers affect the LTM. To explain these results, we advance the hypothesis that honeybee alpha-BGT-sensitive acetylcholine receptors are also sensitive to MLA. These receptors could be essential for triggering intracellular mechanisms involved in LTM. By contrast, medium-term memory is not dependent upon these receptors but is affected by mecamylamine.
Collapse
Affiliation(s)
- Monique Gauthier
- Centre de Recherches sur la Cognition Animale, CNRS/Université Paul Sabatier Toulouse III, 4R3, 118 route de Narbonne, 31062 Toulouse Cedex 09, France.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Jones AK, Sattelle DB. The cys-loop ligand-gated ion channel superfamily of the honeybee, Apis mellifera. INVERTEBRATE NEUROSCIENCE : IN 2006; 6:123-32. [PMID: 16902773 DOI: 10.1007/s10158-006-0026-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
Members of the cys-loop ligand-gated ion channel (cys-loop LGIC) superfamily mediate neurotransmission in insects and are targets of successful insecticides. We have described the cys-loop LGIC superfamily of the honeybee, Apis mellifera, which is an important crop pollinator and a key model for social interaction. The honeybee superfamily consists of 21 genes, which is slightly smaller than that of Drosophila melanogaster comprising 23 genes. As with Drosophila, the honeybee possesses ion channels gated by acetylcholine, gamma-amino butyric acid, glutamate and histamine as well as orthologs of the Drosophila pH-sensitive chloride channel (pHCl), CG8916, CG12344 and CG6927. Similar to Drosophila, honeybee cys-loop LGIC diversity is broadened by differential splicing which may also serve to generate species-specific receptor isoforms. These findings on Apis mellifera enhance our understanding of cys-loop LGIC functional genomics and provide a useful basis for the development of improved insecticides that spare a major beneficial insect species.
Collapse
Affiliation(s)
- Andrew K Jones
- MRC Functional Genetics Unit, Department of Physiology Anatomy and Genetics, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| | | |
Collapse
|
41
|
Abstract
Animal models contribute to the understanding of molecular mechanism of cancer, revealing complex roles of altered cellular-signaling networks and deficient surveillance systems. Analogous pathologies are documented in an unconventional model organism that receives attention in research on systems theory, evolution, and aging. The honeybee (Apis mellifera) colony is an advanced integrative unit, a "superorganism" in which order is controlled via complex signaling cascades and surveillance schemes. A facultatively sterile caste, the workers, regulates patterns of growth, differentiation, homeostasis, and death. Workers differentiate into temporal phenotypes in response to dynamic social cues; chemosensory signals that can translate into dramatic physiological responses, including programmed cell death. Temporal worker forms function together, and effectively identify and terminate abnormal colony members ranging from embryos to adults. As long as this regulatory system is operational at a colony level, the unit survives and propagates. However, if the worker phenotypes that collectively govern order become too few or change into malignant forms that bypass control mechanisms to replicate aberrantly; order is replaced by disorder that ultimately leads to the destruction of the society. In this chapter we describe fundamental properties of honeybee social organization, and explore conditions that lead to states of disorder. Our hope is that this chapter will be an inspirational source for ongoing and future work in the field of cancer research.
Collapse
Affiliation(s)
- Gro V Amdam
- Arizona State University, School of Life Sciences, Tempe, Arizona 85287, USA
| | | |
Collapse
|
42
|
Barbara GS, Zube C, Rybak J, Gauthier M, Grünewald B. Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191:823-36. [PMID: 16044331 DOI: 10.1007/s00359-005-0007-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Accepted: 04/03/2005] [Indexed: 12/21/2022]
Abstract
The honeybee, Apis mellifera, is a valuable model system for the study of olfactory coding and its learning and memory capabilities. In order to understand the synaptic organisation of olfactory information processing, the transmitter receptors of the antennal lobe need to be characterized. Using whole-cell patch-clamp recordings, we analysed the ligand-gated ionic currents of antennal lobe neurons in primary cell culture. Pressure applications of acetylcholine (ACh), gamma-amino butyric acid (GABA) or glutamate induced rapidly activating ionic currents. The ACh-induced current flows through a cation-selective ionotropic receptor with a nicotinic profile. The ACh-induced current is partially blocked by alpha-bungarotoxin. Epibatidine and imidacloprid are partial agonists. Our data indicate the existence of an ionotropic GABA receptor which is permeable to chloride ions and sensitive to picrotoxin (PTX) and the insecticide fipronil. We also identified the existence of a chloride current activated by pressure applications of glutamate. The glutamate-induced current is sensitive to PTX. Thus, within the honeybee antennal lobe, an excitatory cholinergic transmitter system and two inhibitory networks that use GABA or glutamate as their neurotransmitter were identified.
Collapse
Affiliation(s)
- Guillaume Stephane Barbara
- Institut für Biologie, AG Neurobiologie, Freie Universität Berlin, Königin-Luise-Str. 28-30, 14195, Berlin, Germany
| | | | | | | | | |
Collapse
|
43
|
Scheiner R, Schnitt S, Erber J. The functions of antennal mechanoreceptors and antennal joints in tactile discrimination of the honeybee (Apis mellifera L.). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191:857-64. [PMID: 16044330 DOI: 10.1007/s00359-005-0009-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 04/11/2005] [Accepted: 04/11/2005] [Indexed: 11/24/2022]
Abstract
Honeybees learn and discriminate excellently between different surface structures and different forms of objects, which they scan with their antennae. The sensory plate on the antennal tip plays a key role in the perception of mechanosensory and gustatory information. It is densely covered with small tactile hairs and carries a few large taste hairs. Both types of sensilla contain a mechanoreceptor, which is involved in the antennal scanning of an object. Our experiments test the roles of the mechanoreceptors on the antennal tip in tactile antennal learning and discrimination. Joints between head capsule and scapus and between scapus and pedicellus enable the bee to perform three-dimensional movements when they scan an object. The role of these joints in tactile antennal learning and discrimination is studied in separate experiments. The mechanoreceptors on the antennal tip were decisive for surface discrimination, but not for tactile acquisition or discrimination of shapes. When the scapus-pedicellus joint or the headcapsule-scapus joint was fixed on both antennae, tactile learning was still apparent but surface discrimination was abolished. Fixing both scapi to the head capsule reduced tactile acquisition.
Collapse
Affiliation(s)
- Ricarda Scheiner
- Institut für Okologie, Technische Universität Berlin, Franklinstr. 28/29, FR 1-1, 10587, Berlin, Germany.
| | | | | |
Collapse
|
44
|
Thany SH, Gauthier M. Nicotine injected into the antennal lobes induces a rapid modulation of sucrose threshold and improves short-term memory in the honeybee Apis mellifera. Brain Res 2005; 1039:216-9. [PMID: 15781066 DOI: 10.1016/j.brainres.2005.01.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 01/18/2005] [Accepted: 01/19/2005] [Indexed: 11/28/2022]
Abstract
In honeybee, although it is known that the food perception and the olfactory memory can be modulated by many environmental and biochemical factors, nothing is known on the effects of nicotine on these processes. Using microinjections of nicotine in the antennal lobes, we show that nicotine at 10(-3) M and 10(-4) M but not at 10(-5) M induced an increase of sucrose sensitivity and that post-training injection of 10(-5) M nicotine improved retention of olfactory learning. These results demonstrate that potentiation of the cholinergic system in the honeybee enhances sucrose perception and facilitates olfactory memory.
Collapse
Affiliation(s)
- Steeve Hervé Thany
- Centre de Recherches sur la Cognition Animale, CNRS UMR 5169, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France.
| | | |
Collapse
|