1
|
Fu ZH, Zhao C, Wang Y, Zhang L, Wang L. Pharmacovigilance imbalance analysis of VEGFR-TKI-related taste and smell disorders. Sci Rep 2025; 15:3118. [PMID: 39856344 PMCID: PMC11760945 DOI: 10.1038/s41598-025-87678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
Taste and smell disorders (TSDs) can induce diminished interest in food, inadequate nutrient intake, and emotional irregularities, particularly among cancer patients. Previous research found that the main culprits of TSD development in cancer patients are cytotoxic drugs such as taxol, fluorouracil, cyclophosphamide, and anthracycline-based drugs. The advent of targeted drugs such as vascular endothelial growth factor receptor-tyrosine kinase inhibitors (VEGFR-TKIs) has significantly extended the survival time of cancer patients, and thus widely used in clinical practice. However, the association between the use of VEGFR-TKIs and the development of TSDs havs not been studied.The adverse event(AE) reports related to VEGFR-TKIs were downloaded from the FDA Adverse Event Reporting System (FAERS) database. Disproportionality analysis was conducted to assess the correlation between VEGFR-TKIs and TSDs. The Standardized Medical Dictionary for Regulatory Activities (MedDRA) Queries (SMQs) were used to analyze the AEs of TSDs. The study found a statistically significant correlation between the occurrence of TSDs and the use of VEGF-TKIs (cabozantinib, axitinib, pazopanib, sunitinib, nintedanib, and lenvatinib).However, the instructions for Nintedanib, Sorafenib and Lenvatinib were not mentioned. Capbottinib demonstrated the highest number of reports(1790 cases), also with the strongest association (ROR 95%CI-low = 16.51; PRR = 16.18; IC025 = 3.96) when analyzing the narrow SMQ of TSDs. Dysgeusia, taste disorder, and ageusia were the most commonly reported preferred terms (PTs) in VEGFR-TKI-related TSDs, accounting for more than 90% of the reported cases. Cabozantinib showed the highest number of reports and strongest correlation with ageusia, taste disorder, parosmia, and anosmia. The study found significant association between the reports of TSDs and the use of VEGFR-TKIs, indicating the monitoring of TSD development and appropriate management in clinical is necessary.
Collapse
Affiliation(s)
- Zhong-Hua Fu
- Department of pharmacy, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Chenglong Zhao
- Department of pharmacy, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Yaqin Wang
- Department of pharmacy, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Lei Zhang
- Department of pharmacy, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Lei Wang
- Department of pharmacy, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
2
|
Petersen SI, Okolicsanyi RK, Haupt LM. Exploring Heparan Sulfate Proteoglycans as Mediators of Human Mesenchymal Stem Cell Neurogenesis. Cell Mol Neurobiol 2024; 44:30. [PMID: 38546765 PMCID: PMC10978659 DOI: 10.1007/s10571-024-01463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/19/2024] [Indexed: 04/01/2024]
Abstract
Alzheimer's disease (AD) and traumatic brain injury (TBI) are major public health issues worldwide, with over 38 million people living with AD and approximately 48 million people (27-69 million) experiencing TBI annually. Neurodegenerative conditions are characterised by the accumulation of neurotoxic amyloid beta (Aβ) and microtubule-associated protein Tau (Tau) with current treatments focused on managing symptoms rather than addressing the underlying cause. Heparan sulfate proteoglycans (HSPGs) are a diverse family of macromolecules that interact with various proteins and ligands and promote neurogenesis, a process where new neural cells are formed from stem cells. The syndecan (SDC) and glypican (GPC) HSPGs have been implicated in AD pathogenesis, acting as drivers of disease, as well as potential therapeutic targets. Human mesenchymal stem cells (hMSCs) provide an attractive therapeutic option for studying and potentially treating neurodegenerative diseases due to their relative ease of isolation and subsequent extensive in vitro expansive potential. Understanding how HSPGs regulate protein aggregation, a key feature of neurodegenerative disorders, is essential to unravelling the underlying disease processes of AD and TBI, as well as any link between these two neurological disorders. Further research may validate HSPG, specifically SDCs or GPCs, use as neurodegenerative disease targets, either via driving hMSC stem cell therapy or direct targeting.
Collapse
Affiliation(s)
- Sofia I Petersen
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Rachel K Okolicsanyi
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Kelvin Grove, Australia
| | - Larisa M Haupt
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia.
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Kelvin Grove, Australia.
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Kelvin Grove, Australia.
| |
Collapse
|
3
|
Shen J, Zhang T, Guan H, Li X, Zhang S, Xu G. PDGFR-beta signaling mediates endogenous neurogenesis after postischemic neural stem/progenitor cell transplantation in mice. Brain Inj 2023; 37:1345-1354. [PMID: 37975626 DOI: 10.1080/02699052.2023.2280894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE Although platelet-derived growth factor receptor (PDGFR)-β mediates the self-renewal and multipotency of neural stem/progenitor cells (NSPCs) in vitro and in vivo, its mechanisms of activating endogenous NSPCs following ischemic stroke still remain unproven. METHODS The exogenous NSPCs were transplanted into the ischemic striatum of PDGFR-β conditionally neuroepithelial knockout (KO) mice at 24 h after transient middle cerebral artery occlusion (tMCAO). 5-Bromo-2'-deoxyuridine (BrdU) was intraperitoneally injected to label the newly formed endogenous NSPCs. Infarction volume was measured, and behavioral tests were performed. In the subventricular zone (SVZ), proliferation of endogenous NSPCs was tested, and synapse formation and expression of nutritional factors were measured. RESULTS Compared with control mice, KO mice showed larger infarction volume, delayed neurological recovery, reduced numbers of BrdU positive cells, decreased expression of neurogenic factors (including neurofilament, synaptophysin, and brain-derived neurotrophic factor), and decreased synaptic regeneration in SVZ after tMCAO. Moreover, exogenous NSPC transplantation significantly alleviated neurologic dysfunction, promoted neurogenesis, increased expression of neurologic factors, and diminished synaptic deformation in SVZ of FL mice after tMCAO but had no beneficial effect in KO mice. CONCLUSION PDGFR-β signaling may promote activation of endogenous NSPCs after postischemic NSPC transplantation, and thus represents a novel potential regeneration-based therapeutic target.
Collapse
Affiliation(s)
- Jie Shen
- Department of Neurology, Dongguan Binhaiwan Central Hospital, Dongguan, Guang Dong, China
| | - Tong Zhang
- School of Medicine, Shanxi Datong University, Datong, Shanxi, China
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi, China
| | - Hong Guan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Xin Li
- Department of Pulmonary and Critical Care Medicine, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Sainan Zhang
- Department of Pulmonary and Critical Care Medicine, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Guihua Xu
- Department of Science and Education, Dongguan Binhaiwan Central Hospital, Dongguan, Guang Dong, China
- Dongguan Key Laboratory of Precision Medicine
| |
Collapse
|
4
|
Lambrichts I, Wolfs E, Bronckaers A, Gervois P, Vangansewinkel T. The Effect of Leukocyte- and Platelet-Rich Fibrin on Central and Peripheral Nervous System Neurons-Implications for Biomaterial Applicability. Int J Mol Sci 2023; 24:14314. [PMID: 37762617 PMCID: PMC10532231 DOI: 10.3390/ijms241814314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Leukocyte- and Platelet-Rich Fibrin (L-PRF) is a second-generation platelet concentrate that is prepared directly from the patient's own blood. It is widely used in the field of regenerative medicine, and to better understand its clinical applicability we aimed to further explore the biological properties and effects of L-PRF on cells from the central and peripheral nervous system. To this end, L-PRF was prepared from healthy human donors, and confocal, transmission, and scanning electron microscopy as well as secretome analysis were performed on these clots. In addition, functional assays were completed to determine the effect of L-PRF on neural stem cells (NSCs), primary cortical neurons (pCNs), and peripheral dorsal root ganglion (DRG) neurons. We observed that L-PRF consists of a dense but porous fibrin network, containing leukocytes and aggregates of activated platelets that are distributed throughout the clot. Antibody array and ELISA confirmed that it is a reservoir for a plethora of growth factors. Key molecules that are known to have an effect on neuronal cell functions such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) were slowly released over time from the clots. Next, we found that the L-PRF secretome had no significant effect on the proliferative and metabolic activity of NSCs, but it did act as a chemoattractant and improved the migration of these CNS-derived stem cells. More importantly, L-PRF growth factors had a detrimental effect on the survival of pCNs, and consequently, also interfered with their neurite outgrowth. In contrast, we found a positive effect on peripheral DRG neurons, and L-PRF growth factors improved their survival and significantly stimulated the outgrowth and branching of their neurites. Taken together, our study demonstrates the positive effects of the L-PRF secretome on peripheral neurons and supports its use in regenerative medicine but care should be taken when using it for CNS applications.
Collapse
Affiliation(s)
- Ivo Lambrichts
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Esther Wolfs
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Annelies Bronckaers
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Pascal Gervois
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Tim Vangansewinkel
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| |
Collapse
|
5
|
de la Monte SM, Tong M, Hapel AJ. Concordant and Discordant Cerebrospinal Fluid and Plasma Cytokine and Chemokine Responses in Mild Cognitive Impairment and Early-Stage Alzheimer's Disease. Biomedicines 2023; 11:2394. [PMID: 37760836 PMCID: PMC10525668 DOI: 10.3390/biomedicines11092394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroinflammation may be a pathogenic mediator and biomarker of neurodegeneration at the boundary between mild cognitive impairment (MCI) and early-stage Alzheimer's disease (AD). Whether neuroinflammatory processes are endogenous to the central nervous system (CNS) or originate from systemic (peripheral blood) sources could impact strategies for therapeutic intervention. To address this issue, we measured cytokine and chemokine immunoreactivities in simultaneously obtained lumbar puncture cerebrospinal fluid (CSF) and serum samples from 39 patients including 18 with MCI or early AD and 21 normal controls using a 27-plex XMAP bead-based enzyme-linked immunosorbent assay (ELISA). The MCI/AD combined group had significant (p < 0.05 or better) or statistically trend-wise (0.05 ≤ p ≤ 0.10) concordant increases in CSF and serum IL-4, IL-5, IL-9, IL-13, and TNF-α and reductions in GM-CSF, b-FGF, IL-6, IP-10, and MCP-1; CSF-only increases in IFN-y and IL-7 and reductions in VEGF and IL-12p70; serum-only increases in IL-1β, MIP-1α, and eotaxin and reductions in G-CSF, IL-2, IL-8 and IL-15; and discordant CSF-serum responses with reduced CSF and increased serum PDGF-bb, IL-17a, and RANTES. The results demonstrate simultaneously parallel mixed but modestly greater pro-inflammatory compared to anti-inflammatory or neuroprotective responses in CSF and serum. In addition, the findings show evidence that several cytokines and chemokines are selectively altered in MCI/AD CSF, likely corresponding to distinct neuroinflammatory responses unrelated to systemic pathologies. The aggregate results suggest that early management of MCI/AD neuroinflammation should include both anti-inflammatory and pro-neuroprotective strategies to help prevent disease progression.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology (Neuropathology), Neurology, and Neurosurgery, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Andrew J. Hapel
- Department of Genome Biology, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia;
| |
Collapse
|
6
|
Li HH, Liu Y, Chen HS, Wang J, Li YK, Zhao Y, Sun R, He JG, Wang F, Chen JG. PDGF-BB-Dependent Neurogenesis Buffers Depressive-Like Behaviors by Inhibition of GABAergic Projection from Medial Septum to Dentate Gyrus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301110. [PMID: 37325895 PMCID: PMC10401107 DOI: 10.1002/advs.202301110] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/18/2023] [Indexed: 06/17/2023]
Abstract
Hippocampal circuitry stimulation is sufficient to regulate adult hippocampal neurogenesis and ameliorate depressive-like behavior, but its underlying mechanism remains unclear. Here, it is shown that inhibition of medial septum (MS)-dentate gyrus (DG) circuit reverses the chronic social defeat stress (CSDS)-induced depression-like behavior. Further analysis exhibits that inhibition of gamma-aminobutyric acidergic neurons in MS projecting to the DG (MSGABA+ -DG) increases the expression of platelet-derived growth factor-BB (PDGF-BB) in somatostatin (SOM) positive interneurons of DG, which contributes to the antidepressant-like effects. Overexpression of the PDGF-BB or exogenous administration of PDGF-BB in DG rescues the effect of chronic stress on the inhibition of neural stem cells (NSCs) proliferation and dendritic growth of adult-born hippocampal neurons, as well as on depressive-like behaviors. Conversely, knockdown of PDGF-BB facilitates CSDS-induced deficit of hippocampal neurogenesis and promotes the susceptibility to chronic stress in mice. Finally, conditional knockdown platelet-derived growth factor receptor beta (PDGFRβ) in NSCs blocks an increase in NSCs proliferation and the antidepressant effects of PDGF-BB. These results delineate a previously unidentified PDGF-BB/PDGFRβ signaling in regulating depressive-like behaviors and identify a novel mechanism by which the MSGABA+ -DG pathway regulates the expression of PDGF-BB in SOM-positive interneurons.
Collapse
Affiliation(s)
- Hou-Hong Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Sheng Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
| | - Ji Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Ke Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Zhao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Sun
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jin-Gang He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, 430030, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, 430030, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, 430030, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China
| |
Collapse
|
7
|
Li C, Xie Z, Xing Z, Zhu H, Zhou W, Xie S, Zhang Z, Li MH. The Notch Signaling Pathway Regulates Differentiation of NG2 Cells into Oligodendrocytes in Demyelinating Diseases. Cell Mol Neurobiol 2022; 42:1-11. [PMID: 33826017 PMCID: PMC11421596 DOI: 10.1007/s10571-021-01089-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
NG2 cells are highly proliferative glial cells that can self-renew or differentiate into oligodendrocytes, promoting remyelination. Following demyelination, the proliferative and differentiation potentials of NG2 cells increase rapidly, enhancing their differentiation into functional myelinating cells. Levels of the transcription factors Olig1 and Olig2 increase during the differentiation of NG2 cells and play important roles in the development and repair of oligodendrocytes. However, the ability to generate new oligodendrocytes is hampered by injury-related factors (e.g., myelin fragments, Wnt and Notch signaling components), leading to failed differentiation and maturation of NG2 cells into oligodendrocytes. Here, we review Notch signaling as a negative regulator of oligodendrocyte differentiation and discuss the extracellular ligands, intracellular pathways, and key transcription factors involved.
Collapse
Affiliation(s)
- Chengcai Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhiping Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zelong Xing
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Huaxin Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Wu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shenke Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhixiong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Mei-Hua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
8
|
Li H, Wang J, Liu S, Liu Z, Xu Y. Neuroanatomical Correlates of Mild-to-Moderate Depression: Memory Ability Mediates the Association Between Gray Matter Volume and Antidepressant Treatment Outcome. Front Neurosci 2022; 16:872228. [PMID: 35431790 PMCID: PMC9007321 DOI: 10.3389/fnins.2022.872228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Abstract
Mild-to-moderate depression (MMD) is frequently encountered in clinical practice. Investigating the brain mechanism and its relationship with symptoms in patients with MMD can help us understand the occurrence and development of depression, thus optimizing the prevention and treatment of depression. Shugan Jieyu capsule (SG), a traditional Chinese medicine, is commonly used to ameliorate emotional and cognitive symptoms induced by patients with MMD. Combining clinical assessments and magnetic resonance imaging (MRI), we obtained the emotional and cognitive status of MMD patients and also explored the structural and functional alterations in MMD patients after SG treatments. Structural MRI demonstrated that the gray matter volumes of the left thalamus, right thalamus, and right amygdala in MMD patients were significantly smaller than in healthy controls, and the right amygdala volume was negatively related to depression symptoms in MMD patients. Resting-state functional MRI data demonstrated that MMD patients exhibited decreased temporal coupling between the right amygdala and nucleus accumbens, which was further associated with the severity of depression. Furthermore, right amygdala volume at baseline served as a significant predictor to identify the treatment outcome after 8 weeks of SG treatment in the patients’ group, and importantly, the memory ability mediated the relationship from right amygdala volume to the treatment outcome. These data revealed the structural and functional deficits in the right amygdala, which were highly correlated with the symptoms of depression and its cognitive ability, likely predicting treatment outcome. Therefore, this study strengthened our understanding of the pathogenesis of MMD, which is hoped that it will contribute to tailoring a personalized method for treating the patients.
Collapse
Affiliation(s)
- Hong Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Mental Health, Shanxi Medical University, Taiyuan, China
- *Correspondence: Hong Li,
| | - Junjie Wang
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhifen Liu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Mental Health, Shanxi Medical University, Taiyuan, China
- Yong Xu,
| |
Collapse
|
9
|
An X, Wang Y. Electroconvulsive shock increases neurotrophy and neurogenesis: Time course and treatment session effects. Psychiatry Res 2022; 309:114390. [PMID: 35063747 DOI: 10.1016/j.psychres.2022.114390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 10/19/2022]
Abstract
Increasing evidence suggests that hippocampal neurotrophy may be related to the development of major depressive disorders. Neurogenesis, which can be regulated by neurotrophic factors, is also involved in antidepressant efficacy. This paper reviewed literature on neurotrophic signaling and cell proliferation after electroconvulsive shock (ECS) treatment. All articles were from PubMed, Web of Science, and Scopus databases between 2000 and 2020. The keywords used in the literature search are: "ECS," "ECT," "electroconvulsive seizure," "electroconvulsive shock," "electroconvulsive therapy," "neurotrophic factor," "nerve growth factor," "neurotrophins," "neurogenesis," and "cell proliferation." Eighty-two articles were included in the final analysis. It was shown that compared with acute ECS, repeated ECS increased neurotrophin expression in more brain regions at higher levels and was maintained for a longer time. Similarly, ECS increased cell proliferation in a dose- and time-dependent manner. The increase in cell proliferation was positively correlated with the amount of ECS administered and the newly born cells survived for a long time. The effects of ECS in inducing increases in neurotrophin levels and neurogenesis may contribute to brain function changes and antidepressant effects. Future research may focus on optimal sessions of ECT treatment to obtain the best therapeutic effect.
Collapse
Affiliation(s)
- Xianli An
- School of Educational Science, Yangzhou University, Yangzhou, JiangSu Province, China.
| | - Yaqing Wang
- School of Educational Science, Yangzhou University, Yangzhou, JiangSu Province, China
| |
Collapse
|
10
|
Nelke A, García-López S, Martínez-Serrano A, Pereira MP. Multifactoriality of Parkinson's Disease as Explored Through Human Neural Stem Cells and Their Transplantation in Middle-Aged Parkinsonian Mice. Front Pharmacol 2022; 12:773925. [PMID: 35126116 PMCID: PMC8807563 DOI: 10.3389/fphar.2021.773925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is an age-associated neurodegenerative disorder for which there is currently no cure. Cell replacement therapy is a potential treatment for PD; however, this therapy has more clinically beneficial outcomes in younger patients with less advanced PD. In this study, hVM1 clone 32 cells, a line of human neural stem cells, were characterized and subsequently transplanted in middle-aged Parkinsonian mice in order to examine cell replacement therapy as a treatment for PD. In vitro analyses revealed that these cells express standard dopamine-centered markers as well as others associated with mitochondrial and peroxisome function, as well as glucose and lipid metabolism. Four months after the transplantation of the hVM1 clone 32 cells, striatal expression of tyrosine hydroxylase was minimally reduced in all Parkinsonian mice but that of dopamine transporter was decreased to a greater extent in buffer compared to cell-treated mice. Behavioral tests showed marked differences between experimental groups, and cell transplant improved hyperactivity and gait alterations, while in the striatum, astroglial populations were increased in all groups due to age and a higher amount of microglia were found in Parkinsonian mice. In the motor cortex, nonphosphorylated neurofilament heavy was increased in all Parkinsonian mice. Overall, these findings demonstrate that hVM1 clone 32 cell transplant prevented motor and non-motor impairments and that PD is a complex disorder with many influencing factors, thus reinforcing the idea of novel targets for PD treatment that tend to be focused on dopamine and nigrostriatal damage.
Collapse
Affiliation(s)
- Anna Nelke
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Silvia García-López
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Martínez-Serrano
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta P. Pereira
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Novel Approaches Used to Examine and Control Neurogenesis in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22179608. [PMID: 34502516 PMCID: PMC8431772 DOI: 10.3390/ijms22179608] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022] Open
Abstract
Neurogenesis is a key mechanism of brain development and plasticity, which is impaired in chronic neurodegeneration, including Parkinson’s disease. The accumulation of aberrant α-synuclein is one of the features of PD. Being secreted, this protein produces a prominent neurotoxic effect, alters synaptic plasticity, deregulates intercellular communication, and supports the development of neuroinflammation, thereby providing propagation of pathological events leading to the establishment of a PD-specific phenotype. Multidirectional and ambiguous effects of α-synuclein on adult neurogenesis suggest that impaired neurogenesis should be considered as a target for the prevention of cell loss and restoration of neurological functions. Thus, stimulation of endogenous neurogenesis or cell-replacement therapy with stem cell-derived differentiated neurons raises new hopes for the development of effective and safe technologies for treating PD neurodegeneration. Given the rapid development of optogenetics, it is not surprising that this method has already been repeatedly tested in manipulating neurogenesis in vivo and in vitro via targeting stem or progenitor cells. However, niche astrocytes could also serve as promising candidates for controlling neuronal differentiation and improving the functional integration of newly formed neurons within the brain tissue. In this review, we mainly focus on current approaches to assess neurogenesis and prospects in the application of optogenetic protocols to restore the neurogenesis in Parkinson’s disease.
Collapse
|
12
|
Chen H, Teng Y, Chen X, Liu Z, Geng F, Liu Y, Jiang H, Wang Z, Yang L. Platelet-derived growth factor (PDGF)-BB protects dopaminergic neurons via activation of Akt/ERK/CREB pathways to upregulate tyrosine hydroxylase. CNS Neurosci Ther 2021; 27:1300-1312. [PMID: 34346167 PMCID: PMC8504523 DOI: 10.1111/cns.13708] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Aims The neurotropic growth factor PDGF‐BB was shown to have vital neurorestorative functions in various animal models of Parkinson's disease (PD). Previous studies indicated that the regenerative property of PDGF‐BB contributes to the increased intensity of tyrosine hydroxylase (TH) fibers in vivo. However, whether PDGF‐BB directly modulates the expression of TH, and the underlying mechanism is still unknown. We will carefully examine this in our current study. Method MPTP‐lesion mice received PDGF‐BB treatment via intracerebroventricular (i.c.v) administration, and the expression of TH in different brain regions was assessed by RT‐PCR, Western blot, and immunohistochemistry staining. The molecular mechanisms of PDGF‐BB‐mediated TH upregulation were examined by RT‐PCR, Western blot, ChIP assay, luciferase reporter assay, and immunocytochemistry. Results We validated a reversal expression of TH in MPTP‐lesion mice upon i.c.v administration of PDGF‐BB for seven days. Similar effects of PDGF‐BB‐mediated TH upregulation were also observed in MPP+‐treated primary neuronal culture and dopaminergic neuronal cell line SH‐SY5Y cells. We next demonstrated that PDGF‐BB rapidly activated the pro‐survival PI3K/Akt and MAPK/ERK signaling pathways, as well as the downstream CREB in SH‐SY5Y cells. We further confirmed the significant induction of p‐CREB in PDGF‐BB‐treated animals in vivo. Using a genetic approach, we demonstrated that the transcription factor CREB is critical for PDGF‐BB‐mediated TH expression. The activation and nucleus translocation of CREB were promoted in PDGF‐BB‐treated SH‐SY5Y cells, and the enrichment of CREB on the promoter region of TH gene was also increased upon PDGF‐BB treatment. Conclusion Our data demonstrated that PDGF‐BB directly regulated the expression of TH via activating the downstream Akt/ERK/CREB signaling pathways. Our finding will further support the therapeutic potential of PDGF‐BB in PD, and provide the possibility that targeting PDGF signaling can be harnessed as an adjunctive therapy in PD in the future.
Collapse
Affiliation(s)
- Huan Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yan Teng
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xingmin Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhihao Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Fan Geng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yanzhuo Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Haisong Jiang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ziyan Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lu Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Mourtzi T, Dimitrakopoulos D, Kakogiannis D, Salodimitris C, Botsakis K, Meri DK, Anesti M, Dimopoulou A, Charalampopoulos I, Gravanis A, Matsokis N, Angelatou F, Kazanis I. Characterization of substantia nigra neurogenesis in homeostasis and dopaminergic degeneration: beneficial effects of the microneurotrophin BNN-20. Stem Cell Res Ther 2021; 12:335. [PMID: 34112234 PMCID: PMC8193896 DOI: 10.1186/s13287-021-02398-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
Background Loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) underlines much of the pathology of Parkinson’s disease (PD), but the existence of an endogenous neurogenic system that could be targeted as a therapeutic strategy has been controversial. BNN-20 is a synthetic, BDNF-mimicking, microneurotrophin that we previously showed to exhibit a pleiotropic neuroprotective effect on the dopaminergic neurons of the SNpc in the “weaver” mouse model of PD. Here, we assessed its potential effects on neurogenesis. Methods We quantified total numbers of dopaminergic neurons in the SNpc of wild-type and “weaver” mice, with or without administration of BNN-20, and we employed BrdU labelling and intracerebroventricular injections of DiI to evaluate the existence of dopaminergic neurogenesis in the SNpc and to assess the origin of newborn dopaminergic neurons. The in vivo experiments were complemented by in vitro proliferation/differentiation assays of adult neural stem cells (NSCs) isolated from the substantia nigra and the subependymal zone (SEZ) stem cell niche to further characterize the effects of BNN-20. Results Our analysis revealed the existence of a low-rate turnover of dopaminergic neurons in the normal SNpc and showed, using three independent lines of experiments (stereologic cell counts, BrdU and DiI tracing), that the administration of BNN-20 leads to increased neurogenesis in the SNpc and to partial reversal of dopaminergic cell loss. The newly born dopaminergic neurons, that are partially originated from the SEZ, follow the typical nigral maturation pathway, expressing the transcription factor FoxA2. Importantly, the pro-cytogenic effects of BNN-20 were very strong in the SNpc, but were absent in other brain areas such as the cortex or the stem cell niche of the hippocampus. Moreover, although the in vitro assays showed that BNN-20 enhances the differentiation of NSCs towards glia and neurons, its in vivo administration stimulated only neurogenesis. Conclusions Our results demonstrate the existence of a neurogenic system in the SNpc that can be manipulated in order to regenerate the depleted dopaminergic cell population in the “weaver” PD mouse model. Microneurotrophin BNN-20 emerges as an excellent candidate for future PD cell replacement therapies, due to its area-specific, pro-neurogenic effects. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02398-3.
Collapse
Affiliation(s)
- Theodora Mourtzi
- Department of Physiology, Medical School, University of Patras, 26504, Patras, Greece. .,Lab of Developmental Biology, Department of Biology, University of Patras, 26500, Patras, Greece.
| | | | - Dimitrios Kakogiannis
- Lab of Developmental Biology, Department of Biology, University of Patras, 26500, Patras, Greece
| | - Charalampos Salodimitris
- Lab of Developmental Biology, Department of Biology, University of Patras, 26500, Patras, Greece
| | - Konstantinos Botsakis
- Department of Physiology, Medical School, University of Patras, 26504, Patras, Greece
| | - Danai Kassandra Meri
- Lab of Developmental Biology, Department of Biology, University of Patras, 26500, Patras, Greece
| | - Maria Anesti
- Lab of Developmental Biology, Department of Biology, University of Patras, 26500, Patras, Greece.,Lab of Human and Animal Physiology, Department of Biology, University of Patras, 26500, Patras, Greece
| | - Aggeliki Dimopoulou
- Department of Physiology, Medical School, University of Patras, 26504, Patras, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, 71500, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Achilleas Gravanis
- Department of Pharmacology, Medical School, University of Crete, 71500, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Nikolaos Matsokis
- Lab of Human and Animal Physiology, Department of Biology, University of Patras, 26500, Patras, Greece
| | - Fevronia Angelatou
- Department of Physiology, Medical School, University of Patras, 26504, Patras, Greece
| | - Ilias Kazanis
- Lab of Developmental Biology, Department of Biology, University of Patras, 26500, Patras, Greece.
| |
Collapse
|
14
|
Molecular Mechanism of Platelet-Derived Growth Factor (PDGF)-BB-Mediated Protection Against MPP+ Toxicity in SH-SY5Y Cells. J Mol Neurosci 2020; 71:1131-1143. [DOI: 10.1007/s12031-020-01735-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022]
|
15
|
Jurkowski MP, Bettio L, K. Woo E, Patten A, Yau SY, Gil-Mohapel J. Beyond the Hippocampus and the SVZ: Adult Neurogenesis Throughout the Brain. Front Cell Neurosci 2020; 14:576444. [PMID: 33132848 PMCID: PMC7550688 DOI: 10.3389/fncel.2020.576444] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022] Open
Abstract
Convincing evidence has repeatedly shown that new neurons are produced in the mammalian brain into adulthood. Adult neurogenesis has been best described in the hippocampus and the subventricular zone (SVZ), in which a series of distinct stages of neuronal development has been well characterized. However, more recently, new neurons have also been found in other brain regions of the adult mammalian brain, including the hypothalamus, striatum, substantia nigra, cortex, and amygdala. While some studies have suggested that these new neurons originate from endogenous stem cell pools located within these brain regions, others have shown the migration of neurons from the SVZ to these regions. Notably, it has been shown that the generation of new neurons in these brain regions is impacted by neurologic processes such as stroke/ischemia and neurodegenerative disorders. Furthermore, numerous factors such as neurotrophic support, pharmacologic interventions, environmental exposures, and stem cell therapy can modulate this endogenous process. While the presence and significance of adult neurogenesis in the human brain (and particularly outside of the classical neurogenic regions) is still an area of debate, this intrinsic neurogenic potential and its possible regulation through therapeutic measures present an exciting alternative for the treatment of several neurologic conditions. This review summarizes evidence in support of the classic and novel neurogenic zones present within the mammalian brain and discusses the functional significance of these new neurons as well as the factors that regulate their production. Finally, it also discusses the potential clinical applications of promoting neurogenesis outside of the classical neurogenic niches, particularly in the hypothalamus, cortex, striatum, substantia nigra, and amygdala.
Collapse
Affiliation(s)
- Michal P. Jurkowski
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
| | - Luis Bettio
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Emma K. Woo
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
| | - Anna Patten
- Centre for Interprofessional Clinical Simulation Learning (CICSL), Royal Jubilee Hospital, Victoria, BC, Canada
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Joana Gil-Mohapel
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
16
|
Sénécal V, Barat C, Tremblay MJ. The delicate balance between neurotoxicity and neuroprotection in the context of HIV-1 infection. Glia 2020; 69:255-280. [PMID: 32910482 DOI: 10.1002/glia.23904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1) causes a spectrum of neurological impairments, termed HIV-associated neurocognitive disorder (HAND), following the infiltration of infected cells into the brain. Even though the implementation of antiretroviral therapy reduced the systemic viral load, the prevalence of HAND remains unchanged and infected patients develop persisting neurological disturbances affecting their quality of life. As a result, HAND have gained importance in basic and clinical researches, warranting the need of developing new adjunctive treatments. Nonetheless, a better understanding of the molecular and cellular mechanisms remains necessary. Several studies consolidated their efforts into elucidating the neurotoxic signaling leading to HAND including the deleterious actions of HIV-1 viral proteins and inflammatory mediators. However, the scope of these studies is not sufficient to address all the complexity related to HAND development. Fewer studies focused on an altered neuroprotective capacity of the brain to respond to HIV-1 infection. Neurotrophic factors are endogenous polyproteins involved in neuronal survival, synaptic plasticity, and neurogenesis. Any defects in the processing or production of these crucial factors might compose a risk factor rendering the brain more vulnerable to neuronal damages. Due to their essential roles, they have been investigated for their diverse interplays with HIV-1 infection. In this review, we present a complete description of the neurotrophic factors involved in HAND. We discuss emerging concepts for their therapeutic applications and summarize the complex mechanisms that down-regulate their production in favor of a neurotoxic environment. For certain factors, we finally address opposing roles that rather lead to increased inflammation.
Collapse
Affiliation(s)
- Vincent Sénécal
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada
| | - Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada.,Département de Microbiologie-infectiologie et immunologie, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
17
|
Environmental enrichment during forced abstinence from cocaine self-administration opposes gene network expression changes associated with the incubation effect. Sci Rep 2020; 10:11291. [PMID: 32647308 PMCID: PMC7347882 DOI: 10.1038/s41598-020-67966-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Environmental enrichment (EE) is a robust intervention for reducing cocaine-seeking behaviors in animals when given during forced abstinence. However, the mechanisms that underlie these effects are not well-established. We investigated the adult male rat transcriptome using RNA-sequencing (RNA-seq) following differential housing during forced abstinence from cocaine self-administration for either 1 or 21 days. Enriched, 21-day forced abstinence rats displayed a significant reduction in cocaine-seeking behavior compared to rats housed in isolation. RNA-seq of the nucleus accumbens shell revealed hundreds of differentially regulated transcripts between rats of different forced abstinence length and housing environment, as well as within specific contrasts such as enrichment (isolated 21 days vs. enriched 21 days) or incubation (isolated 1 day vs. isolated 21 days). Ingenuity Pathway Analysis affirmed several pathways as differentially enriched based on housing condition and forced abstinence length including RELN, the Eif2 signaling pathway, synaptogenesis and neurogenesis pathways. Numerous pathways showed upregulation with incubation, but downregulation with EE, suggesting that EE may prevent or reverse changes in gene expression associated with protracted forced abstinence. The findings reveal novel candidate mechanisms involved in the protective effects of EE against cocaine seeking, which may inform efforts to develop pharmacological and gene therapies for treating cocaine use disorders. Furthermore, the finding that EE opposes multiple pathway changes associated with incubation of cocaine seeking strongly supports EE as a therapeutic intervention and suggests EE is capable of preventing or reversing the widespread dysregulation of signaling pathways that occurs during cocaine forced abstinence.
Collapse
|
18
|
Chen ZC, Wang TT, Bian W, Ye X, Li MY, Du JJ, Zhou P, Cui HR, Ding YQ, Ren YH, Qi SS, Yuan YY, Liao M, Sun CY. Allopregnanolone restores the tyrosine hydroxylase-positive neurons and motor performance in a 6-OHDA-injected mouse model. CNS Neurosci Ther 2020; 26:1069-1082. [PMID: 32602622 PMCID: PMC7539840 DOI: 10.1111/cns.13432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 05/25/2020] [Accepted: 06/12/2020] [Indexed: 01/02/2023] Open
Abstract
AIMS It has been reported that allopregnanolone (APα) promotes the neurogenesis of the neural progenitor cells (NPCs) in the subventricular zone (SVZ) and prevents the decrease of dopaminergic neurons in 6-hydroxydopamine (6-OHDA)-treated mice by binding to γ-aminobutyric acid A receptor (GABAAR) and then opening voltage-gated L-type Ca2+ channel, but the underlying mechanisms remain elusive. The aim of this study was to explore the possible involvement of GABAAR and calcium/calmodulin-dependent protein kinase II delta 3 (CaMKIIδ3) in this process. METHODS 6-OHDA-treated mice and primary cultured midbrain cells were administrated with APα and GABAAR antagonist bicuculline (Bic), and the proliferation and differentiation of NPCs, the tyrosine hydroxylase (TH)-positive neurons and their fibers, the expression levels of CaMKIIδ3 and brain-derived neurotrophic factor (BDNF), and motor functions were measured using ELISA, immunohistochemical staining, real-time RT-PCR, Western blot, and behavioral test. RESULTS Allopregnanolone significantly promoted the phosphorylation of cytoplasmic CaMKIIδ3 and its nuclear translocation by binding to GABAAR, which, in turn, increased the expression levels of BDNF. This may account for the findings that the exogenous APα enhanced the proliferation and differentiation of NPCs, and ameliorated the nigrostriatal system and behavioral performance in 6-OHDA-treated mice. CONCLUSIONS Allopregnanolone may directly activate GABAAR, which, in turn, enhance the proliferation and differentiation of NPCs via upregulating the expression levels of CaMKIIδ3, and finally contribute to the restoration of dopaminergic neurons in 6-OHDA-treated mice.
Collapse
Affiliation(s)
- Zhi-Chi Chen
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tong-Tong Wang
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Bian
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xin Ye
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meng-Yi Li
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Juan-Juan Du
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peng Zhou
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huai-Rui Cui
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yu-Qiang Ding
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yan-Hua Ren
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuang-Shuang Qi
- Department of Pharmacy, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuan-Yuan Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Liao
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chen-You Sun
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
19
|
Oikari LE, Yu C, Okolicsanyi RK, Avgan N, Peall IW, Griffiths LR, Haupt LM. HSPGs glypican‐1 and glypican‐4 are human neuronal proteins characteristic of different neural phenotypes. J Neurosci Res 2020; 98:1619-1645. [DOI: 10.1002/jnr.24666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Lotta E. Oikari
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| | - Chieh Yu
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| | - Rachel K. Okolicsanyi
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| | - Nesli Avgan
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| | - Ian W. Peall
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| | - Lyn R. Griffiths
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| | - Larisa M. Haupt
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| |
Collapse
|
20
|
Demir EA, Karagoz M. Platelet-Rich Plasma (PRP) is a Potential Self-Sourced Cognition Booster in Elderly Mice. Exp Aging Res 2020; 46:139-153. [PMID: 31939709 DOI: 10.1080/0361073x.2020.1716154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: A complex set of neurotrophic growth factors participates in neuroplasticity in the aging brain. Platelets are a copious source of growth factors, most of which display also the neurotropic activity. On this basis, we investigated behavioral and cognitive consequences of the administration of intravenous allogeneic platelet-rich plasma (PRP) in senescent mice.Methods: The animals (16-18 months old) were injected with either physiological saline or PRP which was acquired from age-matched counterparts and subjected to a battery of tests comprised of open-field, elevated-plus maze, tail suspension, and Morris water maze test.Results: We found that PRP treatment increases locomotion and improves learning and memory in elderly mice. Importantly, the PRP-treated animals did not exhibit any anxiety- or depression-like behaviors.Conclusion: The present study is the first to demonstrate that allogeneic PRP possesses beneficial effects against cognitive aging and it signifies that PRP may be used as a novel self-sourced treatment in age-related cognitive decline.
Collapse
Affiliation(s)
- Enver Ahmet Demir
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Mehtap Karagoz
- Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
21
|
Vaghef L, Farajdokht F, Erfani M, Majdi A, Sadigh-Eteghad S, Karimi P, Sandoghchian Shotorbani S, Seyedi Vafaee M, Mahmoudi J. Cerebrolysin attenuates ethanol-induced spatial memory impairments through inhibition of hippocampal oxidative stress and apoptotic cell death in rats. Alcohol 2019; 79:127-135. [PMID: 30981808 DOI: 10.1016/j.alcohol.2019.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/23/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023]
Abstract
The present study investigates the potential neuroprotective effect of cerebrolysin (CBL), a combination of neurotrophic factors, on the cognitive and biochemical alterations induced by chronic ethanol administration in rats. The animals were divided into five groups as follows: control; ethanol (4 g/kg, for 30 days) plus normal saline (Ethanol + NS); ethanol plus CBL 1 mL/kg (Ethanol + CBL 1), ethanol plus CBL 2.5 mL/kg (Ethanol + CBL 2.5); and ethanol plus CBL 5 mL/kg (Ethanol + CBL 5). The Morris water maze (MWM) test was performed to assess cognitive impairment. The status of the lipid peroxidation marker MDA, antioxidant capacity, as well as alterations of the apoptotic factors such as Bcl-2, BAX, and cleaved caspase-9 and -3, were evaluated in the hippocampus. The results showed that CBL treatment not only normalized the increased MDA levels in the alcoholic rats and enhanced antioxidant defense, but also reduced the Bax/Bcl-2 ratio and cleaved caspase-9 and -3 in the hippocampus. These results were parallel with improvement in spatial memory performance in the MWM test. The findings of the present study provide evidence for the promising therapeutic effect of CBL in chronic ethanol consumption through counteracting oxidative stress and apoptosis markers.
Collapse
|
22
|
Toni M, Angiulli E, Miccoli G, Cioni C, Alleva E, Frabetti F, Pizzetti F, Grassi Scalvini F, Nonnis S, Negri A, Tedeschi G, Maffioli E. Environmental temperature variation affects brain protein expression and cognitive abilities in adult zebrafish (Danio rerio): A proteomic and behavioural study. J Proteomics 2019; 204:103396. [DOI: 10.1016/j.jprot.2019.103396] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/30/2019] [Accepted: 05/24/2019] [Indexed: 11/26/2022]
|
23
|
Abstract
Neurotrophic factors (NTF) are a subgroup of growth factors that promote survival and
differentiation of neurons. Due to their neuroprotective and neurorestorative properties,
their therapeutic potential has been tested in various neurodegenerative diseases.
Bioavailability of NTFs in the target tissue remains a major challenge for NTF-based
therapies. Various intracerebral delivery approaches, both protein and gene
transfer-based, have been tested with varying outcomes. Three growth factors, glial
cell-line derived neurotrophic factor (GDNF), neurturin (NRTN) and platelet-derived growth
factor (PDGF-BB) have been tested in clinical trials in Parkinson’s disease (PD) during
the past 20 years. A new protein can now be added to this list, as cerebral dopamine
neurotrophic factor (CDNF) has recently entered clinical trials. Despite their misleading
names, CDNF, together with its closest relative mesencephalic astrocyte-derived
neurotrophic factor (MANF), form a novel family of unconventional NTF that are both
structurally and mechanistically distinct from other growth factors. CDNF and MANF are
localized mainly to the lumen of endoplasmic reticulum (ER) and their primary function
appears to be modulation of the unfolded protein response (UPR) pathway. Prolonged ER
stress, via the UPR signaling pathways, contributes to the pathogenesis in a number of
chronic degenerative diseases, and is an important target for therapeutic modulation.
Intraputamenally administered recombinant human CDNF has shown robust neurorestorative
effects in a number of small and large animal models of PD, and had a good safety profile
in preclinical toxicology studies. Intermittent monthly bilateral intraputamenal infusions
of CDNF are currently being tested in a randomized placebo-controlled phase I–II clinical
study in moderately advanced PD patients. Here, we review the history of growth
factor-based clinical trials in PD, and discuss how CDNF differs from the previously
tested growth factors.
Collapse
Affiliation(s)
- Henri J Huttunen
- 1 Herantis Pharma Plc, Espoo, Finland.,2 Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- 3 Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Chen W, Huang Q, Ma S, Li M. Progress in Dopaminergic Cell Replacement and Regenerative Strategies for Parkinson's Disease. ACS Chem Neurosci 2019; 10:839-851. [PMID: 30346716 DOI: 10.1021/acschemneuro.8b00389] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder symptomatically characterized by resting tremor, rigidity, bradykinesia, and gait impairment. These motor deficits suffered by PD patients primarily result from selective dysfunction or loss of dopaminergic neurons of the substantia nigra pars compacta (SNpc). Most of the existing therapies for PD are based on the replacement of dopamine, which is symptomatically effective in the early stage but becomes increasingly less effective and is accompanied by serious side effects in the advanced stages of the disease. Currently, there are no strategies to slow neuronal degeneration or prevent the progression of PD. Thus, the prospect of regenerating functional dopaminergic neurons is very attractive. Over the last few decades, significant progress has been made in the development of dopaminergic regenerative strategies for curing PD. The most promising approach seems to be cell-replacement therapy (CRT) using human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs), which are unlimitedly available and have gained much success in preclinical trials. Despite the challenges, stem cell-based CRT will make significant steps toward the clinic in the coming decade. Alternatively, direct lineage reprogramming, especially in situ direct conversion of glia cells to induced neurons, which exhibits some advantages including no ethical concerns, no risk of tumor formation, and even no need for transplantation, has gained much attention recently. Evoking the endogenous regeneration ability of neural stem cells (NSCs) is an idyllic method of dopaminergic neuroregeneration which remains highly controversial. Here, we review many of these advances, highlighting areas and strategies that might be particularly suited to the development of regenerative approaches that restore dopaminergic function in PD.
Collapse
Affiliation(s)
- Weizhao Chen
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Qiaoying Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Shanshan Ma
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| |
Collapse
|
25
|
Abstract
Brain expression of klotho was first described with the initial discovery of the klotho gene. The prominent age-regulating effects of klotho are attributed to regulation of ion homeostasis through klotho function in the kidney. However, recent advances identified brain functions and cell populations, including adult hippocampal neural progenitors, which require klotho. As well, both human correlational studies and mouse models of disease show that klotho is protective against multiple neurological and psychological disorders. This review focuses on current knowledge as to how the klotho protein effects the brain.
Collapse
Affiliation(s)
- Hai T Vo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ann M Laszczyk
- Department of Cell and Developmental Biology, University of Michigan, Zina Pitcher Pl, Ann Arbor, MI, USA
| | - Gwendalyn D King
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
26
|
Akyol O, Sherchan P, Yilmaz G, Reis C, Ho WM, Wang Y, Huang L, Solaroglu I, Zhang JH. Neurotrophin-3 provides neuroprotection via TrkC receptor dependent pErk5 activation in a rat surgical brain injury model. Exp Neurol 2018; 307:82-89. [PMID: 29883578 DOI: 10.1016/j.expneurol.2018.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/14/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Surgical brain injury (SBI) which occurs due to the inadvertent injury inflicted to surrounding brain tissue during neurosurgical procedures can potentiate blood brain barrier (BBB) permeability, brain edema and neurological deficits. This study investigated the role of neurotrophin 3 (NT-3) and tropomyosin related kinase receptor C (TrkC) against brain edema and neurological deficits in a rat SBI model. METHODS SBI was induced in male Sprague Dawley rats by partial right frontal lobe resection. Temporal expression of endogenous NT-3 and TrkC was evaluated at 6, 12, 24 and 72 h after SBI. SBI rats received recombinant NT-3 which was directly applied to the brain surgical injury site using gelfoam. Brain edema and neurological function was evaluated at 24 and 72 h after SBI. Small interfering RNA (siRNA) for TrkC and Rap1 was administered via intracerebroventricular injection 24 h before SBI. BBB permeability assay and western blot was performed at 24 h after SBI. RESULTS Endogenous NT-3 was decreased and TrkC expression increased after SBI. Topical administration of recombinant NT-3 reduced brain edema, BBB permeability and improved neurological function after SBI. Recombinant NT-3 administration increased the expression of phosphorylated Rap1 and Erk5. The protective effect of NT-3 was reversed with TrkC siRNA but not Rap1 siRNA. CONCLUSIONS Topical application of NT-3 reduced brain edema, BBB permeability and improved neurological function after SBI. The protective effect of NT-3 was possibly mediated via TrkC dependent activation of Erk5.
Collapse
Affiliation(s)
- Onat Akyol
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Gokce Yilmaz
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Wingi Man Ho
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University, CA 92354, USA
| | - Ihsan Solaroglu
- Koç University, School of Medicine, Department of Neurosurgery, Rumelifeneri Yolu, 34450 Sarıyer, Istanbul, Turkey
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery, Loma Linda University, CA 92354, USA; Department of Anesthesiology, Loma Linda University, CA 92354, USA.
| |
Collapse
|
27
|
Mishra A, Singh S, Shukla S. Physiological and Functional Basis of Dopamine Receptors and Their Role in Neurogenesis: Possible Implication for Parkinson's disease. J Exp Neurosci 2018; 12:1179069518779829. [PMID: 29899667 PMCID: PMC5985548 DOI: 10.1177/1179069518779829] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/02/2018] [Indexed: 01/09/2023] Open
Abstract
Dopamine controls various physiological functions in the brain and periphery by acting on its receptors D1, D2, D3, D4, and D5. Dopamine receptors are G protein–coupled receptors involved in the regulation of motor activity and several neurological disorders such as schizophrenia, bipolar disorder, Parkinson’s disease (PD), Alzheimer’s disease, and attention-deficit/hyperactivity disorder. Reduction in dopamine content in the nigrostriatal pathway is associated with the development of PD, along with the degeneration of dopaminergic neurons in the substantia nigra region. Dopamine receptors directly regulate neurotransmission of other neurotransmitters, release of cyclic adenosine monophosphate, cell proliferation, and differentiation. Here, we provide an update on recent knowledge about the signalling mechanism, mode of action, and the evidence for the physiological and functional basis of dopamine receptors. We also highlight the pivotal role of these receptors in the modulation of neurogenesis, a possible therapeutic target that might help to slow down the process of neurodegeneration.
Collapse
Affiliation(s)
- Akanksha Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Sonu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shubha Shukla
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
- Shubha Shukla, Division of Pharmacology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India.
| |
Collapse
|
28
|
Hong MH, Hong HJ, Pang H, Lee HJ, Yi S, Koh WG. Controlled Release of Growth Factors from Multilayered Fibrous Scaffold for Functional Recoveries in Crushed Sciatic Nerve. ACS Biomater Sci Eng 2018; 4:576-586. [PMID: 33418747 DOI: 10.1021/acsbiomaterials.7b00801] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this study, we designed and fabricated a multilayered fibrous scaffold capable of the controlled release of multiple growth factors for sciatic nerve regeneration in rats. The scaffold consists of three layers prepared by sequential electrospinning, where the first layer is fabricated using polycaprolactone (PCL)-aligned electrospun nanofibers for the attachment and differentiation of cells toward the direction of the sciatic nerve. The second and third layers are fabricated using poly(lactic-co-glycolic acid) 6535 (PLGA 6535) and 8515 (PLGA 8515), respectively. The resultant three nanofiber layers were stacked and fixed by incorporating hydrogel micropatterns at both ends of nanofiber scaffold, which also facilitated the surgical handling of the multilayered scaffolds. The PLGA layers acted as reservoirs to release growth factors neurotrophin (NT-3), brain-derived neurotrophic factor (BDNF), and platelet-derived growth factor (PDGF). The different biodegradation rate of each PLGA layer enabled the controlled release of multiple growth factors such as NT-3, BDNF, and PDGF with different patterns. In a rat model, the injured nerve was rolled up with the multilayered scaffold loading growth factors, and behavior tests were performed five weeks after surgery. Sciatic functional index (SFI) and mechanical allodynia analysis revealed that the fast release of NT-3 and BDNF from PLGA 6535 and subsequent slow release of PDGF from PLGA 8515 proved to be the greatest aid to neural tissue regeneration. In addition to the biochemical cues from growth factors, the aligned PCL layer that directly contacts the injured nerve could provide topographical stimulation, offering practical assistance to new tissue and cells for directional growth parallel to the sciatic nerve. This study demonstrated that our multilayered scaffold performs a function that can be used to promote locomotor activity and enhance nerve regeneration in combination with align-patterned topography and the controlled release of growth factors.
Collapse
Affiliation(s)
- Min-Ho Hong
- Department of Neurosurgery, Spine and Spinal Cord Institute, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Hye Jin Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Haejeong Pang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyo-Jung Lee
- Department of Neurosurgery, Spine and Spinal Cord Institute, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Seong Yi
- Department of Neurosurgery, Spine and Spinal Cord Institute, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
29
|
Beecher K, Hafner LM, Ekberg J, St John JA, Chehrehasa F. Combined VEGF/PDGF improves olfactory regeneration after unilateral bulbectomy in mice. Neural Regen Res 2018; 13:1820-1826. [PMID: 30136698 PMCID: PMC6128065 DOI: 10.4103/1673-5374.238713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The olfactory receptor neurons lining the nasal cavity have a remarkable capacity to regenerate throughout life. They are replenished continuously and their axons make new connections within the olfactory bulb. However, some factors such as head trauma and skull base surgery damage the olfactory nerve which lead to olfactory dysfunction. Losing the sense of smell has considerable effects on quality of life and life-expectancy. Therefore, there is a clear need to find a treatment for olfactory dysfunction. One such potential treatment is growth factor therapy which showed promising results in the spinal cord and brain injuries. The aim of the present study was to investigate whether combined delivery of two growth factors, vascular endothelial growth factor and platelet-derived growth factor treatment can improve the olfactory neurons regeneration in mice. The degeneration of the olfactory neurons was induced by unilateral bulbectomy. The treatment group received 1.5 µg of the combined growth factors intranasally, while the control injured group received saline. Growth factor treatment significantly increased the number of immature neurons at 5 and 7 days post injury and also the number of mature olfactory neurons at 10 and 14 days post bulbectomy. Regenerating axons extended over a larger volume in the operated cavity in the treatment group compared to control group at 14 days post bulbectomy. The growth factor treatment also significantly reduced astrocytic glia scar in the operated cavity. The results indicate that the combined delivery of the growth factors has the potential to improve olfactory dysfunction.
Collapse
Affiliation(s)
- Kate Beecher
- School of Biomedical Sciences, Queensland University of Technology, Box 2434, QLD; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Rd, Nathan, Australia
| | - Louise M Hafner
- School of Biomedical Sciences, Queensland University of Technology, Box 2434, QLD; Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD, Australia
| | - Jenny Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Rd, Nathan; Menzies Health Institute Queensland, Griffith University, Southport 4222, QLD, Australia
| | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Rd, Nathan; Menzies Health Institute Queensland, Griffith University, Southport 4222, QLD, Australia
| | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Queensland University of Technology, Box 2434; Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Rd, Nathan, Australia
| |
Collapse
|
30
|
Kim JY, Chun SY, Park JS, Chung JW, Ha YS, Lee JN, Kwon TG. Laminin and Platelet-Derived Growth Factor-BB Promote Neuronal Differentiation of Human Urine-Derived Stem Cells. Tissue Eng Regen Med 2017; 15:195-209. [PMID: 30603547 DOI: 10.1007/s13770-017-0102-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/15/2017] [Accepted: 11/20/2017] [Indexed: 11/24/2022] Open
Abstract
Urine-derived stem cells (USCs) are considered as a promising cell source capable of neuronal differentiation. In addition, specific growth factors and extracellular matrix are essential for enhancing their neuronal differentiation efficiency. In this study, we investigated the possibility of neuronal differentiation of USCs and the role of laminin and platelet-derived growth factor BB (PDGF-BB) as promoting factors. USCs were isolated from fresh urine of healthy donors. Cultured USCs were adherent to the plate and their morphology was similar to the cobblestone. In addition, they showed chromosome stability, rapid proliferation rate, colony forming capacity, and mesenchymal stem cell characteristics. For inducing the neuronal differentiation, USCs were cultured for 14 days in neuronal differentiation media supplemented with/without laminin and/or PDGF-BB. To identify the expression of neuronal markers, RT-PCR, flow cytometry analysis and immunocytochemistry were used. After neuronal induction, the cells showed neuron-like morphological change and high expression level of neuronal markers. In addition, laminin and PDGF-BB respectively promoted the neuronal differentiation of USCs and the combination of laminin and PDGF-BB showed a synergistic effect for the neuronal differentiation of USCs. In conclusion, USCs are noteworthy cell source in the field of neuronal regeneration and laminin and PDGF-BB promote their neuronal differentiation efficiency.
Collapse
Affiliation(s)
- Jung Yeon Kim
- 1Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, 135 Dongdeok-ro, Jung-gu, Daegu, 41940 Korea
| | - So Young Chun
- 1Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, 135 Dongdeok-ro, Jung-gu, Daegu, 41940 Korea
| | - Jin-Sung Park
- 2Department of Neurology, School of Medicine, Kyungpook National University, 807 Hoguk-ro, Buk-gu, Daegu, 41404 Korea
| | - Jae-Wook Chung
- 3Department of Urology, School of Medicine, Kyungpook National University, 807 Hoguk-ro, Buk-gu, Daegu, 41404 Korea
| | - Yun-Sok Ha
- 3Department of Urology, School of Medicine, Kyungpook National University, 807 Hoguk-ro, Buk-gu, Daegu, 41404 Korea
| | - Jun Nyung Lee
- 3Department of Urology, School of Medicine, Kyungpook National University, 807 Hoguk-ro, Buk-gu, Daegu, 41404 Korea
| | - Tae Gyun Kwon
- 1Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, 135 Dongdeok-ro, Jung-gu, Daegu, 41940 Korea.,3Department of Urology, School of Medicine, Kyungpook National University, 807 Hoguk-ro, Buk-gu, Daegu, 41404 Korea
| |
Collapse
|
31
|
Tian Z, Zhao Q, Biswas S, Deng W. Methods of reactivation and reprogramming of neural stem cells for neural repair. Methods 2017; 133:3-20. [PMID: 28864354 DOI: 10.1016/j.ymeth.2017.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/21/2017] [Accepted: 08/24/2017] [Indexed: 12/27/2022] Open
Abstract
Research on the biology of adult neural stem cells (NSCs) and induced NSCs (iNSCs), as well as NSC-based therapies for diseases in central nervous system (CNS) has started to generate the expectation that these cells may be used for treatments in CNS injuries or disorders. Recent technological progresses in both NSCs themselves and their derivatives have brought us closer to therapeutic applications. Adult neurogenesis presents in particular regions in mammal brain, known as neurogenic niches such as the dental gyrus (DG) in hippocampus and the subventricular zone (SVZ), within which adult NSCs usually stay for long periods out of the cell cycle, in G0. The reactivation of quiescent adult NSCs needs orchestrated interactions between the extrinsic stimulis from niches and the intrinsic factors involving transcription factors (TFs), signaling pathway, epigenetics, and metabolism to start an intracellular regulatory program, which promotes the quiescent NSCs exit G0 and reenter cell cycle. Extrinsic and intrinsic mechanisms that regulate adult NSCs are interconnected and feedback on one another. Since endogenous neurogenesis only happens in restricted regions and steadily fails with disease advances, interest has evolved to apply the iNSCs converted from somatic cells to treat CNS disorders, as is also promising and preferable. To overcome the limitation of viral-based reprogramming of iNSCs, bioactive small molecules (SM) have been explored to enhance the efficiency of iNSC reprogramming or even replace TFs, making the iNSCs more amenable to clinical application. Despite intense research efforts to translate the studies of adult and induced NSCs from the bench to bedside, vital troubles remain at several steps in these processes. In this review, we examine the present status, advancement, pitfalls, and potential of the two types of NSC technologies, focusing on each aspects of reactivation of quiescent adult NSC and reprogramming of iNSC from somatic cells, as well as on progresses in cell-based regenerative strategies for neural repair and criteria for successful therapeutic applications.
Collapse
Affiliation(s)
- Zuojun Tian
- Department of Neurology, The Institute of Guangzhou Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China; Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Qiuge Zhao
- Department of Neurology, The Institute of Guangzhou Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China
| | - Sangita Biswas
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| |
Collapse
|
32
|
Boroujeni ME, Gardaneh M. Umbilical cord: an unlimited source of cells differentiable towards dopaminergic neurons. Neural Regen Res 2017; 12:1186-1192. [PMID: 28852404 PMCID: PMC5558501 DOI: 10.4103/1673-5374.211201] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2017] [Indexed: 12/14/2022] Open
Abstract
Cell replacement therapy utilizing mesenchymal stem cells as its main resource holds great promise for ultimate treatment of human neurological disorders. Parkinson's disease (PD) is a common, chronic neurodegenerative disorder hallmarked by localized degeneration of a specific set of dopaminergic neurons within a midbrain sub-region. The specific cell type and confined location of degenerating neurons make cell replacement therapy ideal for PD treatment since it mainly requires replenishment of lost dopaminergic neurons with fresh and functional ones. Endogenous as well as exogenous cell sources have been identified as candidate targets for cell replacement therapy in PD. In this review, umbilical cord mesenchymal stem cells (UCMSCs) are discussed as they provide an inexpensive unlimited reservoir differentiable towards functional dopaminergic neurons that potentially lead to long-lasting behavioral recovery in PD patients. We also present miRNAs-mediated neuronal differentiation of UCMSCs. The UCMSCs bear a number of outstanding characteristics including their non-tumorigenic, low-immunogenic properties that make them ideal for cell replacement therapy purposes. Nevertheless, more investigations as well as controlled clinical trials are required to thoroughly confirm the efficacy of UCMSCs for therapeutic medical-grade applications in PD.
Collapse
Affiliation(s)
- Mahdi Eskandarian Boroujeni
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mossa Gardaneh
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
33
|
Towards a Better Treatment Option for Parkinson’s Disease: A Review of Adult Neurogenesis. Neurochem Res 2016; 41:3161-3170. [DOI: 10.1007/s11064-016-2053-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 02/04/2023]
|
34
|
Sidorova YA, Saarma M. Glial cell line-derived neurotrophic factor family ligands and their therapeutic potential. Mol Biol 2016. [DOI: 10.1134/s0026893316040105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson's disease: mechanisms of action. Drug Discov Today 2016; 21:802-18. [PMID: 26851597 DOI: 10.1016/j.drudis.2016.01.013] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/03/2015] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
|
36
|
Heckman PRA, van Duinen MA, Bollen EPP, Nishi A, Wennogle LP, Blokland A, Prickaerts J. Phosphodiesterase Inhibition and Regulation of Dopaminergic Frontal and Striatal Functioning: Clinical Implications. Int J Neuropsychopharmacol 2016; 19:pyw030. [PMID: 27037577 PMCID: PMC5091819 DOI: 10.1093/ijnp/pyw030] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The fronto-striatal circuits are the common neurobiological basis for neuropsychiatric disorders, including schizophrenia, Parkinson's disease, Huntington's disease, attention deficit hyperactivity disorder, obsessive-compulsive disorder, and Tourette's syndrome. Fronto-striatal circuits consist of motor circuits, associative circuits, and limbic circuits. All circuits share 2 common features. First, all fronto-striatal circuits consist of hyper direct, direct, and indirect pathways. Second, all fronto-striatal circuits are modulated by dopamine. Intracellularly, the effect of dopamine is largely mediated through the cyclic adenosine monophosphate/protein kinase A signaling cascade with an additional role for the cyclic guanosine monophosphate/protein kinase G pathway, both of which can be regulated by phosphodiesterases. Phosphodiesterases are thus a potential target for pharmacological intervention in neuropsychiatric disorders related to dopaminergic regulation of fronto-striatal circuits. METHODS Clinical studies of the effects of different phosphodiesterase inhibitors on cognition, affect, and motor function in relation to the fronto-striatal circuits are reviewed. RESULTS Several selective phosphodiesterase inhibitors have positive effects on cognition, affect, and motor function in relation to the fronto-striatal circuits. CONCLUSION Increased understanding of the subcellular localization and unraveling of the signalosome concept of phosphodiesterases including its function and dysfunction in the fronto-striatal circuits will contribute to the design of new specific inhibitors and enhance the potential of phosphodiesterase inhibitors as therapeutics in fronto-striatal circuits.
Collapse
|
37
|
Walker DG, Lue LF, Serrano G, Adler CH, Caviness JN, Sue LI, Beach TG. Altered Expression Patterns of Inflammation-Associated and Trophic Molecules in Substantia Nigra and Striatum Brain Samples from Parkinson's Disease, Incidental Lewy Body Disease and Normal Control Cases. Front Neurosci 2016; 9:507. [PMID: 26834537 PMCID: PMC4712383 DOI: 10.3389/fnins.2015.00507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022] Open
Abstract
Evidence of inflammation has been consistently associated with pathology in Parkinson's disease (PD)-affected brains, and has been suggested as a causative factor. Dopaminergic neurons in the substantia nigra (SN) pars compacta, whose loss results in the clinical symptoms associated with PD, are particularly susceptible to inflammatory damage and oxidative stress. Inflammation in the striatum, where SN dopaminergic neurons project, is also a feature of PD brains. It is not known whether inflammatory changes occur first in striatum or SN. Many animal models of PD have implicated certain inflammatory molecules with dopaminergic cell neuronal loss; however, there have been few studies to validate these findings by measuring the levels of these and other inflammatory factors in human PD brain samples. This study also included samples from incidental Lewy body disease (ILBD) cases, since ILBD is considered a non-symptomatic precursor to PD, with subjects having significant loss of tyrosine hydroxylase-producing neurons. We hypothesized that there may be a progressive change in key inflammatory factors in ILBD samples intermediate between neurologically normal and PD. To address this, we used a quantitative antibody-array platform (Raybiotech-Quantibody arrays) to measure the levels of 160 different inflammation-associated cytokines, chemokines, growth factors, and related molecules in extracts of SN and striatum from clinically and neuropathologically characterized PD, ILBD, and normal control cases. Patterns of changes in inflammation and related molecules were distinctly different between SN and striatum. Our results showed significantly different levels of interleukin (IL)-5, IL-15, monokine induced by gamma interferon, and IL-6 soluble receptor in SN between disease groups. A different panel of 13 proteins with significant changes in striatum, with IL-15 as the common feature, was identified. Although the ability to detect some proteins was limited by sensitivity, patterns of expression indicated involvement of certain T-cell cytokines, vascular changes, and loss of certain growth factors, with disease progression. The results demonstrate the feasibility of profiling inflammatory molecules using diseased human brain samples, and have provided additional targets to validate in relation to PD pathology.
Collapse
Affiliation(s)
- Douglas G Walker
- Banner Sun Health Research InstituteSun City, AZ, USA; Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State UniversityTempe, AZ, USA
| | - Lih-Fen Lue
- Banner Sun Health Research InstituteSun City, AZ, USA; Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State UniversityTempe, AZ, USA
| | - Geidy Serrano
- Banner Sun Health Research Institute Sun City, AZ, USA
| | - Charles H Adler
- Neurology, Mayo Clinic College of Medicine Scottsdale, AZ, USA
| | - John N Caviness
- Neurology, Mayo Clinic College of Medicine Scottsdale, AZ, USA
| | - Lucia I Sue
- Banner Sun Health Research Institute Sun City, AZ, USA
| | | |
Collapse
|
38
|
Intraventricular administration of endoneuraminidase-N facilitates ectopic migration of subventricular zone-derived neural progenitor cells into 6-OHDA lesioned striatum of mice. Exp Neurol 2015; 277:139-149. [PMID: 26724216 DOI: 10.1016/j.expneurol.2015.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 01/23/2023]
Abstract
Polysialic acid (PSA), a carbohydrate polymer associated with the neural cell adhesion molecule (NCAM), plays an important role in the migration, differentiation and maturation of neuroblasts. Endoneuraminidase-N (Endo-N) can specifically cleave PSA from NCAM. The objective of the present study was to examine: the effect of Endo-N on characteristics of subventricular zone (SVZ)-derived neural progenitor cells (NPCs) in vitro; whether intraventricular administration of Endo-N could increase ectopic migration of SVZ-derived NPCs into 6-hydroxydopamine (6-OHDA)-lesioned striatum, and whether migrated NPCs could differentiate into neuronal and glial cells. In in vitro study, Endo-N was found to inhibit the migration of NPCs, and to enhance the differentiation of NPCs. In in vivo study, mice sequentially received injections of 6-OHDA into the right striatum, Endo-N into the right lateral ventricle, and bromodeoxyuridine (BrdU) intraperitoneally. The data showed that intraventricular injections of Endo-N disorganized the normal structure of the rostral migratory stream (RMS), and drastically increased the number of BrdU-immunoreactive (IR) cells in 6-OHDA-lesioned striatum. In addition, a number of BrdU-IR cells were double labeled for doublecortin (DCX), NeuN or glial fibrillary acidic protein (GFAP). The results suggest that interruption of neuroblast chain pathway with Endo-N facilitates ectopic migration of SVZ-derived NPCs into the lesioned striatum, and migrated NPCs can differentiate into neurons and astrocytes.
Collapse
|
39
|
Lin R, Iacovitti L. Classic and novel stem cell niches in brain homeostasis and repair. Brain Res 2015; 1628:327-342. [DOI: 10.1016/j.brainres.2015.04.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
|
40
|
Yang L, Chen X, Hu G, Cai Y, Liao K, Buch S. Mechanisms of Platelet-Derived Growth Factor-BB in Restoring HIV Tat-Cocaine-Mediated Impairment of Neuronal Differentiation. Mol Neurobiol 2015; 53:6377-6387. [PMID: 26572642 DOI: 10.1007/s12035-015-9536-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/08/2015] [Indexed: 12/11/2022]
Abstract
Diminished adult neurogenesis is known to play a key role in the pathogenesis of diverse neurodegenerative disorders such as HIV-associated neurological disorders (HAND). Cocaine, often abused by HIV-infected patients, has been suggested to worsen HIV-associated CNS disease. Mounting evidence also indicates that HIV infection can lead not only to neuronal dysfunction or loss, but can also negatively impact neurogenesis, resulting in generation of fewer adult neural progenitor cells (NPCs) in the dentate gyrus of the hippocampus, brain area critical for memory and learning. The crucial role of platelet-derived growth factor-BB (PDGF-BB) in providing tropic support for the neurons as well as in promoting NPC proliferation has been demonstrated by us previously. However, whether PDGF-BB regulates neuronal differentiation especially in the context of HAND and drug abuse remains poorly understood. In this study, we demonstrate that pretreatment of rat hippocampal NPCs with PDGF-BB restored neuronal differentiation that had been impaired by HIV Tat and cocaine. To further study the intracellular mechanism(s) involved in this process, we examined the role of transient receptor potential canonical (TRPC) channels in mediating neuronal differentiation in the presence of PDGF-BB. TRPC channels are Ca2+-permeable, nonselective cationic channels that elicit a variety of physiological functions. Parallel but distinct ERK, Akt signaling pathways with downstream activation of CREB were found to be critical for neuronal differentiation. Pharmacological blocking of TRPC channels resulted in suppression of PDGF-mediated differentiation and PDGF-BB-induced activation of ERK and Akt, culminating also to inhibition of PDGF-induced activation of CREB. Taken together, these findings underpin the role of TRPC channel as a novel target regulating cell differentiation mediated by PDGF-BB. This finding could have implications for development of therapeutic interventions aimed at restoration of Tat and cocaine-mediated impairment of neurogenesis in drug abusing HAND patients.
Collapse
Affiliation(s)
- Lu Yang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Xufeng Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Yu Cai
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - S Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| |
Collapse
|
41
|
Investigation of tyrosine hydroxylase and BDNF in a low-dose rotenone model of Parkinson's disease. J Chem Neuroanat 2015; 70:33-41. [PMID: 26562783 DOI: 10.1016/j.jchemneu.2015.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022]
Abstract
Tyrosine hydroxylase (TH, the rate limiting-enzyme in catecholamine synthesis) is regulated acutely via phosphorylation of 3 serine residues--Ser19, 31 and 40, and chronically via changes in TH protein levels. In this study, we aimed to investigate how TH is regulated in the brain, gut and adrenal gland as well as changes in mature brain-derived neurotrophic factor (mBDNF) and proBDNF levels in a low-dose (2 mg/kg, 5 days/week for 4 weeks) rotenone model of Parkinson's disease (PD). Rearing behaviour decreased by week 3 in the rotenone group (p<0.01), with further decreases in rearing by week 4 (p<0.001); however, TH remained unchanged in the substantia nigra (SN) and striatum; TH levels were also unaltered in other catecholaminergic cell groups of the brainstem such as A1C1 neurons or locus coeruleus. In the olfactory bulb, TH protein decreased (2.5-fold, p<0.01) while Ser31 phosphorylation increased (1.4-fold, p<0.05) in the rotenone group. In contrast, TH protein was increased in the adrenal gland (2-fold, p<0.05) and colon (5-fold, p<0.05) of rotenone rats. mBDNF levels were not changed in the SN but were significantly reduced in plasma and significantly increased in the colon (2-fold, p<0.01) of rotenone-treated rats. This is the first study to assess TH and BDNF in the brain and periphery in the rotenone model before SN/striatum degeneration is evident. Together these results suggest that low-dose rotenone may have some potential to model the early stages of PD.
Collapse
|
42
|
Lamb YN, Thompson CS, McKay NS, Waldie KE, Kirk IJ. The brain-derived neurotrophic factor (BDNF) val66met polymorphism differentially affects performance on subscales of the Wechsler Memory Scale - Third Edition (WMS-III). Front Psychol 2015; 6:1212. [PMID: 26347681 PMCID: PMC4538220 DOI: 10.3389/fpsyg.2015.01212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/30/2015] [Indexed: 01/02/2023] Open
Abstract
Single nucleotide polymorphisms in the brain-derived neurotrophic factor (BDNF) gene and the catechol-O-methyltransferase (COMT) gene influence brain structure and function, as well as cognitive abilities. They are most influential in the hippocampus and prefrontal cortex (PFC), respectively. Recall and recognition are forms of memory proposed to have different neural substrates, with recall having a greater dependence on the PFC and hippocampus. This study aimed to determine whether the BDNF val66met or COMT val158met polymorphisms differentially affect recall and recognition, and whether these polymorphisms interact. A sample of 100 healthy adults was assessed on recall and familiarity-based recognition using the Faces and Family Pictures subscales of the Wechsler Memory Scale – Third Edition (WMS-III). COMT genotype did not affect performance on either task. The BDNF polymorphism (i.e., met carriers relative to val homozygotes) was associated with poorer recall ability, while not influencing recognition. Combining subscale scores in memory tests such as the WMS might obscure gene effects. Our results demonstrate the importance of distinguishing between recall and familiarity-based recognition in neurogenetics research.
Collapse
Affiliation(s)
- Yvette N Lamb
- School of Psychology, Faculty of Science, The University of Auckland, Auckland New Zealand
| | - Christopher S Thompson
- School of Psychology, Faculty of Science, The University of Auckland, Auckland New Zealand
| | - Nicole S McKay
- School of Psychology, Faculty of Science, The University of Auckland, Auckland New Zealand
| | - Karen E Waldie
- School of Psychology, Faculty of Science, The University of Auckland, Auckland New Zealand
| | - Ian J Kirk
- School of Psychology, Faculty of Science, The University of Auckland, Auckland New Zealand
| |
Collapse
|
43
|
Roy MJ, Costanzo M, Gill J, Leaman S, Law W, Ndiongue R, Taylor P, Kim HS, Bieler GS, Garge N, Rapp PE, Keyser D, Nathan D, Xydakis M, Pham D, Wassermann E. Predictors of Neurocognitive Syndromes in Combat Veterans. Cureus 2015; 7:e293. [PMID: 26251769 PMCID: PMC4524772 DOI: 10.7759/cureus.293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/30/2015] [Indexed: 12/26/2022] Open
Abstract
Traumatic brain injury, depression and posttraumatic stress disorder (PTSD) are neurocognitive syndromes often associated with impairment of physical and mental health, as well as functional status. These syndromes are also frequent in military service members (SMs) after combat, although their presentation is often delayed until months after their return. The objective of this prospective cohort study was the identification of independent predictors of neurocognitive syndromes upon return from deployment could facilitate early intervention to prevent disability. We completed a comprehensive baseline assessment, followed by serial evaluations at three, six, and 12 months, to assess for new-onset PTSD, depression, or postconcussive syndrome (PCS) in order to identify baseline factors most strongly associated with subsequent neurocognitive syndromes. On serial follow-up, seven participants developed at least one neurocognitive syndrome: five with PTSD, one with depression and PTSD, and one with PCS. On univariate analysis, 60 items were associated with syndrome development at p < 0.15. Decision trees and ensemble tree multivariate models yielded four common independent predictors of PTSD: right superior longitudinal fasciculus tract volume on MRI; resting state connectivity between the right amygdala and left superior temporal gyrus (BA41/42) on functional MRI; and single nucleotide polymorphisms in the genes coding for myelin basic protein as well as brain-derived neurotrophic factor. Our findings require follow-up studies with greater sample size and suggest that neuroimaging and molecular biomarkers may help distinguish those at high risk for post-deployment neurocognitive syndromes.
Collapse
Affiliation(s)
- Michael J Roy
- Department of Medicine, Uniformed Services University of the Health Sciences
| | - Michelle Costanzo
- Department of Medicine, Uniformed Services University of the Health Sciences
| | - Jessica Gill
- National Institute of Nursing Research, National Institutes of Health
| | - Suzanne Leaman
- Department of Medicine, Uniformed Services University of the Health Sciences
| | - Wendy Law
- Traumatic Brain Injury Service, Walter Reed National Military Medical Center
| | - Rochelle Ndiongue
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center
| | - Patricia Taylor
- Department of Medicine, Uniformed Services University of the Health Sciences
| | - Hyung-Suk Kim
- National Institute of Nursing Research , National Institutes of Health
| | | | | | - Paul E Rapp
- Traumatic Injury Research Program, Uniformed Services University of the Health Sciences
| | - David Keyser
- Traumatic Injury Research Program, Uniformed Services University of the Health Sciences
| | - Dominic Nathan
- Traumatic Brain Injury Service, Uniformed Services University of the Health Sciences
| | - Michael Xydakis
- Department of Surgery , Uniformed Services University of the Health Sciences
| | - Dzung Pham
- Image Processing Core, Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation
| | - Eric Wassermann
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| |
Collapse
|
44
|
Abstract
There have been many attempts at slowing down or even reversing the neurodegenerative process of Parkinson's disease (PD). To date, there are no treatments of proven value in this regard. One underexplored route to slow the neurodegenerative process is the use of agents that may stimulate neurogenesis in the subventricular zone. In animal models of PD, PDGF-BB has been shown to restore/protect against dopaminergic deficits caused by neurotoxins via increased neurogenesis in the subventricular zone. Previous work suggests that these new cells are not themselves dopaminergic but have trophic effects on residual dopaminergic cells in the substantia nigra. In this issue of the JCI, Paul et al. evaluate this agent in individuals with PD and show that i.c.v. administration of PDGF-BB is safe and well tolerated. This study lays the foundation for formal dose-finding studies and clinical trials to assess the efficacy of this agent as a potential neuroprotective treatment for PD.
Collapse
|
45
|
Vinpocetine attenuates MPTP-induced motor deficit and biochemical abnormalities in Wistar rats. Neuroscience 2014; 286:393-403. [PMID: 25514048 DOI: 10.1016/j.neuroscience.2014.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/26/2014] [Accepted: 12/07/2014] [Indexed: 12/28/2022]
Abstract
Up-regulation in phosphodiesterase 1 (PDE1) expression and decreased levels of cyclic nucleotides (cAMP and cGMP) have been reported in patients and experimental animal models of Parkinson's disease (PD). Phosphodiesterase (PDE) inhibitors have been reported to be beneficial in cognitive and motor deficit states. The present study is designed to investigate the effect of vinpocetine, a PDE1 inhibitor in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental PD-like symptoms in rats. To produce stable motor deficit, MPTP was repeatedly administered intranigrally (bilaterally) at an interval of 1 week (days 1, 7 and 14). Following development of stable motor deficit, which was observed after the third infusion of MPTP (day 14) in rats, the animals were treated with vinpocetine (5-, 10- and 20-mg/kg, i.p.) from days 15 to 28. Movement abnormalities were assessed by a battery of behavioral tests. Moreover, levels of malondialdehyde, nitrite and reduced glutathione were measured in striatal brain homogenate to confirm the role of oxidative and nitrosative stress in PD. Repeated intranigral administration of MPTP produced stable motor deficits, reduced the cyclic nucleotides and dopamine levels and caused elevation in oxidative-nitrosative stress markers. Chronic administration of vinpocetine (for 14 days) significantly and dose dependently attenuated movement disabilities and oxidative-nitrosative stress in MPTP-treated rats. Moreover, vinpocetine treatment enhances cyclic nucleotide levels and restores the dopamine level in MPTP-treated rats. The observed results of the present study are indicative of the therapeutic potential of vinpocetine in PD.
Collapse
|
46
|
Patil SP, Jain PD, Sancheti JS, Ghumatkar PJ, Tambe R, Sathaye S. Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice. Neuropharmacology 2014; 86:192-202. [DOI: 10.1016/j.neuropharm.2014.07.012] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/27/2014] [Accepted: 07/14/2014] [Indexed: 11/26/2022]
|
47
|
Harnessing neurogenesis for the possible treatment of Parkinson's disease. J Comp Neurol 2014; 522:2817-30. [DOI: 10.1002/cne.23607] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/24/2014] [Accepted: 04/08/2014] [Indexed: 01/05/2023]
|
48
|
Chao J, Yang L, Yao H, Buch S. Platelet-derived growth factor-BB restores HIV Tat -mediated impairment of neurogenesis: role of GSK-3β/β-catenin. J Neuroimmune Pharmacol 2014; 9:259-68. [PMID: 24248537 PMCID: PMC4183349 DOI: 10.1007/s11481-013-9509-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 10/14/2013] [Indexed: 12/25/2022]
Abstract
Our previous study demonstrated that platelet-derived growth factor-BB (PDGF-BB) increased the cell proliferation of primary rat neuronal progenitor cells (NPCs). However, whether PDGF-BB regulates neurogenesis in HIV-associated neurological disorder (HAND) remains largely unknown. In this study we demonstrated that pre-treatment of NPCs with PDGF-BB restored Tat-mediated impairment of cell proliferation via activation of p38 and JNK MAPK pathways. Moreover, treatment with PDGF-BB induced inactivation of glycogen synthase kinase-3β (GSK-3β), evidenced by its phosphorylation at Ser9, this effect was significantly inhibited by the p38 and JNK inhibitors. Level of nuclear β-catenin, the primary substrate of GSK-3β, was also concomitantly increased following PDGF-BB treatment, suggesting that PDGF-BB stimulates NPC proliferation via acting on GSK-3β to promote nuclear accumulation of β-catenin. This was further validated by gain and loss of function studies using cells transfected with either the wild type or mutant GSK-3β constructs. Together these data underpin the role of GSK-3β/β-catenin as a novel target that regulates NPC proliferation mediated by PDGF-BB with implications for therapeutic intervention for reversal of impaired neurogenesis inflicted by Tat.
Collapse
Affiliation(s)
- Jie Chao
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center (DRC 8011), University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Lu Yang
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center (DRC 8011), University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Honghong Yao
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center (DRC 8011), University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center (DRC 8011), University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| |
Collapse
|
49
|
Chiu YC, Li MY, Liu YH, Ding JY, Yu JY, Wang TW. Foxp2 regulates neuronal differentiation and neuronal subtype specification. Dev Neurobiol 2014; 74:723-38. [PMID: 24453072 DOI: 10.1002/dneu.22166] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/09/2013] [Accepted: 01/19/2014] [Indexed: 12/31/2022]
Abstract
Mutations of the transcription factor FOXP2 in humans cause a severe speech and language disorder. Disruption of Foxp2 in songbirds or mice also leads to deficits in song learning or ultrasonic vocalization, respectively. These data suggest that Foxp2 plays important roles in the developing nervous system. However, the mechanism of Foxp2 in regulating neural development remains elusive. In the current study, we found that Foxp2 increased neuronal differentiation without affecting cell proliferation and cell survival in primary neural progenitors from embryonic forebrains. Foxp2 induced the expression of platelet-derived growth factor receptor α, which mediated the neurognic effect of Foxp2. In addition, Foxp2 positively regulated the differentiation of medium spiny neurons derived from the lateral ganglionic eminence and negatively regulated the formation of interneurons derived from dorsal medial ganglionic eminence by interacting with the Sonic hedgehog pathway. Taken together, our results suggest that Foxp2 regulates multiple aspects of neuronal development in the embryonic forebrain.
Collapse
Affiliation(s)
- Yi-Chi Chiu
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan
| | | | | | | | | | | |
Collapse
|
50
|
Proschel C, Stripay JL, Shih CH, Munger JC, Noble MD. Delayed transplantation of precursor cell-derived astrocytes provides multiple benefits in a rat model of Parkinsons. EMBO Mol Med 2014; 6:504-18. [PMID: 24477866 PMCID: PMC3992077 DOI: 10.1002/emmm.201302878] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In addition to dopaminergic neuron loss, it is clear that Parkinson disease includes other pathological changes, including loss of additional neuronal populations. As a means of addressing multiple pathological changes with a single therapeutically-relevant approach, we employed delayed transplantation of a unique class of astrocytes, GDAs(BMP), that are generated in vitro by directed differentiation of glial precursors. GDAs(BMP) produce multiple agents of interest as treatments for PD and other neurodegenerative disorders, including BDNF, GDNF, neurturin and IGF1. GDAs(BMP) also exhibit increased levels of antioxidant pathway components, including levels of NADPH and glutathione. Delayed GDA(BMP) transplantation into the 6-hydroxydopamine lesioned rat striatum restored tyrosine hydroxylase expression and promoted behavioral recovery. GDA(BMP) transplantation also rescued pathological changes not prevented in other studies, such as the rescue of parvalbumin(+) GABAergic interneurons. Consistent with expression of the synaptic modulatory proteins thrombospondin-1 and 2 by GDAs(BMP), increased expression of the synaptic protein synaptophysin was also observed. Thus, GDAs(BMP) offer a multimodal support cell therapy that provides multiple benefits without requiring prior genetic manipulation.
Collapse
Affiliation(s)
- Christoph Proschel
- Department for Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | | | | | | | | |
Collapse
|