1
|
Chen C, Xu S, Zhou J, Yi C, Yu L, Yao D, Zhang Y, Li F, Xu P. Resting-state EEG network variability predicts individual working memory behavior. Neuroimage 2025; 310:121120. [PMID: 40054759 DOI: 10.1016/j.neuroimage.2025.121120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Even during periods of rest, the brain exhibits spontaneous activity that dynamically fluctuates across spatially distributed regions in a globally coordinated manner, which has significant cognitive implications. However, the relationship between the temporal variability of resting-state networks and working memory (WM) remains largely unexplored. This study aims to address this gap by employing an EEG-based protocol combined with fuzzy entropy. First, we identified both flexible and robust patterns of dynamic resting-state networks. Subsequently, we observed a significant positive correlation between WM performance and network variability, particularly in connections associated with the frontal, right central, and right parietal lobes. Moreover, we found that the temporal variability of network properties was positively and significantly associated with WM performance. Additionally, distinct patterns of network variability were delineated, contributing to inter-individual differences in WM abilities, with these distinctions becoming more pronounced as task demands increased. Finally, using a multivariable predictive model based on these variability metrics, we effectively predicted individual WM performances. Notably, analogous analyses conducted in the source space validated the reproducibility of the temporal variability of resting-state networks in predicting individual WM behavior at higher spatial resolution, providing more precise anatomical localization of key brain regions. These results suggest that the temporal variability of resting-state networks reflects intrinsic dynamic changes in brain organization supporting WM and can serve as an objective predictor for individual WM behaviors.
Collapse
Affiliation(s)
- Chunli Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shiyun Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jixuan Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chanlin Yi
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Liang Yu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China; School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yangsong Zhang
- School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China; Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China.
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China; School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China; Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610041, China; Rehabilitation Center, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
2
|
Zhang S, Cui X, Yu S, Li X. Is transcranial alternating current stimulation effective for improving working memory? A three-level meta-analysis. Psychon Bull Rev 2025; 32:636-651. [PMID: 39438426 DOI: 10.3758/s13423-024-02595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Working memory, an essential component of cognitive function, can be improved through specific methods. This meta-analysis evaluates the effectiveness of transcranial alternating current stimulation (tACS), an emerging technique for enhancing working memory, and explores its efficacy, influencing factors, and underlying mechanisms. A PRISMA systematic search was conducted. Hedges's g was used to quantify effect sizes. We constructed a three-level meta-analytic model to account for all effect sizes and performed subgroup analyses to assess moderating factors. Recognizing the distinct neural underpinnings of various working memory processes, we separately assessed the effects on n-back tasks and traditional working memory tasks. A total of 39 studies with 405 effect sizes were included (170 from n-back tasks and 235 from other tasks). The overall analysis indicated a net benefit of g = 0.060 of tACS on working memory. Separate analyses showed that tACS had a small positive effect on n-back tasks (g = 0.102), but almost no effect on traditional working memory tasks (g = 0.045). Further analyses revealed mainly: A moderately positive effect of theta tACS (without anti-phase stimulation) on n-back tasks (g = 0.207); and a small effect of offline stimulation on working memory maintenance (g = 0.127). Overall, tACS has minimal impact on working memory improvement, but it shows potential under certain conditions. Specifically, both online and offline theta tACS can improve n-back task performance, while only offline stimulation enhances working memory maintenance. More research is needed to understand the mechanisms behind these effects to make tACS an effective method.
Collapse
Affiliation(s)
- Siyuan Zhang
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Cui
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Yu
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuebing Li
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Jiang Y, Guo Z, Zhou X, Jiang N, He J. Exploration of working memory retrieval stage for mild cognitive impairment: time-varying causality analysis of electroencephalogram based on dynamic brain networks. J Neuroeng Rehabil 2025; 22:58. [PMID: 40083013 PMCID: PMC11905461 DOI: 10.1186/s12984-025-01594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Mild Cognitive Impairment (MCI) is an intermediate stage between the expected cognitive decline of normal aging and Alzheimer's disease (AD). Its management is crucial for it helps intervene and slow the progression of cognitive decline to AD. However, the understanding of the MCI mechanism is not completely clear. As working memory (WM) damage is a common symptom of MCI, this study focused on the core stage of WM, i.e., the memory retrieval stage, to investigate information processing and the causality relationships among brain regions based on electroencephalogram (EEG) signals. METHOD 21 MCI and 20 normal cognitive control (NC) participants were recruited. The delayed matching sample paradigm with two different loads was employed to evaluate their WM functions. A time-varying network based on the Adaptive transfer function (ADTF) was constructed on the EEG of the memory retrieval trials.to perform the dynamic brain network analysis. RESULTS Our results showed that: (a) Behavioral data analysis: there were significant differences in accuracy and accuracy / reaction time between MCI and NC in tasks with memory load capacity of low load-four and high load-six, especially in tasks with memory load capacity of four. (b) Dynamic brain network analysis: there were significant differences in the dynamic changes of brain network patterns between the two groups during the memory retrieval stage of the WM task. Specifically, in low load WM tasks, the dynamic brain network changes of NC were more regular to accommodate for efficient information processing, with important core nodes showing a transition from bottom to up, while MCI did not display a regular dynamic brain network pattern. Further, the brain functional areas associated with low load WM disorders were mainly located in the left prefrontal lobe (FC1) and right occipital lobe (PO8). Compared with low load WM task, during the high load WM task, the dynamic brain network changes of NC during the memory retrieval stage were regular, and the core nodes exhibited a consistent transition phenomenon from up to bottom to up, which were not observed in MCI. CONCLUSIONS Behavioral data in the low load WM task paradigm and abnormal electrophysiological signals in the left prefrontal (FC1) and right occipital lobes (PO8) could be used for MCI diagnosis. This is the first time based on large-scale dynamic network methods to investigate the dynamic network patterns of MCI memory retrieval stages under different load WM tasks, providing a new perspective on the neural mechanisms of WM deficits in MCI patients and providing some reference for the clinical intervention treatment of MCI-WM memory disorders.
Collapse
Affiliation(s)
- Yi Jiang
- The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- The Med-X Center for Manufacturing, Sichuan University, Chengdu, Sichuan, 610041, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhiwei Guo
- The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- The Med-X Center for Manufacturing, Sichuan University, Chengdu, Sichuan, 610041, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ning Jiang
- The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
- The Med-X Center for Manufacturing, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Jiayuan He
- The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
- The Med-X Center for Manufacturing, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
4
|
Norouzi H, Daliri MR. Prediction of behavioral performance by alpha-band phase synchronization in working memory. Physiol Behav 2024; 284:114630. [PMID: 38971571 DOI: 10.1016/j.physbeh.2024.114630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/31/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Working memory (WM) is a cognitive system with limited capacity that can temporarily store and process information. The purpose of this study was to investigate functional connectivity based on phase synchronization during WM and its relationship with the behavioral response. In this regard, we recorded EEG/Eye tracking data of seventeen healthy subjects while performing a memory-guided saccade (MGS) task with two different positions (near eccentricity and far eccentricity). We computed saccade error as memory performance and measured functional connectivity using Phase Locking Value (PLV) in the alpha frequency band (8-12 Hz). The results showed that PLV is negatively correlated with saccade error. Our finding indicated that during the maintenance period, PLV between the frontal and visual area in trials with low saccade error increased significantly compared to trials with high saccade error. Furthermore, we observed a significant difference between PLV for near and far conditions in the delay period. The results suggest that PLV in memory maintenance, in addition to predicting saccade error as behavioral performance, can be related to the coding of spatial information in WM.
Collapse
Affiliation(s)
- Hamideh Norouzi
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science & Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | - Mohammad Reza Daliri
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science & Technology (IUST), Narmak, 16846-13114, Tehran, Iran.
| |
Collapse
|
5
|
Cihak HL, Kilpatrick ZP. Robustly encoding certainty in a metastable neural circuit model. Phys Rev E 2024; 110:034404. [PMID: 39425424 PMCID: PMC11778249 DOI: 10.1103/physreve.110.034404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/19/2024] [Indexed: 10/21/2024]
Abstract
Localized persistent neural activity can encode delayed estimates of continuous variables. Common experiments require that subjects store and report the feature value (e.g., orientation) of a particular cue (e.g., oriented bar on a screen) after a delay. Visualizing recorded activity of neurons along their feature tuning reveals activity bumps whose centers wander stochastically, degrading the estimate over time. Bump position therefore represents the remembered estimate. Recent work suggests bump amplitude may represent estimate certainty reflecting a probabilistic population code for a Bayesian posterior. Idealized models of this type are fragile due to the fine tuning common to constructed continuum attractors in dynamical systems. Here we propose an alternative metastable model for robustly supporting multiple bump amplitudes by extending neural circuit models to include quantized nonlinearities. Asymptotic projections of circuit activity produce low-dimensional evolution equations for the amplitude and position of bump solutions in response to external stimuli and noise perturbations. Analysis of reduced equations accurately characterizes phase variance and the dynamics of amplitude transitions between stable discrete values. More salient cues generate bumps of higher amplitude which wander less, consistent with experiments showing certainty correlates with more accurate memories.
Collapse
Affiliation(s)
- Heather L. Cihak
- Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309, USA
| | - Zachary P. Kilpatrick
- Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
6
|
Riemer M, Wolbers T, van Rijn H. Memory traces of duration and location in the right intraparietal sulcus. Neuroimage 2024; 297:120706. [PMID: 38936649 DOI: 10.1016/j.neuroimage.2024.120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/25/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024] Open
Abstract
Time and space form an integral part of every human experience, and for the neuronal representation of these perceptual dimensions, previous studies point to the involvement of the right-hemispheric intraparietal sulcus and structures in the medial temporal lobe. Here we used multi-voxel pattern analysis (MVPA) to investigate long-term memory traces for temporal and spatial stimulus features in those areas. Participants were trained on four images associated with short versus long durations and with left versus right locations. Our results demonstrate stable representations of both temporal and spatial information in the right posterior intraparietal sulcus. Building upon previous findings of stable neuronal codes for directly perceived durations and locations, these results show that the reactivation of long-term memory traces for temporal and spatial features can be decoded from neuronal activation patterns in the right parietal cortex.
Collapse
Affiliation(s)
- Martin Riemer
- Biological Psychology and Neuroergonomics, Technical University Berlin, 10623 Berlin, Germany; Bernstein Center for Computational Neuroscience (BCCN), Berlin, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| | - Thomas Wolbers
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Aging, Cognition & Technology Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Hedderik van Rijn
- Department of Experimental Psychology, University of Groningen, Netherlands
| |
Collapse
|
7
|
Jiang Y, Zhang X, Guo Z, Jiang N. Altered EEG Theta and Alpha Band Functional Connectivity in Mild Cognitive Impairment During Working Memory Coding. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2845-2853. [PMID: 38905095 DOI: 10.1109/tnsre.2024.3417617] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Individuals with mild cognitive impairment (MCI), the preclinical stage of Alzheimer disease (AD), suffer decline in their visual working memory (WM) functions. Using large-scale network analysis of electroencephalography (EEG), the current study intended to investigate if there are differences in functional connectivity properties extracted during visual WM coding stages between MCI patients and normal controls (NC). A total of 21 MCI patients and 20 NC performed visual memory tasks of load four, while 32-channel EEG recordings were acquired. The functional connectivity properties were extracted from the acquired EEGs by the directed transform function (DTF) via spectral Granger causal analysis. Brain network analyses revealed distinctive brain network patterns between the two groups during the WM coding stage. Compared with the NC, MCI patients exhibited a reduced visual network connectivity of the frontal-temporal in θ (4-7Hz) band. A likely compensation mechanism was observed in MCI patients, with a strong brain functional connectivity of the frontal-occipital and parietal-occipital in both θ and α (8-13Hz) band. Further analyses of the network core node properties based on the differential brain network showed that, in θ band, there was a significant difference in the out-degree of the frontal lobe and parietal lobe between the two groups, while in α band, such difference was located only in the parietal lobe. The current study found that, in MCI patients, dysconnectivity is found from the prefrontal lobe to bilateral temporal lobes, leading to increased recruitment of functional connectivity in the frontal-occipital and parietal-occipital direction. The dysconnectivity pattern of MCI is more complex and primarily driven by core nodes Pz and Fz. These results significantly expanded previous knowledge of MCI patients' EEG dynamics during WM tasks and provide new insights into the underpinning neural mechanism MCI. It further provided a potential therapeutic target for clinical interventions of the condition.
Collapse
|
8
|
Tariq R, Aziz HF, Paracha S, Ahmed N, Baqai MWS, Bakhshi SK, McAtee A, Ainger TJ, Mirza FA, Enam SA. Intraoperative mapping and preservation of executive functions in awake craniotomy: a systematic review. Neurol Sci 2024; 45:3723-3735. [PMID: 38520640 DOI: 10.1007/s10072-024-07475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Awake craniotomy (AC) allows intraoperative brain mapping (ioBM) for maximum lesion resection while monitoring and preserving neurological function. Conventionally, language, visuospatial assessment, and motor functions are mapped, while the assessment of executive functions (EF) is uncommon. Impaired EF may lead to occupational, personal, and social limitations, thus, a compromised quality of life. A comprehensive literature search was conducted through Scopus, Medline, and Cochrane Library using a pre-defined search strategy. Articles were selected after duplicate removal, initial screening, and full-text assessment. The demographic details, ioBM techniques, intraoperative tasks, and their assessments, the extent of resection (EOR), post-op EF and neurocognitive status, and feasibility and potential adverse effects of the procedure were reviewed. The correlations of tumor locations with intraoperative EF deficits were also assessed. A total of 13 studies with intraoperative EF assessment of 351 patients were reviewed. Awake-asleep-awake protocol was most commonly used. Most studies performed ioBM using bipolar stimulation, with a frequency of 60 Hz, pulse durations ranging 1-2 ms, and intensity ranging 2-6 mA. Cognitive function was monitored with the Stroop task, spatial-2-back test, line-bisection test, trail-making-task, and digit-span tests. All studies reported similar or better EOR in patients with ioBM for EF. When comparing the neuropsychological outcomes of patients with ioBM of EF to those without it, all studies reported significantly better EF preservation in ioBM groups. Most authors reported EF mapping as a feasible tool to obtain satisfactory outcomes. Adverse effects included intraoperative seizures which were easily controlled. AC with ioBM of EF is a safe, effective, and feasible technique that allows satisfactory EOR and improved neurocognitive outcomes with minimal adverse effects.
Collapse
Affiliation(s)
- Rabeet Tariq
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Hafiza Fatima Aziz
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Shahier Paracha
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Noman Ahmed
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Saqib Kamran Bakhshi
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Annabel McAtee
- College of Medicine, University of Kentucky, Lexington, USA
| | - Timothy J Ainger
- Department of Neurology, University of Kentucky College of Medicine, Kentucky Neuroscience Institute, Lexington, KY, USA
| | - Farhan A Mirza
- Department of Neurosurgery, Kentucky Neuroscience Institute (KNI), University of Kentucky, Lexington, USA
| | - Syed Ather Enam
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan.
| |
Collapse
|
9
|
Purg Suljič N, Kraljič A, Rahmati M, Cho YT, Slana Ozimič A, Murray JD, Anticevic A, Repovš G. Individual differences in spatial working memory strategies differentially reflected in the engagement of control and default brain networks. Cereb Cortex 2024; 34:bhae350. [PMID: 39214852 PMCID: PMC11364466 DOI: 10.1093/cercor/bhae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Spatial locations can be encoded and maintained in working memory using different representations and strategies. Fine-grained representations provide detailed stimulus information, but are cognitively demanding and prone to inexactness. The uncertainty in fine-grained representations can be compensated by the use of coarse, but robust categorical representations. In this study, we employed an individual differences approach to identify brain activity correlates of the use of fine-grained and categorical representations in spatial working memory. We combined data from six functional magnetic resonance imaging studies, resulting in a sample of $155$ ($77$ women, $25 \pm 5$ years) healthy participants performing a spatial working memory task. Our results showed that individual differences in the use of spatial representations in working memory were associated with distinct patterns of brain activity. Higher precision of fine-grained representations was related to greater engagement of attentional and control brain systems throughout the task trial, and the stronger deactivation of the default network at the time of stimulus encoding. In contrast, the use of categorical representations was associated with lower default network activity during encoding and higher frontoparietal network activation during maintenance. These results may indicate a greater need for attentional resources and protection against interference for fine-grained compared with categorical representations.
Collapse
Affiliation(s)
- Nina Purg Suljič
- Department of Psychology, Faculty of Arts, University of Ljubljana, Aškerčeva 2, 1000 Ljubljana, Slovenia
| | - Aleksij Kraljič
- Department of Psychology, Faculty of Arts, University of Ljubljana, Aškerčeva 2, 1000 Ljubljana, Slovenia
| | - Masih Rahmati
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA
| | - Youngsun T Cho
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA
| | - Anka Slana Ozimič
- Department of Psychology, Faculty of Arts, University of Ljubljana, Aškerčeva 2, 1000 Ljubljana, Slovenia
| | - John D Murray
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA
- Department of Psychology, Yale University, 100 College Street, New Haven, CT 06510, USA
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA
- Department of Psychology, Yale University, 100 College Street, New Haven, CT 06510, USA
| | - Grega Repovš
- Department of Psychology, Faculty of Arts, University of Ljubljana, Aškerčeva 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Malleret G, Salin P, Mazza S, Plancher G. Working memory forgetting: Bridging gaps between human and animal studies. Neurosci Biobehav Rev 2024; 163:105742. [PMID: 38830561 DOI: 10.1016/j.neubiorev.2024.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/16/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
The causes of forgetting in working memory (WM) remain a source of debate in cognitive psychology, partly because it has always been challenging to probe the complex neural mechanisms that govern rapid cognitive processes in humans. In this review, we argue that neural, and more precisely animal models, provide valuable tools for exploring the precise mechanisms of WM forgetting. First, we discuss theoretical perspectives concerning WM forgetting in humans. Then, we present neuronal correlates of WM in animals, starting from the initial evidence of delay activity observed in the prefrontal cortex to the later synaptic theory of WM. In the third part, specific theories of WM are discussed, including the notion that silent versus non-silent activity is more consistent with the processes of refreshing and decay proposed in human cognitive models. The review concludes with an exploration of the relationship between long-term memory and WM, revealing connections between these two forms of memory through the long-term synaptic hypothesis, which suggests that long-term storage of interference can potentially disrupt WM.
Collapse
Affiliation(s)
- Gaël Malleret
- Centre de Recherche en Neurosciences de Lyon, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, University Claude Bernard Lyon 1, Bron F-69500, France
| | - Paul Salin
- Centre de Recherche en Neurosciences de Lyon, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, University Claude Bernard Lyon 1, Bron F-69500, France
| | - Stéphanie Mazza
- Centre de Recherche en Neurosciences de Lyon, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, University Claude Bernard Lyon 1, Bron F-69500, France
| | - Gaën Plancher
- Université Lumière Lyon 2, Laboratoire d'Etude des Mécanismes Cognitifs, Bron, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
11
|
Purg Suljic N, Kraljic A, Rahmati M, Cho YT, Slana Ozimic A, Murray JD, Anticevic A, Repovs G. Individual differences in spatial working memory strategies differentially reflected in the engagement of control and default brain networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.07.548112. [PMID: 37662268 PMCID: PMC10473605 DOI: 10.1101/2023.07.07.548112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Spatial locations can be encoded and maintained in working memory using different representations and strategies. Fine-grained representations provide detailed stimulus information, but are cognitively demanding and prone to inexactness. The uncertainty in fine-grained representations can be compensated by the use of coarse, but robust categorical representations. In this study, we employed an individual differences approach to identify brain activity correlates of the use of fine-grained and categorical representations in spatial working memory. We combined data from six fMRI studies, resulting in a sample of 155 (77 women, 25 ± 5 years) healthy participants performing a spatial working memory task. Our results showed that individual differences in the use of spatial representations in working memory were associated with distinct patterns of brain activity. Higher precision of fine-grained representations was related to greater engagement of attentional and control brain systems throughout the task trial, and the stronger deactivation of the default network at the time of stimulus encoding. In contrast, the use of categorical representations was associated with lower default network activity during encoding and higher frontoparietal network activation during maintenance. These results may indicate a greater need for attentional resources and protection against interference for fine-grained compared to categorical representations.
Collapse
|
12
|
Master SL, Li S, Curtis CE. Trying Harder: How Cognitive Effort Sculpts Neural Representations during Working Memory. J Neurosci 2024; 44:e0060242024. [PMID: 38769009 PMCID: PMC11236589 DOI: 10.1523/jneurosci.0060-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
While the exertion of mental effort improves performance on cognitive tasks, the neural mechanisms by which motivational factors impact cognition remain unknown. Here, we used fMRI to test how changes in cognitive effort, induced by changes in task difficulty, impact neural representations of working memory (WM). Participants (both sexes) were precued whether WM difficulty would be hard or easy. We hypothesized that hard trials demanded more effort as a later decision required finer mnemonic precision. Behaviorally, pupil size was larger and response times were slower on hard compared with easy trials suggesting our manipulation of effort succeeded. Neurally, we observed robust persistent activity during delay periods in the prefrontal cortex (PFC), especially during hard trials. Yet, details of the memoranda could not be decoded from patterns in prefrontal activity. In the patterns of activity in the visual cortex, however, we found strong decoding of memorized targets, where accuracy was higher on hard trials. To potentially link these across-region effects, we hypothesized that effort, carried by persistent activity in the PFC, impacts the quality of WM representations encoded in the visual cortex. Indeed, we found that the amplitude of delay period activity in the frontal cortex predicted decoded accuracy in the visual cortex on a trial-wise basis. These results indicate that effort-related feedback signals sculpt population activity in the visual cortex, improving mnemonic fidelity.
Collapse
Affiliation(s)
- Sarah L Master
- Department of Psychology, New York University, New York, New York 10003
| | - Shanshan Li
- Department of Psychology, New York University, New York, New York 10003
- Program in Psychology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Clayton E Curtis
- Department of Psychology, New York University, New York, New York 10003
- Center for Neural Science, New York University, New York, New York 10003
| |
Collapse
|
13
|
Yao Y, Zhang S, Wang B, Lin X, Zhao G, Deng H, Chen Y. Neural dysfunction underlying working memory processing at different stages of the illness course in schizophrenia: a comparative meta-analysis. Cereb Cortex 2024; 34:bhae267. [PMID: 38960703 DOI: 10.1093/cercor/bhae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Schizophrenia, as a chronic and persistent disorder, exhibits working memory deficits across various stages of the disorder, yet the neural mechanisms underlying these deficits remain elusive with inconsistent neuroimaging findings. We aimed to compare the brain functional changes of working memory in patients at different stages: clinical high risk, first-episode psychosis, and long-term schizophrenia, using meta-analyses of functional magnetic resonance imaging studies. Following a systematic literature search, 56 whole-brain task-based functional magnetic resonance imaging studies (15 for clinical high risk, 16 for first-episode psychosis, and 25 for long-term schizophrenia) were included. The separate and pooled neurofunctional mechanisms among clinical high risk, first-episode psychosis, and long-term schizophrenia were generated by Seed-based d Mapping toolbox. The clinical high risk and first-episode psychosis groups exhibited overlapping hypoactivation in the right inferior parietal lobule, right middle frontal gyrus, and left superior parietal lobule, indicating key lesion sites in the early phase of schizophrenia. Individuals with first-episode psychosis showed lower activation in left inferior parietal lobule than those with long-term schizophrenia, reflecting a possible recovery process or more neural inefficiency. We concluded that SCZ represent as a continuum in the early stage of illness progression, while the neural bases are inversely changed with the development of illness course to long-term course.
Collapse
Affiliation(s)
- Yuhao Yao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Shufang Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Boyao Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoyong Lin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Gaofeng Zhao
- Department of Psychiatry, Shandong Daizhuang Hospital, Jinning, China
| | - Hong Deng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ying Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Das A, Menon V. Frequency-specific directed connectivity between the hippocampus and parietal cortex during verbal and spatial episodic memory: an intracranial EEG replication. Cereb Cortex 2024; 34:bhae287. [PMID: 39042030 PMCID: PMC11264422 DOI: 10.1093/cercor/bhae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/23/2024] [Indexed: 07/24/2024] Open
Abstract
Hippocampus-parietal cortex circuits are thought to play a crucial role in memory and attention, but their neural basis remains poorly understood. We employed intracranial intracranial electroencephalography (iEEG) to investigate the neurophysiological underpinning of these circuits across three memory tasks spanning verbal and spatial domains. We uncovered a consistent pattern of higher causal directed connectivity from the hippocampus to both lateral parietal cortex (supramarginal and angular gyrus) and medial parietal cortex (posterior cingulate cortex) in the delta-theta band during memory encoding and recall. This connectivity was independent of activation or suppression states in the hippocampus or parietal cortex. Crucially, directed connectivity from the supramarginal gyrus to the hippocampus was enhanced in participants with higher memory recall, highlighting its behavioral significance. Our findings align with the attention-to-memory model, which posits that attention directs cognitive resources toward pertinent information during memory formation. The robustness of these results was demonstrated through Bayesian replication analysis of the memory encoding and recall periods across the three tasks. Our study sheds light on the neural basis of casual signaling within hippocampus-parietal circuits, broadening our understanding of their critical roles in human cognition.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
15
|
Kim HJ, Bang M, Pae C, Lee SH. Multimodal neural correlates of dispositional resilience among healthy individuals. Sci Rep 2024; 14:9875. [PMID: 38684873 PMCID: PMC11059361 DOI: 10.1038/s41598-024-60619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
Resilient individuals are less likely to develop psychiatric disorders despite extreme psychological distress. This study investigated the multimodal structural neural correlates of dispositional resilience among healthy individuals. Participants included 92 healthy individuals. The Korean version of the Connor-Davidson Resilience Scale and other psychological measures were used. Gray matter volumes (GMVs), cortical thickness, local gyrification index (LGI), and white matter (WM) microstructures were analyzed using voxel-based morphometry, FreeSurfer, and tract-based spatial statistics, respectively. Higher resilient individuals showed significantly higher GMVs in the inferior frontal gyrus (IFG), increased LGI in the insula, and lower fractional anisotropy values in the superior longitudinal fasciculus II (SLF II). These resilience's neural correlates were associated with good quality of life in physical functioning or general health and low levels of depression. Therefore, the GMVs in the IFG, LGI in the insula, and WM microstructures in the SLF II can be associated with resilience that contributes to emotional regulation, empathy, and social cognition.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-712, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-712, Republic of Korea
| | - Chongwon Pae
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-712, Republic of Korea.
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-712, Republic of Korea.
| |
Collapse
|
16
|
Das A, Menon V. Hippocampal-parietal cortex causal directed connectivity during human episodic memory formation: Replication across three experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.566056. [PMID: 37986855 PMCID: PMC10659286 DOI: 10.1101/2023.11.07.566056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hippocampus-parietal cortex circuits are thought to play a crucial role in memory and attention, but their neural basis remains poorly understood. We employed intracranial EEG from 96 participants (51 females) to investigate the neurophysiological underpinning of these circuits across three memory tasks spanning verbal and spatial domains. We uncovered a consistent pattern of higher causal directed connectivity from the hippocampus to both lateral parietal cortex (supramarginal and angular gyrus) and medial parietal cortex (posterior cingulate cortex) in the delta-theta band during memory encoding and recall. This connectivity was independent of activation or suppression states in the hippocampus or parietal cortex. Crucially, directed connectivity from the supramarginal gyrus to the hippocampus was enhanced in participants with higher memory recall, highlighting its behavioral significance. Our findings align with the attention-to-memory model, which posits that attention directs cognitive resources toward pertinent information during memory formation. The robustness of these results was demonstrated through Bayesian replication analysis of the memory encoding and recall periods across the three tasks. Our study sheds light on the neural basis of casual signaling within hippocampus-parietal circuits, broadening our understanding of their critical roles in human cognition.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine Stanford, CA 94305
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine Stanford, CA 94305
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine Stanford, CA 94305
| |
Collapse
|
17
|
Cihak HL, Kilpatrick ZP. MULTISCALE MOTION AND DEFORMATION OF BUMPS IN STOCHASTIC NEURAL FIELDS WITH DYNAMIC CONNECTIVITY. MULTISCALE MODELING & SIMULATION : A SIAM INTERDISCIPLINARY JOURNAL 2024; 22:178-203. [PMID: 39885947 PMCID: PMC11781529 DOI: 10.1137/23m1582655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The distinct timescales of synaptic plasticity and neural activity dynamics play an important role in the brain's learning and memory systems. Activity-dependent plasticity reshapes neural circuit architecture, determining spontaneous and stimulus-encoding spatiotemporal patterns of neural activity. Neural activity bumps maintain short term memories of continuous parameter values, emerging in spatially organized models with short-range excitation and long-range inhibition. Previously, we demonstrated nonlinear Langevin equations derived using an interface method which accurately describe the dynamics of bumps in continuum neural fields with separate excitatory/inhibitory populations. Here we extend this analysis to incorporate effects of short term plasticity that dynamically modifies connectivity described by an integral kernel. Linear stability analysis adapted to these piecewise smooth models with Heaviside firing rates further indicates how plasticity shapes the bumps' local dynamics. Facilitation (depression), which strengthens (weakens) synaptic connectivity originating from active neurons, tends to increase (decrease) stability of bumps when acting on excitatory synapses. The relationship is inverted when plasticity acts on inhibitory synapses. Multiscale approximations of the stochastic dynamics of bumps perturbed by weak noise reveal that the plasticity variables evolve to slowly diffusing and blurred versions of their stationary profiles. Nonlinear Langevin equations associated with bump positions or interfaces coupled to slowly evolving projections of plasticity variables accurately describe how these smoothed synaptic efficacy profiles can tether or repel wandering bumps.
Collapse
|
18
|
Jonikaitis D, Noudoost B, Moore T. Dissociating the Contributions of Frontal Eye Field Activity to Spatial Working Memory and Motor Preparation. J Neurosci 2023; 43:8681-8689. [PMID: 37871965 PMCID: PMC10727190 DOI: 10.1523/jneurosci.1071-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Neurons within dorsolateral prefrontal cortex (PFC) of primates are characterized by robust persistent spiking activity exhibited during the delay period of working memory tasks. This includes the frontal eye field (FEF) where nearly half of the neurons are active when spatial locations are held in working memory. Past evidence has established the FEF's contribution to the planning and triggering of saccadic eye movements as well as to the control of visual spatial attention. However, it remains unclear whether persistent delay activity reflects a similar dual role in movement planning and visuospatial working memory. We trained male monkeys to alternate between different forms of a spatial working memory task which could dissociate remembered stimulus locations from planned eye movements. We tested the effects of inactivation of FEF sites on behavioral performance in the different tasks. Consistent with previous studies, FEF inactivation impaired the execution of memory-guided saccades (MGSs), and impaired performance when remembered locations matched the planned eye movement. In contrast, memory performance was largely unaffected when the remembered location was dissociated from the correct eye movement response. Overall, the inactivation effects demonstrated clear deficits in eye movements, regardless of task type, but little or no evidence of a deficit in spatial working memory. Thus, our results indicate that persistent delay activity in the FEF contributes primarily to the preparation of eye movements and not to spatial working memory.SIGNIFICANCE STATEMENT Many frontal eye field (FEF) neurons exhibit spatially tuned persistent spiking activity during the delay period of working memory tasks. However, the role of the FEF in spatial working memory remains unresolved. We tested the effects of inactivation of FEF sites on behavioral performance in different forms of a spatial working memory task, one of which dissociated the remembered stimulus locations from planned eye movements. We found that FEF inactivation produced clear deficits in eye movements, regardless of task type, but no deficit in spatial working memory when dissociated from those movements.
Collapse
Affiliation(s)
- Donatas Jonikaitis
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94350
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah 84132
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94350
| |
Collapse
|
19
|
Master SL, Li S, Curtis CE. Trying harder: how cognitive effort sculpts neural representations during working memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570686. [PMID: 38106094 PMCID: PMC10723420 DOI: 10.1101/2023.12.07.570686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The neural mechanisms by which motivational factors influence cognition remain unknown. Using fMRI, we tested how cognitive effort impacts working memory (WM). Participants were precued whether WM difficulty would be hard or easy. Hard trials demanded more effort as a later decision required finer mnemonic precision. Behaviorally, pupil size was larger and response times were slower on hard trials suggesting our manipulation of effort succeeded. Neurally, we observed robust persistent activity in prefrontal cortex, especially during hard trials. We found strong decoding of location in visual cortex, where accuracy was higher on hard trials. Connecting these across-region effects, we found that the amplitude of delay period activity in frontal cortex predicted decoded accuracy in visual cortex on a trial-wise basis. We conclude that the gain of persistent activity in frontal cortex may be the source of effort-related feedback signals that improve the quality of WM representations stored in visual cortex.
Collapse
Affiliation(s)
| | - Shanshan Li
- Department of Psychology, New York University
- Program in Psychology, New York University Abu Dhabi
| | - Clayton E. Curtis
- Department of Psychology, New York University
- Center for Neural Science, New York University
| |
Collapse
|
20
|
Lingelbach K, Gado S, Wirzberger M, Vukelić M. Workload-dependent hemispheric asymmetries during the emotion-cognition interaction: a close-to-naturalistic fNIRS study. FRONTIERS IN NEUROERGONOMICS 2023; 4:1273810. [PMID: 38234490 PMCID: PMC10790862 DOI: 10.3389/fnrgo.2023.1273810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/23/2023] [Indexed: 01/19/2024]
Abstract
Introduction We investigated brain activation patterns of interacting emotional distractions and cognitive processes in a close-to-naturalistic functional near-infrared spectroscopy (fNIRS) study. Methods Eighteen participants engaged in a monitoring-control task, mimicking common air traffic controller requirements. The scenario entailed experiencing both low and high workload, while concurrently being exposed to emotional speech distractions of positive, negative, and neutral valence. Results Our investigation identified hemispheric asymmetries in prefrontal cortex (PFC) activity during the presentation of negative and positive emotional speech distractions at different workload levels. Thereby, in particular, activation in the left inferior frontal gyrus (IFG) and orbitofrontal cortex (OFC) seems to play a crucial role. Brain activation patterns revealed a cross-over interaction indicating workload-dependent left hemispheric inhibition processes during negative distractions and high workload. For positive emotional distractions under low workload, we observed left-hemispheric PFC recruitment potentially associated with speech-related processes. Furthermore, we found a workload-independent negativity bias for neutral distractions, showing brain activation patterns similar to those of negative distractions. Discussion In conclusion, lateralized hemispheric processing, regulating emotional speech distractions and integrating emotional and cognitive processes, is influenced by workload levels and stimulus characteristics. These findings advance our understanding of the factors modulating hemispheric asymmetries during the processing and inhibition of emotional distractions, as well as the interplay between emotion and cognition. Moreover, they emphasize the significance of exploring emotion-cognition interactions in more naturalistic settings to gain a deeper understanding of their implications in real-world application scenarios (e.g., working and learning environments).
Collapse
Affiliation(s)
- Katharina Lingelbach
- Applied Neurocognitive Systems, Fraunhofer Institute for Industrial Engineering IAO, Stuttgart, Germany
- Applied Neurocognitive Psychology, Carl von Ossietzky University, Oldenburg, Germany
| | - Sabrina Gado
- Experimental Clinical Psychology, Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Maria Wirzberger
- Department of Teaching and Learning with Intelligent Systems, University of Stuttgart, Stuttgart, Germany
- LEAD Graduate School and Research Network, University of Tübingen, Tübingen, Germany
| | - Mathias Vukelić
- Applied Neurocognitive Systems, Fraunhofer Institute for Industrial Engineering IAO, Stuttgart, Germany
| |
Collapse
|
21
|
Onishi H, Yokosawa K. Differential working memory function between phonological and visuospatial strategies: a magnetoencephalography study using a same visual task. Front Hum Neurosci 2023; 17:1218437. [PMID: 37680265 PMCID: PMC10480614 DOI: 10.3389/fnhum.2023.1218437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Previous studies have reported that, in working memory, the processing of visuospatial information and phonological information have different neural bases. However, in these studies, memory items were presented via different modalities. Therefore, the modality in which the memory items were presented and the strategy for memorizing them were not rigorously distinguished. In the present study, we explored the neural basis of two working memory strategies. Nineteen right-handed young adults memorized seven sequential directions presented visually in a task in which the memory strategy was either visuospatial or phonological (visuospatial/phonological condition). Source amplitudes of theta-band (5-7 Hz) rhythm were estimated from magnetoencephalography during the maintenance period and further analyzed using cluster-based permutation tests. Behavioral results revealed that the accuracy rates showed no significant differences between conditions, while the reaction time in the phonological condition was significantly longer than that in the visuospatial condition. Theta activity in the phonological condition was significantly greater than that in the visuospatial condition, and the cluster in spatio-temporal matrix with p < 5% difference extended to right prefrontal regions in the early maintenance period and right occipito-parietal regions in the late maintenance period. The theta activity results did not indicate strategy-specific neural bases but did reveal the dynamics of executive function required for phonological processing. The functions seemed to move from attention control and inhibition control in the prefrontal region to inhibition of irrelevant information in the occipito-parietal region.
Collapse
Affiliation(s)
- Hayate Onishi
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Koichi Yokosawa
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
22
|
Gado S, Lingelbach K, Wirzberger M, Vukelić M. Decoding Mental Effort in a Quasi-Realistic Scenario: A Feasibility Study on Multimodal Data Fusion and Classification. SENSORS (BASEL, SWITZERLAND) 2023; 23:6546. [PMID: 37514840 PMCID: PMC10383122 DOI: 10.3390/s23146546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Humans' performance varies due to the mental resources that are available to successfully pursue a task. To monitor users' current cognitive resources in naturalistic scenarios, it is essential to not only measure demands induced by the task itself but also consider situational and environmental influences. We conducted a multimodal study with 18 participants (nine female, M = 25.9 with SD = 3.8 years). In this study, we recorded respiratory, ocular, cardiac, and brain activity using functional near-infrared spectroscopy (fNIRS) while participants performed an adapted version of the warship commander task with concurrent emotional speech distraction. We tested the feasibility of decoding the experienced mental effort with a multimodal machine learning architecture. The architecture comprised feature engineering, model optimisation, and model selection to combine multimodal measurements in a cross-subject classification. Our approach reduces possible overfitting and reliably distinguishes two different levels of mental effort. These findings contribute to the prediction of different states of mental effort and pave the way toward generalised state monitoring across individuals in realistic applications.
Collapse
Affiliation(s)
- Sabrina Gado
- Experimental Clinical Psychology, Department of Psychology, Julius-Maximilians-University of Würzburg, 97070 Würzburg, Germany
| | - Katharina Lingelbach
- Applied Neurocognitive Systems, Fraunhofer Institute for Industrial Engineering IAO, 70569 Stuttgart, Germany
- Applied Neurocognitive Psychology Lab, Department of Psychology, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Maria Wirzberger
- Department of Teaching and Learning with Intelligent Systems, University of Stuttgart, 70174 Stuttgart, Germany
- LEAD Graduate School & Research Network, University of Tübingen, 72072 Tübingen, Germany
| | - Mathias Vukelić
- Applied Neurocognitive Systems, Fraunhofer Institute for Industrial Engineering IAO, 70569 Stuttgart, Germany
| |
Collapse
|
23
|
Borodaeva Z, Winkler S, Brade J, Klimant P, Jahn G. Spatial updating in virtual reality for reproducing object locations in vista space-Boundaries, landmarks, and idiothetic cues. Front Psychol 2023; 14:1144861. [PMID: 37425154 PMCID: PMC10325663 DOI: 10.3389/fpsyg.2023.1144861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Keeping track of locations across self-motion is possible by continuously updating spatial representations or by encoding and later instantaneously retrieving spatial representations. In virtual reality (VR), sensory cues to self-motion used in continuous updating are typically reduced. In passive translation compared to real walking in VR, optic flow is available but body-based (idiothetic) cues are missing. With both kinds of translation, boundaries and landmarks as static visual cues can be used for instantaneous updating. In two experiments, we let participants encode two target locations, one of which had to be reproduced by pointing after forward translation in immersive VR (HMD). We increased sensory cues to self-motion in comparison to passive translation either by strengthening optic flow or by real walking. Furthermore, we varied static visual cues in the form of boundaries and landmarks inside boundaries. Increased optic flow and real walking did not reliably increase performance suggesting that optic flow even in a sparse environment was sufficient for continuous updating or that merely instantaneous updating took place. Boundaries and landmarks, however, did support performance as quantified by decreased bias and increased precision, particularly if they were close to or even enclosed target locations. Thus, enriched spatial context is a viable method to support spatial updating in VR and synthetic environments (teleoperation). Spatial context does not only provide a static visual reference in offline updating and continuous allocentric self-location updating but also, according to recent neuroscientific evidence on egocentric bearing cells, contributes to continuous egocentric location updating as well.
Collapse
Affiliation(s)
- Zhanna Borodaeva
- Applied Geropsychology and Cognition, Institute of Psychology, Faculty of Behavioural and Social Sciences, Chemnitz University of Technology, Chemnitz, Germany
| | - Sven Winkler
- Production Systems and Processes, Institute for Machine Tools and Production Processes, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
| | - Jennifer Brade
- Production Systems and Processes, Institute for Machine Tools and Production Processes, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
| | - Philipp Klimant
- Production Systems and Processes, Institute for Machine Tools and Production Processes, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
| | - Georg Jahn
- Applied Geropsychology and Cognition, Institute of Psychology, Faculty of Behavioural and Social Sciences, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
24
|
Jonikaitis D, Noudoost B, Moore T. Dissociating the Contributions of Frontal Eye Field Activity to Spatial Working Memory and Motor Preparation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544653. [PMID: 37398433 PMCID: PMC10312624 DOI: 10.1101/2023.06.12.544653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Neurons within dorsolateral prefrontal cortex of primates are characterized by robust persistent spiking activity exhibited during the delay period of working memory tasks. This includes the frontal eye field (FEF) where nearly half of the neurons are active when spatial locations are held in working memory. Past evidence has established the FEF's contribution to the planning and triggering of saccadic eye movements as well as to the control of visual spatial attention. However, it remains unclear if persistent delay activity reflects a similar dual role in movement planning and visuospatial working memory. We trained monkeys to alternate between different forms of a spatial working memory task which could dissociate remembered stimulus locations from planned eye movements. We tested the effects of inactivation of FEF sites on behavioral performance in the different tasks. Consistent with previous studies, FEF inactivation impaired the execution of memory-guided saccades, and impaired performance when remembered locations matched the planned eye movement. In contrast, memory performance was largely unaffected when the remembered location was dissociated from the correct eye movement response. Overall, the inactivation effects demonstrated clear deficits on eye movements, regardless of task type, but little or no evidence of a deficit in spatial working memory. Thus, our results indicate that persistent delay activity in the FEF contributes primarily to the preparation of eye movements and not to spatial working memory.
Collapse
Affiliation(s)
- Donatas Jonikaitis
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA
| |
Collapse
|
25
|
Sambol S, Suleyman E, Scarfo J, Ball M. A true reflection of executive functioning or a representation of task-specific variance? Re-evaluating the unity/diversity framework. Acta Psychol (Amst) 2023; 236:103934. [PMID: 37156119 DOI: 10.1016/j.actpsy.2023.103934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
The unity/diversity framework, originally published by Miyake et al. (2000) has become the most cited model of executive functioning. Consequently, when researchers operationalise executive function (EF) they often exclusively assess the three "core" EFs: updating, shifting, and inhibition. However, rather than core EFs representing domain general cognitive abilities, these three EFs may instead represent specific procedural skills from the overlapping methodologies of the tasks selected. In this study, we conducted a confirmatory factor analysis (CFA) which showed both the traditional three-factor and nested-factor model from the unity/diversity framework failed to reach satisfactory levels of fit. Subsequently, an exploratory factor analysis supported a three-factor model reflecting: an expanded working memory factor, a combined shifting/inhibition factor representing cognitive flexibility, and a factor comprised solely of the Stroop task. These results demonstrate that working memory remains the most robustly operationalised EF construct, whereas shifting and inhibition may represent task-specific mechanisms of a broader domain-general cognitive flexibility factor. Ultimately, there is little evidence to suggest that updating, shifting, and inhibition encapsulates all core EFs. Further research is needed to develop an ecologically valid model of executive functioning that captures the cognitive abilities associated with real world goal-directed behaviour.
Collapse
Affiliation(s)
- Stjepan Sambol
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia.
| | - Emra Suleyman
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - Jessica Scarfo
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - Michelle Ball
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Das A, Menon V. Concurrent- and After-Effects of Medial Temporal Lobe Stimulation on Directed Information Flow to and from Prefrontal and Parietal Cortices during Memory Formation. J Neurosci 2023; 43:3159-3175. [PMID: 36963847 PMCID: PMC10146497 DOI: 10.1523/jneurosci.1728-22.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
Electrical stimulation of the medial temporal lobe (MTL) has the potential to uncover causal circuit mechanisms underlying memory function. However, little is known about how MTL stimulation alters information flow with frontoparietal cortical regions implicated in episodic memory. We used intracranial EEG recordings from humans (14 participants, 10 females) to investigate how MTL stimulation alters directed information flow between MTL and PFC and between MTL and posterior parietal cortex (PPC). Participants performed a verbal episodic memory task during which they were presented with words and asked to recall them after a delay of ∼20 s; 50 Hz stimulation was applied to MTL electrodes on selected trials during memory encoding. Directed information flow was examined using phase transfer entropy. Behaviorally, we observed that MTL stimulation reduced memory recall. MTL stimulation decreased top-down PFC→MTL directed information flow during both memory encoding and subsequent memory recall, revealing aftereffects more than 20 s after end of stimulation. Stimulation suppressed top-down PFC→MTL influences to a greater extent than PPC→MTL. Finally, MTL→PFC information flow on stimulation trials was significantly lower for successful, compared with unsuccessful, memory recall; in contrast, MTL→ventral PPC information flow was higher for successful, compared with unsuccessful, memory recall. Together, these results demonstrate that the effects of MTL stimulation are behaviorally, regionally, and directionally specific, that MTL stimulation selectively impairs directional signaling with PFC, and that causal MTL-ventral PPC circuits support successful memory recall. Findings provide new insights into dynamic casual circuits underling episodic memory and their modulation by MTL stimulation.SIGNIFICANCE STATEMENT The medial temporal lobe (MTL) and its interactions with prefrontal and parietal cortices (PFC and PPC) play a critical role in human memory. Dysfunctional MTL-PFC and MTL-PPC circuits are prominent in psychiatric and neurologic disorders, including Alzheimer's disease and schizophrenia. Brain stimulation has emerged as a potential mechanism for enhancing memory and cognitive functions, but the underlying neurophysiological mechanisms and dynamic causal circuitry underlying bottom-up and top-down signaling involving the MTL are unknown. Here, we use intracranial EEG recordings to investigate the effects of MTL stimulation on causal signaling in key episodic memory circuits linking the MTL with PFC and PPC. Our findings have implications for translational applications aimed at realizing the promise of brain stimulation-based treatment of memory disorders.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences
- Department of Neurology & Neurological Sciences
- Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
27
|
Zhang Y, Ku Y, Sun J, Daskalakis ZJ, Yuan TF. Intermittent theta burst stimulation to the left dorsolateral prefrontal cortex improves working memory of subjects with methamphetamine use disorder. Psychol Med 2023; 53:2427-2436. [PMID: 37310309 DOI: 10.1017/s003329172100430x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation has been employed to treat drug dependence, reduce drug use and improve cognition. The aim of the study was to analyze the effectiveness of intermittent theta-burst stimulation (iTBS) on cognition in individuals with methamphetamine use disorder (MUD). METHODS This was a secondary analysis of 40 MUD subjects receiving left dorsolateral prefrontal cortex (L-DLPFC) iTBS or sham iTBS for 20 times over 10 days (twice-daily). Changes in working memory (WM) accuracy, reaction time, and sensitivity index were analyzed before and after active and sham rTMS treatment. Resting-state EEG was also acquired to identify potential biological changes that may relate to any cognitive improvement. RESULTS The results showed that iTBS increased WM accuracy and discrimination ability, and improved reaction time relative to sham iTBS. iTBS also reduced resting-state delta power over the left prefrontal region. This reduction in resting-state delta power correlated with the changes in WM. CONCLUSIONS Prefrontal iTBS may enhance WM performance in MUD subjects. iTBS induced resting EEG changes raising the possibility that such findings may represent a biological target of iTBS treatment response.
Collapse
Affiliation(s)
- Yi Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yixuan Ku
- Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Junfeng Sun
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Martel M, Glover S. TMS over dorsolateral prefrontal cortex affects the timing of motor imagery but not overt action: Further support for the motor-cognitive model. Behav Brain Res 2023; 437:114125. [PMID: 36167217 DOI: 10.1016/j.bbr.2022.114125] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/08/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
Abstract
The Motor-Cognitive model suggests a functional dissociation between motor imagery and overt action, in contrast to the Functional Equivalence view of common processes between the two behaviours. According to the Motor-Cognitive model, motor imagery differs from overt action primarily through the use of executive resources to monitor and elaborate a motor image during execution, which can result in a lack of correspondence between motor imagery and its overt action counterpart. The present study examined the importance of executive resources in motor imagery by using TMS to impair the function of the dorsolateral prefrontal cortex while measuring the time to complete imagined versus overt actions. In two experiments, TMS over the dorsolateral prefrontal cortex slowed motor imagery but did not affect overt actions. TMS over the same region also interfered with performance of a mental calculation task, though it did not reliably affect less demanding cognitive tasks also thought to rely on executive functions. Taken together, these results were consistent with the Motor-Cognitive model but not with the idea of functional equivalence. The implications of these results for the theoretical understanding of motor imagery, and potential applications of the Motor-Cognitive model to the use of motor imagery in training and rehabilitation, are discussed.
Collapse
Affiliation(s)
- Marie Martel
- Department of Psychology, Royal Holloway University of London, UK.
| | - Scott Glover
- Department of Psychology, Royal Holloway University of London, UK
| |
Collapse
|
29
|
Walshe EA, Roberts TPL, Ward McIntosh C, Winston FK, Romer D, Gaetz W. An event-based magnetoencephalography study of simulated driving: Establishing a novel paradigm to probe the dynamic interplay of executive and motor function. Hum Brain Mapp 2023; 44:2109-2121. [PMID: 36617993 PMCID: PMC9980886 DOI: 10.1002/hbm.26197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/27/2022] [Accepted: 12/10/2022] [Indexed: 01/10/2023] Open
Abstract
Magnetoencephalography (MEG) is particularly well-suited to the study of human motor cortex oscillatory rhythms and motor control. However, the motor tasks studied to date are largely overly simplistic. This study describes a new approach: a novel event-based simulated drive made operational via MEG compatible driving simulator hardware, paired with differential beamformer methods to characterize the neural correlates of realistic, complex motor activity. We scanned 23 healthy individuals aged 16-23 years (mean age = 19.5, SD = 2.5; 18 males and 5 females, all right-handed) who completed a custom-built repeated trials driving scenario. MEG data were recorded with a 275-channel CTF, and a volumetric magnetic resonance imaging scan was used for MEG source localization. To validate this paradigm, we hypothesized that pedal-use would elicit expected modulation of primary motor responses beta-event-related desynchronization (B-ERD) and movement-related gamma synchrony (MRGS). To confirm the added utility of this paradigm, we hypothesized that the driving task could also probe frontal cognitive control responses (specifically, frontal midline theta [FMT]). Three of 23 participants were removed due to excess head motion (>1.5 cm/trial), confirming feasibility. Nonparametric group analysis revealed significant regions of pedal-use related B-ERD activity (at left precentral foot area, as well as bilateral superior parietal lobe: p < .01 corrected), MRGS (at medial precentral gyrus: p < .01 corrected), and FMT band activity sustained around planned braking (at bilateral superior frontal gyrus: p < .01 corrected). This paradigm overcomes the limits of previous efforts by allowing for characterization of the neural correlates of realistic, complex motor activity in terms of brain regions, frequency bands and their dynamic temporal interplay.
Collapse
Affiliation(s)
- Elizabeth A. Walshe
- Center for Injury Research and PreventionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Timothy P. L. Roberts
- Center for Injury Research and PreventionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Lurie Family Foundations' MEG Imaging Center, Department of RadiologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Department of RadiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Chelsea Ward McIntosh
- Center for Injury Research and PreventionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Flaura K. Winston
- Center for Injury Research and PreventionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Department of RadiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA,Department of PediatricsPerelamn School of Medicine, University of PennysylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dan Romer
- Annenberg Public Policy CenterUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - William Gaetz
- Center for Injury Research and PreventionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Lurie Family Foundations' MEG Imaging Center, Department of RadiologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Department of RadiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
30
|
Cihak HL, Eissa TL, Kilpatrick ZP. Distinct Excitatory and Inhibitory Bump Wandering in a Stochastic Neural Field. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS 2022; 21:2579-2609. [PMID: 38250343 PMCID: PMC10798676 DOI: 10.1137/22m1482329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Localized persistent cortical neural activity is a validated neural substrate of parametric working memory. Such activity "bumps" represent the continuous location of a cue over several seconds. Pyramidal (excitatory (E )) and interneuronal (inhibitory (I )) subpopulations exhibit tuned bumps of activity, linking neural dynamics to behavioral inaccuracies observed in memory recall. However, many bump attractor models collapse these subpopulations into a single joint E /I (lateral inhibitory) population and do not consider the role of interpopulation neural architecture and noise correlations. Both factors have a high potential to impinge upon the stochastic dynamics of these bumps, ultimately shaping behavioral response variance. In our study, we consider a neural field model with separate E /I populations and leverage asymptotic analysis to derive a nonlinear Langevin system describing E /I bump interactions. While the E bump attracts the I bump, the I bump stabilizes but can also repel the E bump, which can result in prolonged relaxation dynamics when both bumps are perturbed. Furthermore, the structure of noise correlations within and between subpopulations strongly shapes the variance in bump position. Surprisingly, higher interpopulation correlations reduce variance.
Collapse
Affiliation(s)
- Heather L Cihak
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO 80309 USA
| | - Tahra L Eissa
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO 80309 USA
| | - Zachary P Kilpatrick
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO 80309 USA
| |
Collapse
|
31
|
Loyola-Navarro R, Moënne-Loccoz C, Vergara RC, Hyafil A, Aboitiz F, Maldonado PE. Voluntary self-initiation of the stimuli onset improves working memory and accelerates visual and attentional processing. Heliyon 2022; 8:e12215. [PMID: 36578387 PMCID: PMC9791366 DOI: 10.1016/j.heliyon.2022.e12215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/25/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The ability of an organism to voluntarily control the stimuli onset modulates perceptual and attentional functions. Since stimulus encoding is an essential component of working memory (WM), we conjectured that controlling the initiation of the perceptual process would positively modulate WM. To corroborate this proposition, we tested twenty-five healthy subjects in a modified-Sternberg WM task under three stimuli presentation conditions: an automatic presentation of the stimuli, a self-initiated presentation of the stimuli (through a button press), and a self-initiated presentation with random-delay stimuli onset. Concurrently, we recorded the subjects' electroencephalographic signals during WM encoding. We found that the self-initiated condition was associated with better WM accuracy, and earlier latencies of N1, P2 and P3 evoked potential components representing visual, attentional and mental review of the stimuli processes, respectively. Our work demonstrates that self-initiated stimuli enhance WM performance and accelerate early visual and attentional processes deployed during WM encoding. We also found that self-initiated stimuli correlate with an increased attentional state compared to the other two conditions, suggesting a role for temporal stimuli predictability. Our study remarks on the relevance of self-control of the stimuli onset in sensory, attentional and memory updating processing for WM.
Collapse
Affiliation(s)
- Rocio Loyola-Navarro
- Departamento de Neurociencia, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Departamento de Educación Diferencial, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Center for Advanced Research in Education, Institute of Education, Universidad de Chile, Santiago, Chile
| | - Cristóbal Moënne-Loccoz
- Departamento de Ciencias de la Salud, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro Nacional de Inteligencia Artificial (CENIA), Santiago, Chile
| | - Rodrigo C. Vergara
- Departamento de Kinesiología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Centro Nacional de Inteligencia Artificial (CENIA), Santiago, Chile
- Centro de Investigación en Educación, Universidad Metropolitana de Ciencias de la Educación (CIE-UMCE), Santiago, Chile
| | | | - Francisco Aboitiz
- Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro E. Maldonado
- Departamento de Neurociencia, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Centro Nacional de Inteligencia Artificial (CENIA), Santiago, Chile
| |
Collapse
|
32
|
Liu CY, Tao R, Qin L, Matthews S, Siok WT. Functional connectivity during orthographic, phonological, and semantic processing of Chinese characters identifies distinct visuospatial and phonosemantic networks. Hum Brain Mapp 2022; 43:5066-5080. [PMID: 36097409 PMCID: PMC9582368 DOI: 10.1002/hbm.26075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/22/2022] [Accepted: 08/14/2022] [Indexed: 11/12/2022] Open
Abstract
While neuroimaging studies have identified brain regions associated with single word reading, its three constituents, namely, orthography, phonology, and meaning, and the functional connectivity of their networks remain underexplored. This study examined the neurocognitive underpinnings of these neural activations and functional connectivity of the identified brain regions using a within-subject design. Thirty-one native Mandarin speakers performed orthographic, phonological, and semantic judgment tasks during functional magnetic resonance imaging. The results indicated that the three processes shared a core network consisting of a large region in the left prefrontal cortex, fusiform gyrus, and medial superior frontal gyrus but not the superior temporal gyrus. Orthographic processing more strongly recruited the left dorsolateral prefrontal cortex, left superior parietal lobule and bilateral fusiform gyri; semantic processing more strongly recruited the left inferior frontal gyrus and left middle temporal gyrus, whereas phonological processing more strongly activated the dorsal part of the precentral gyrus. Functional connectivity analysis identified a posterior visuospatial network and a frontal phonosemantic network interfaced by the left middle frontal gyrus. We conclude that reading Chinese recruits cognitive resources that correspond to basic task demands with unique features best explained in connection with the individual reading subprocesses.
Collapse
Affiliation(s)
- Chun Yin Liu
- Department of LinguisticsThe University of Hong KongHong Kong SARChina
| | - Ran Tao
- Department of LinguisticsThe University of Hong KongHong Kong SARChina
- Research Centre for Language, Cognition, and Neuroscience, Department of Chinese and Bilingual StudiesThe Hong Kong Polytechnic UniversityHong Kong SARChina
| | - Lang Qin
- Department of LinguisticsThe University of Hong KongHong Kong SARChina
- Center for MRI Research, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Stephen Matthews
- Department of LinguisticsThe University of Hong KongHong Kong SARChina
| | - Wai Ting Siok
- Department of LinguisticsThe University of Hong KongHong Kong SARChina
| |
Collapse
|
33
|
The depth of executive function: Depth information aids executive function under challenging task conditions. Atten Percept Psychophys 2022; 84:2060-2073. [PMID: 35676553 DOI: 10.3758/s13414-022-02504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 11/08/2022]
Abstract
The present studies investigated how three core aspects of executive functioning may be influenced by the presence of depth information. Specifically, participants were assigned to one of three executive functioning tasks: working memory (i.e., a change detection task), selective attention (i.e., a visual search task), or inhibitory control (i.e., a flanker task). For all three tasks, participants completed trials where the items in the display were presented either all in one depth plane or the target item was isolated in depth. For the working memory and selective attention tasks, there was an additional condition where items were evenly distributed across two depth planes. Each task also had multiple levels of difficulty to explore if task conditions influence the effect of depth information. Results indicated that although depth information can improve both working memory and selective attention performance, this benefit is specific to the task difficulty and depth information can even hinder performance under certain circumstances. Depth information did not appear to influence inhibitory control performance. Future work is required to investigate if depth can improve inhibitory control performance, and how/what task conditions influence the benefit of depth information. Until further research is completed, researchers and designers should be cautious when implementing multidimensional (3D) displays, as it remains unclear if the performance benefits of including depth information outweigh the present costs.
Collapse
|
34
|
Low SC, Verschure PFMJ, Santos-Pata D. Saccade rate is associated with recall of items in working memory. Learn Mem 2022; 29:146-154. [PMID: 35589337 DOI: 10.1101/lm.053522.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 04/25/2022] [Indexed: 11/24/2022]
Abstract
Working memory has been shown to rely on theta oscillations' phase synchronicity for item encoding and recall. At the same time, saccadic eye movements during visual exploration have been observed to trigger theta-phase resets, raising the question of whether the neuronal substrates of mnemonic processing rely on motor-evoked responses. To quantify the relationship between saccades and working memory load, we recorded eye tracking and behavioral data from human participants simultaneously performing an n-back Sternberg auditory task and a hue-based catch detection task. In addition to task-specific interference in performance, we also found that saccade rate was modulated by working memory load in the Sternberg task's preresponse stage. Our results support the possibility of interplay between saccades and hippocampal theta during working memory retrieval of items.
Collapse
Affiliation(s)
- Sock Ching Low
- Synthetic, Perceptive, Emotive, and Cognitive Systems (SPECS), Barcelona 08930, Spain.,Institute of Bioengineering of Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Paul F M J Verschure
- Synthetic, Perceptive, Emotive, and Cognitive Systems (SPECS), Barcelona 08930, Spain.,Institute of Bioengineering of Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Diogo Santos-Pata
- Synthetic, Perceptive, Emotive, and Cognitive Systems (SPECS), Barcelona 08930, Spain.,Institute of Bioengineering of Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| |
Collapse
|
35
|
Bertaccini R, Ellena G, Macedo-Pascual J, Carusi F, Trajkovic J, Poch C, Romei V. Parietal Alpha Oscillatory Peak Frequency Mediates the Effect of Practice on Visuospatial Working Memory Performance. Vision (Basel) 2022; 6:vision6020030. [PMID: 35737417 PMCID: PMC9230002 DOI: 10.3390/vision6020030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
Visuospatial working memory (WM) requires the activity of a spread network, including right parietal regions, to sustain storage capacity, attentional deployment, and active manipulation of information. Notably, while the electrophysiological correlates of such regions have been explored using many different indices, evidence for a functional involvement of the individual frequency peaks in the alpha (IAF) and theta bands (ITF) is still poor despite their relevance in many influential theories regarding WM. Interestingly, there is also a parallel lack of literature about the effect of short-term practice on WM performance. Here, we aim to clarify whether the simple repetition of a change-detection task might be beneficial to WM performance and to which degree these effects could be predicted by IAF and ITF. For this purpose, 25 healthy participants performed a change-detection task at baseline and in a retest session, while IAF and ITF were also measured. Results show that task repetition improves WM performance. In addition, right parietal IAF, but not ITF, accounts for performance gain such that faster IAF predicts higher performance gain. Our findings align with recent literature suggesting that the faster the posterior alpha, the finer the perceptual sampling rate, and the higher the WM performance gain.
Collapse
Affiliation(s)
- Riccardo Bertaccini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, 47521 Cesena, Italy; (R.B.); (G.E.); (J.M.-P.); (F.C.); (J.T.)
| | - Giulia Ellena
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, 47521 Cesena, Italy; (R.B.); (G.E.); (J.M.-P.); (F.C.); (J.T.)
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Joaquin Macedo-Pascual
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, 47521 Cesena, Italy; (R.B.); (G.E.); (J.M.-P.); (F.C.); (J.T.)
- Departamento de Psicología Experimental, Procesos Cognitivos y Logopedia, Universidad Complutense de Madrid, 28223 Madrid, Spain
| | - Fabrizio Carusi
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, 47521 Cesena, Italy; (R.B.); (G.E.); (J.M.-P.); (F.C.); (J.T.)
| | - Jelena Trajkovic
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, 47521 Cesena, Italy; (R.B.); (G.E.); (J.M.-P.); (F.C.); (J.T.)
| | - Claudia Poch
- Departamento de Educación, Universidad de Nebrija, 28015 Madrid, Spain;
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, 47521 Cesena, Italy; (R.B.); (G.E.); (J.M.-P.); (F.C.); (J.T.)
- IRCCS Fondazione Santa Lucia, Via Ardeatina, 306/354, 00179 Roma, Italy
- Correspondence:
| |
Collapse
|
36
|
Zhang J, Wu D, Yang H, Lu H, Ji Y, Liu H, Zang Z, Lu J, Sun W. Correlations Between Structural Brain Abnormalities, Cognition and Electroclinical Characteristics in Patients With Juvenile Myoclonic Epilepsy. Front Neurol 2022; 13:883078. [PMID: 35651335 PMCID: PMC9149597 DOI: 10.3389/fneur.2022.883078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the structural brain abnormality and its relationship with neuropsychological disorders and electroclinical characteristics in juvenile myoclonic epilepsy (JME) patients. Methods Sixty-seven patients diagnosed with JME and 56 healthy controls were enrolled. All subjects underwent MRI using T1-weighted 3D brain structural images with 1 mm thickness. Voxel-based morphometry (VBM) and surface-based morphometry (SBM) analyses were performed. They also underwent a series of neuropsychological tests to assess cognitive function. The correlation analyses were conducted between structural changes, neuropsychological outcomes, and electroclinical features. Results The gray matter concentration (GMC) was decreased in the bilateral pre-central and post-central gyrus, right anterior cingulate gyrus, left posterior orbital region, bilateral occipital regions, bilateral hippocampus and bilateral caudate nucleus in the JME groups (corrected P < 0.05). The evaluation of gray matter volume (GMV) showed significant decrease respectively in bilateral pre-central and post-central gyrus, left paracentral lobule, left orbital gyrus, left amygdala, left basal ganglia and left thalamus of JME patients (P < 0.05). The cortex thicknesses of the right inferior temporal gyrus, right insular gyrus, and right cingulate gyrus had negative correlations with the disease duration significantly. At the same time, the whole-brain white matter volume was positively associated with the course of the disease (P < 0.05). Patients with persistent abnormal EEG discharges had significantly less whole-brain gray matter volume than JME patients with normal EEG (P = 0.03). Correlation analyses and linear regression analyses showed that, in addition to the gray matter volumes of frontal and parietal lobe, the temporal lobe, as well as the basal ganglia and thalamus, were also significantly correlated with neuropsychological tests' results (P < 0.05). Conclusion The JME patients showed subtle structural abnormalities in multiple brain regions that were not only limited to the frontal lobe but also included the thalamus, basal ganglia, parietal lobe, temporal lobe and some occipital cortex, with significant involvement of the primary somatosensory cortex and primary motor cortex. And we significantly demonstrated a correlation between structural abnormalities and cognitive impairment. In addition, the course of disease and abnormal discharges had a specific negative correlation with the structural changes.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Dan Wu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Haoran Yang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Hongjuan Lu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yichen Ji
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Huixin Liu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Zhenxiang Zang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Sun
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Purg N, Starc M, Slana Ozimič A, Kraljič A, Matkovič A, Repovš G. Neural Evidence for Different Types of Position Coding Strategies in Spatial Working Memory. Front Hum Neurosci 2022; 16:821545. [PMID: 35517989 PMCID: PMC9067305 DOI: 10.3389/fnhum.2022.821545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Sustained neural activity during the delay phase of spatial working memory tasks is compelling evidence for the neural correlate of active storage and maintenance of spatial information, however, it does not provide insight into specific mechanisms of spatial coding. This activity may reflect a range of processes, such as maintenance of a stimulus position or a prepared motor response plan. The aim of our study was to examine neural evidence for the use of different coding strategies, depending on the characteristics and demands of a spatial working memory task. Thirty-one (20 women, 23 ± 5 years) and 44 (23 women, 21 ± 2 years) participants performed a spatial working memory task while we measured their brain activity using fMRI in two separate experiments. Participants were asked to remember the position of a briefly presented target stimulus and, after a delay period, to use a joystick to indicate either the position of the remembered target or an indicated non-matching location. The task was designed so that the predictability of the response could be manipulated independently of task difficulty and memory retrieval process. We were particularly interested in contrasting conditions in which participants (i) could use prospective coding of the motor response or (ii) had to rely on retrospective sensory information. Prospective motor coding was associated with activity in somatomotor, premotor, and motor cortices and increased integration of brain activity with and within the somatomotor network. In contrast, retrospective sensory coding was associated with increased activity in parietal regions and increased functional connectivity with and within secondary visual and dorsal attentional networks. The observed differences in activation levels, dynamics of differences over trial duration, and integration of information within and between brain networks provide compelling evidence for the use of complementary spatial working memory strategies optimized to meet task demands.
Collapse
Affiliation(s)
- Nina Purg
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Nina Purg
| | - Martina Starc
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Anka Slana Ozimič
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Aleksij Kraljič
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Andraž Matkovič
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Grega Repovš
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
38
|
Mallett R, Lorenc ES, Lewis-Peacock JA. Working Memory Swap Errors Have Identifiable Neural Representations. J Cogn Neurosci 2022; 34:776-786. [PMID: 35171256 PMCID: PMC11126154 DOI: 10.1162/jocn_a_01831] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Working memory is an essential component of cognition that facilitates goal-directed behavior. Famously, it is severely limited and performance suffers when memory load exceeds an individual's capacity. Modeling of visual working memory responses has identified two likely types of errors: guesses and swaps. Swap errors may arise from a misbinding between the features of different items. Alternatively, these errors could arise from memory noise in the feature dimension used for cueing a to-be-tested memory item, resulting in the wrong item being selected. Finally, it is possible that so-called swap errors actually reflect informed guessing, which could occur at the time of a cue, or alternatively, at the time of the response. Here, we combined behavioral response modeling and fMRI pattern analysis to test the hypothesis that swap errors involve the active maintenance of an incorrect memory item. After the encoding of six spatial locations, a retro-cue indicated which location would be tested after memory retention. On accurate trials, we could reconstruct a memory representation of the cued location in both early visual cortex and intraparietal sulcus. On swap error trials identified with mixture modeling, we were able to reconstruct a representation of the swapped location, but not of the cued location, suggesting the maintenance of the incorrect memory item before response. Moreover, participants subjectively responded with some level of confidence, rather than complete guessing, on a majority of swap error trials. Together, these results suggest that swap errors are not mere response-phase guesses, but instead result from failures of selection in working memory, contextual binding errors, or informed guesses, which produce active maintenance of incorrect memory representations.
Collapse
|
39
|
Yang P, Wang M, Luo C, Ni X, Li L. Dissociable causal roles of the frontal and parietal cortices in the effect of object location on object identity detection: a TMS study. Exp Brain Res 2022; 240:1445-1457. [PMID: 35301574 DOI: 10.1007/s00221-022-06344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
Abstract
According to the spatial congruency advantage, individuals exhibit higher accuracy and shorter reaction times during the visual working memory (VWM) task when VWM test stimuli appear in spatially congruent locations, relative to spatially incongruent locations, during the encoding phase. Functional magnetic resonance imaging studies have revealed changes in right inferior frontal gyrus (rIFG) and right supra-marginal gyrus (rSMG) activity as a function of object location stability. Nevertheless, it remains unclear whether these regions play a role in active object location repositioning or passive early perception of object location stability, and demonstrations of causality are lacking. In this study, we adopted an object identity change-detection task, involving a short train of 10-Hz online repetitive transcranial magnetic stimulations (rTMS) applied at the rIFG or rSMG concurrently with the onset of VWM test stimuli. In two experimental cohorts, we observed an improved accuracy in spatially incongruent high VWM load conditions when the 10 Hz-rTMS was applied at the rIFG compared with that in TMS control conditions, whereas these modulatory effects were not observed for the rSMG. Our results suggest that the rIFG and rSMG play dissociable roles in the spatial congruency effect, whereby the rIFG is engaged in active object location repositioning, while the rSMG is engaged in passive early perception of object location stability.
Collapse
Affiliation(s)
- Ping Yang
- Key Laboratory of Basic Psychological and Cognitive Neuroscience, School of Psychology, Guizhou Normal University, Guiyang, 550025, China.,Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Min Wang
- Bioinformatics and BioMedical Bigdata Mining Laboratory, School of Big Health, Guizhou Medical University, Guiyang, 550004, China
| | - Cimei Luo
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xuejin Ni
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ling Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
40
|
Tassi E, Boscutti A, Mandolini GM, Moltrasio C, Delvecchio G, Brambilla P. A scoping review of near infrared spectroscopy studies employing a verbal fluency task in bipolar disorder. J Affect Disord 2022; 298:604-617. [PMID: 34780861 DOI: 10.1016/j.jad.2021.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Deficits in cognitive functioning, including attention, memory, and executive functions, along with impairments in language production, are present in patients with bipolar disorder (BD) patients during mood phases, but also during euthymia.Verbal fluency tasks (VFTs), being able to evaluate integrity of a wide range of cognitive domains and represent, can be used to screen for these disturbances. Neuroimaging studies, including Near-InfraRed Spectroscopy (NIRS), have repeatedly showed widespread alterations in the prefrontal and temporal cortex during the performance of VFTs in BD patients. This review aims to summarize the results of NIRS studies that evaluated hemodynamic responses associated with the VFTs in prefrontal and temporal regions in BD patients. METHODS We performed a scoping review of studies evaluating VFT-induced activation in prefrontal and temporal regions in BD patients, and the relationship between NIRS data and various clinical variables. RESULTS 15 studies met the inclusion criteria. In BD patients, compared to healthy controls, NIRS studies showed hypoactivation of the dorsolateral prefrontal cortex, ventrolateral prefrontal cortex and anterior temporal regions. Moreover, clinical variables, such as depressive and social adaptation scores, were negatively correlated with hemodynamic responses in prefrontal and temporal regions, while a positive correlation were reported for measures of manic symptoms and impulsivity. LIMITATIONS The heterogeneity of the studies in terms of methodology, study design and clinical characteristics of the samples limited the comparability of the findings. CONCLUSIONS Given its non-invasiveness, good time-resolution and no need of posturalconstraint, NIRS technique could represent a useful tool for the evaluation of prefrontal and temporal haemodynamic correlates of cognitive performances in BD patients.
Collapse
Affiliation(s)
- Emma Tassi
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, via F. Sforza 35, Milan 20122, Italy
| | - Andrea Boscutti
- Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Gian Mario Mandolini
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, via F. Sforza 35, Milan 20122, Italy
| | - Chiara Moltrasio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, via F. Sforza 35, Milan 20122, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, via F. Sforza 35, Milan 20122, Italy.
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, via F. Sforza 35, Milan 20122, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| |
Collapse
|
41
|
Cojan Y, Saj A, Vuilleumier P. Brain Substrates for Distinct Spatial Processing Components Contributing to Hemineglect in Humans. Brain Sci 2021; 11:brainsci11121584. [PMID: 34942886 PMCID: PMC8699043 DOI: 10.3390/brainsci11121584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/06/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
Several cortical and sub-cortical regions in the right hemisphere, particularly in parietal and frontal lobe, but also in temporal lobe and thalamus, are part of neural networks critically implicated in spatial and attentional functions. Damage to different sites within these networks can cause hemispatial neglect. The aim of this study was to identify the neural substrates of different spatial processing components that are known to contribute to neglect symptoms. First, three different spatial tasks (visual search, bisection, and visual memory) were tested in 27 patients with focal right brain-damage. Voxel-based lesion-symptom mapping was used to determine the relationships between specific sites of damage and severity of deficits in these three spatial tasks. Secondly, fMRI was used in 26 healthy controls who performed the same tasks. In the healthy group, fMRI results showed a differential activation of regions within the parietal and frontal lobes during bisection and visual search, respectively. In the patients, we confirmed a critical role of right lateral parietal cortex in bisection, but lesions in frontal and temporal lobe were more critical for visual search. These data support the existence of distinct components in spatial attentional processes that might be damaged to different degrees in neglect patients.
Collapse
Affiliation(s)
- Yann Cojan
- Laboratory for Behavioral Neurology and Imaging of Cognition, Neuroscience Department, University of Geneva, 1211 Geneva, Switzerland; (A.S.); (P.V.)
- CRIR/Institut Nazareth et Louis-Braille du CISSS de la Montérégie-Centre, Longueuil, QC J4K 5G4, Canada
- Correspondence:
| | - Arnaud Saj
- Laboratory for Behavioral Neurology and Imaging of Cognition, Neuroscience Department, University of Geneva, 1211 Geneva, Switzerland; (A.S.); (P.V.)
- CRIR/Institut Nazareth et Louis-Braille du CISSS de la Montérégie-Centre, Longueuil, QC J4K 5G4, Canada
- Department of Psychology, University of Montréal, Montréal, QC H3A 1G1, Canada
- Neurology Department, Neuropsychology Unit, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Patrik Vuilleumier
- Laboratory for Behavioral Neurology and Imaging of Cognition, Neuroscience Department, University of Geneva, 1211 Geneva, Switzerland; (A.S.); (P.V.)
| |
Collapse
|
42
|
Paradela RS, Ferreira NV, Nucci MP, Cabella B, Martino LM, Torres LA, Costa DID, Consolim-Colombo FM, Suemoto CK, Irigoyen MC. Relation of a Socioeconomic Index with Cognitive Function and Neuroimaging in Hypertensive Individuals. J Alzheimers Dis 2021; 82:815-826. [PMID: 34092639 DOI: 10.3233/jad-210143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Socioeconomic factors are important contributors to brain health. However, data from developing countries (where social inequalities are the most prominent) are still scarce, particularly about hypertensive individuals. OBJECTIVE To evaluate the relationship between socioeconomic index, cognitive function, and cortical brain volume, as well as determine whether white matter hyperintensities are mediators of the association of the socioeconomic index with cognitive function in hypertensive individuals. METHODS We assessed 92 hypertensive participants (mean age = 58±8.6 years, 65.2%female). Cognitive evaluation and neuroimaging were performed and clinical and sociodemographic data were collected using questionnaires. A socioeconomic index was created using education, income, occupation (manual or non-manual work), and race. The associations of the socioeconomic index with cognitive performance and brain volume were investigated using linear regression models adjusted for age, sex, time of hypertension since diagnosis, and comorbidities. A causal mediation analysis was also conducted. RESULTS Better socioeconomic status was associated with better visuospatial ability, executive function, and global cognition. We found associations between a better socioeconomic index and a higher parietal lobe volume. White matter hyperintensities were also not mediators in the relationship between the socioeconomic index and cognitive performance. CONCLUSION Socioeconomic disadvantages are associated with worse cognitive performance and brain volume in individuals with hypertension.
Collapse
Affiliation(s)
- Regina Silva Paradela
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Naomi Vidal Ferreira
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.,Adventist University of São Paulo, Engenheiro Coelho, SP, Brazil
| | - Mariana Penteado Nucci
- Laboratory of Medical Investigations on Magnetic Resonance Imaging (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Brenno Cabella
- Institute of Theoretical Physics, São Paulo State University (IFT-UNESP), São Paulo, SP, Brazil
| | - Luiza Menoni Martino
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Laura Aló Torres
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Danielle Irigoyen da Costa
- Brain Institute (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | | | - Claudia Kimie Suemoto
- Division of Geriatrics, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Claudia Irigoyen
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
43
|
Zhang A, Zhang L, Wang M, Zhang Y, Jiang F, Jin X, Du X, Ma J. Functional connectivity of thalamus in children with primary nocturnal enuresis: results from a resting-state fMRI study. Brain Imaging Behav 2021; 15:355-363. [PMID: 32125610 DOI: 10.1007/s11682-020-00262-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Primary nocturnal enuresis (PNE) is characterized by a low cure rate and a high reoccurrence rate, since its underlying mechanism remains unclear. Based on the recent studies that thalamus plays an important role in waking up a sleeping person, here we further investigate the functional connectivity (FC) information between thalamus and other brain regions, in order to make better understanding of the PNE's pathogenesis. In this study, we enrolled 30 children diagnosed with PNE and 30 typically developing children that are age and sex matched, the thalamus-based FC estimates were extracted at the resting-state. Experiments showed that for children with PNE, there were four brain regions found with a reduced connection efficiency with thalamus, that were cerebellum posterior lobe, frontal lobe, parietal lobe and precentral gyrus. It can be concluded that these relevant regions might induce an arousal disorder, and therefore further lead to PNE. This finding also provides a new insight in the pathophysiology of PNE.
Collapse
Affiliation(s)
- Anyi Zhang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong-Fang Road, 200127, Shanghai, People's Republic of China.,Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lichi Zhang
- Institute for Medical Imaging Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Mengxing Wang
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, 3663 North Zhong-Shan Road, Shanghai, 200062, China
| | - Yiwen Zhang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong-Fang Road, 200127, Shanghai, People's Republic of China.,Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Jiang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong-Fang Road, 200127, Shanghai, People's Republic of China.,Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingming Jin
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong-Fang Road, 200127, Shanghai, People's Republic of China.,Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxia Du
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, 3663 North Zhong-Shan Road, Shanghai, 200062, China.
| | - Jun Ma
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong-Fang Road, 200127, Shanghai, People's Republic of China. .,Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
44
|
Hu H, Chen J, Huang H, Zhou C, Zhang S, Liu X, Wang L, Chen P, Nie K, Chen L, Wang S, Huang B, Huang R. Common and specific altered amplitude of low-frequency fluctuations in Parkinson's disease patients with and without freezing of gait in different frequency bands. Brain Imaging Behav 2021; 14:857-868. [PMID: 30666566 DOI: 10.1007/s11682-018-0031-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Freezing of gait (FOG), a disabling symptom of Parkinson's disease (PD), severely affects PD patients' life quality. Previous studies found neuropathologies in functional connectivity related to FOG, but few studies detected abnormal regional activities related to FOG in PD patients. In the present study, we analyzed the amplitude of low-frequency fluctuations (ALFF) to detect brain regions showing abnormal activity in PD patients with FOG (PD-with-FOG) and without FOG (PD-without-FOG). As different frequencies of neural oscillations in brain may reflect distinct brain functional and physiological properties, we conducted this study in three frequency bands, slow-5 (0.01-0.027 Hz), slow-4 (0.027-0.073 Hz), and classical frequency band (0.01-0.08 Hz). We acquired rs-fMRI data from 18 PD-with-FOG patients, 18 PD-without-FOG patients, and 17 healthy controls, then calculated voxel-wise ALFF across the whole brain and compared ALFF among the three groups in each frequency band. We found: (1) in slow-5, both PD-with-FOG and PD-without-FOG patients showed lower ALFF in the bilateral putamen compared to healthy controls, (2) in slow-4, PD-with-FOG patients showed higher ALFF in left inferior temporal gyrus (ITG) and lower ALFF in right middle frontal gyrus (MFG) compared to either PD-without-FOG patients or healthy controls, (3) in classical frequency band, PD-with-FOG patients also showed higher ALFF in ITG compared to either PD-without-FOG patients or healthy controls. Furthermore, we found that ALFF in MFG and ITG in slow-4 provided the highest classification accuracy (96.7%) in distinguishing PD-with-FOG from PD-without-FOG patients by using a stepwise multivariate pattern analysis. Our findings indicated frequency-specific regional spontaneous neural activity related to FOG, which may help to elucidate the pathogenesis of FOG.
Collapse
Affiliation(s)
- Huiqing Hu
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jingwu Chen
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, 510030, People's Republic of China
| | - Huiyuan Huang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Caihong Zhou
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, 510030, People's Republic of China
| | - Shufei Zhang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Xian Liu
- Department of Radiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510030, People's Republic of China
| | - Lijuan Wang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, People's Republic of China
| | - Ping Chen
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Kun Nie
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, People's Republic of China
| | - Lixiang Chen
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Shuai Wang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Biao Huang
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, 510030, People's Republic of China.
| | - Ruiwang Huang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China.
| |
Collapse
|
45
|
Nakajima R, Kinoshita M, Shinohara H, Nakada M. The superior longitudinal fascicle: reconsidering the fronto-parietal neural network based on anatomy and function. Brain Imaging Behav 2021; 14:2817-2830. [PMID: 31468374 DOI: 10.1007/s11682-019-00187-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Due primarily to the extensive disposition of fibers and secondarily to the methodological preferences of researchers, the superior longitudinal fasciculus (SLF) subdivisions have multiple names, complicating SLF research. Here, we collected and reassessed existing knowledge regarding the SLF, which we used to propose a four-term classification of the SLF based mainly on function: dorsal SLF, ventral SLF, posterior SLF, and arcuate fasciculus (AF); these correspond to the traditional SLF II, SLF III or anterior AF, temporoparietal segment of the SLF or posterior AF, and AF or AF long segment, respectively. Each segment has a distinct functional role. The dorsal SLF is involved in visuospatial attention and motor control, while the ventral SLF is associated with language-related networks, auditory comprehension, and articulatory processing in the left hemisphere. The posterior SLF is involved in language-related processing, including auditory comprehension, reading, and lexical access, while the AF is associated with language-related activities, such as phonological processing; the right AF plays a role in social cognition and visuospatial attention. This simple proposed classification permits a better understanding of the SLF and may comprise a convenient classification for use in research and clinical practice relating to brain function.
Collapse
Affiliation(s)
- Riho Nakajima
- Department of Occupational therapy, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | | | - Mitsutoshi Nakada
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| |
Collapse
|
46
|
The Neurophysiological Basis of the Trial-Wise and Cumulative Ventriloquism Aftereffects. J Neurosci 2021; 41:1068-1079. [PMID: 33273069 PMCID: PMC7880291 DOI: 10.1523/jneurosci.2091-20.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/12/2020] [Accepted: 11/08/2020] [Indexed: 01/23/2023] Open
Abstract
Our senses often receive conflicting multisensory information, which our brain reconciles by adaptive recalibration. A classic example is the ventriloquism aftereffect, which emerges following both cumulative (long-term) and trial-wise exposure to spatially discrepant multisensory stimuli. Despite the importance of such adaptive mechanisms for interacting with environments that change over multiple timescales, it remains debated whether the ventriloquism aftereffects observed following trial-wise and cumulative exposure arise from the same neurophysiological substrate. We address this question by probing electroencephalography recordings from healthy humans (both sexes) for processes predictive of the aftereffect biases following the exposure to spatially offset audiovisual stimuli. Our results support the hypothesis that discrepant multisensory evidence shapes aftereffects on distinct timescales via common neurophysiological processes reflecting sensory inference and memory in parietal-occipital regions, while the cumulative exposure to consistent discrepancies additionally recruits prefrontal processes. During the subsequent unisensory trial, both trial-wise and cumulative exposure bias the encoding of the acoustic information, but do so distinctly. Our results posit a central role of parietal regions in shaping multisensory spatial recalibration, suggest that frontal regions consolidate the behavioral bias for persistent multisensory discrepancies, but also show that the trial-wise and cumulative exposure bias sound position encoding via distinct neurophysiological processes. SIGNIFICANCE STATEMENT Our brain easily reconciles conflicting multisensory information, such as seeing an actress on screen while hearing her voice over headphones. These adaptive mechanisms exert a persistent influence on the perception of subsequent unisensory stimuli, known as the ventriloquism aftereffect. While this aftereffect emerges following trial-wise or cumulative exposure to multisensory discrepancies, it remained unclear whether both arise from a common neural substrate. We here rephrase this hypothesis using human electroencephalography recordings. Our data suggest that parietal regions involved in multisensory and spatial memory mediate the aftereffect following both trial-wise and cumulative adaptation, but also show that additional and distinct processes are involved in consolidating and implementing the aftereffect following prolonged exposure.
Collapse
|
47
|
Park H, Kayser C. Robust spatial ventriloquism effect and trial-by-trial aftereffect under memory interference. Sci Rep 2020; 10:20826. [PMID: 33257687 PMCID: PMC7705722 DOI: 10.1038/s41598-020-77730-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2020] [Indexed: 11/21/2022] Open
Abstract
Our brain adapts to discrepancies in the sensory inputs. One example is provided by the ventriloquism effect, experienced when the sight and sound of an object are displaced. Here the discrepant multisensory stimuli not only result in a biased localization of the sound, but also recalibrate the perception of subsequent unisensory acoustic information in the so-called ventriloquism aftereffect. This aftereffect has been linked to memory-related processes based on its parallels to general sequential effects in perceptual decision making experiments and insights obtained in neuroimaging studies. For example, we have recently implied memory-related medial parietal regions in the trial-by-trial ventriloquism aftereffect. Here, we tested the hypothesis that the trial-by-trial (or immediate) ventriloquism aftereffect is indeed susceptible to manipulations interfering with working memory. Across three experiments we systematically manipulated the temporal delays between stimuli and response for either the ventriloquism or the aftereffect trials, or added a sensory-motor masking trial in between. Our data reveal no significant impact of either of these manipulations on the aftereffect, suggesting that the recalibration reflected by the trial-by-trial ventriloquism aftereffect is surprisingly resilient to manipulations interfering with memory-related processes.
Collapse
Affiliation(s)
- Hame Park
- Department for Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Inspiration 1, 33615, Bielefeld, Germany.
| | - Christoph Kayser
- Department for Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Inspiration 1, 33615, Bielefeld, Germany.
| |
Collapse
|
48
|
Rovio SP, Pihlman J, Pahkala K, Juonala M, Magnussen CG, Pitkänen N, Ahola-Olli A, Salo P, Kähönen M, Hutri-Kähönen N, Lehtimäki T, Jokinen E, Laitinen T, Taittonen L, Tossavainen P, Viikari JSA, Raitakari OT. Childhood Exposure to Parental Smoking and Midlife Cognitive Function. Am J Epidemiol 2020; 189:1280-1291. [PMID: 32242223 DOI: 10.1093/aje/kwaa052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/23/2020] [Indexed: 11/14/2022] Open
Abstract
We studied whether exposure to parental smoking in childhood/adolescence is associated with midlife cognitive function, leveraging data from the Cardiovascular Risk in Young Finns Study. A population-based cohort of 3,596 children/adolescents aged 3-18 years was followed between 1980 and 2011. In 2011, cognitive testing was performed on 2,026 participants aged 34-49 years using computerized testing. Measures of secondhand smoke exposure in childhood/adolescence consisted of parental self-reports of smoking and participants' serum cotinine levels. Participants were classified into 3 exposure groups: 1) no exposure (nonsmoking parents, cotinine <1.0 ng/mL); 2) hygienic parental smoking (1-2 smoking parents, cotinine <1.0 ng/mL); and 3) nonhygienic parental smoking (1-2 smoking parents, cotinine ≥1.0 ng/mL). Analyses adjusted for sex, age, family socioeconomic status, polygenic risk score for cognitive function, adolescent/adult smoking, blood pressure, and serum total cholesterol level. Compared with the nonexposed, participants exposed to nonhygienic parental smoking were at higher risk of poor (lowest quartile) midlife episodic memory and associative learning (relative risk (RR) = 1.38, 95% confidence interval (CI): 1.08, 1.75), and a weak association was found for short-term and spatial working memory (RR = 1.25, 95% CI: 0.98, 1.58). Associations for those exposed to hygienic parental smoking were nonsignificant (episodic memory and associative learning: RR = 1.19, 95% CI: 0.92, 1.54; short-term and spatial working memory: RR = 1.10, 95% CI: 0.85, 1.34). We conclude that avoiding childhood/adolescence secondhand smoke exposure promotes adulthood cognitive function.
Collapse
|
49
|
Knakker B, Oláh V, Trunk A, Lendvai B, Lévay G, Hernádi I. Delay-dependent cholinergic modulation of visual short-term memory in rhesus macaques. Behav Brain Res 2020; 396:112897. [PMID: 32891649 DOI: 10.1016/j.bbr.2020.112897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/01/2020] [Accepted: 08/30/2020] [Indexed: 11/26/2022]
Abstract
Cholinergic neuromodulation is known to play a key role in visual working memory (VWM) - keeping relevant stimulus representations available for cognitive processes for short time periods (up to a few minutes). Despite the growing body of evidence on how the neural and cognitive mechanisms of VWM dynamically change over retention time, there is mixed evidence available on cholinergic effects as a function of VWM delay period in non-human primates. Using the delayed matching to sample VWM task in rhesus macaques (N = 6), we aimed to characterize VWM maintenance in terms of performance changes as a function of delay duration (across a wide range of delays from 1 to 76 s). Then, we studied how cholinergic neuromodulation influences VWM maintenance using the muscarinic receptor antagonist scopolamine administered alone as transient amnestic treatment, and in combination with two doses of the acetylcholinesterase inhibitor donepezil, a widely used Alzheimer's medication probing for the reversal of scopolamine-induced impairments. Results indicate that scopolamine-induced impairments of VWM maintenance are delay-dependent and specifically affect the 15-33 s time range, suggesting that scopolamine worsens the normal decay of VWM with the passage of time. Donepezil partially rescued the observed scopolamine-induced impairments of VWM performance. These results provide strong behavioral evidence for the role of increased cholinergic tone and muscarinic neuromodulation in the maintenance of VWM beyond a few seconds, in line with our current knowledge on the role of muscarinic acetylcholine receptors in sustained neural activity during VWM delay periods.
Collapse
Affiliation(s)
- Balázs Knakker
- Grastyán Translational Research Center, University of Pécs & Gedeon Richter Plc., 6 Ifjúság út, H-7624, Pécs, Hungary
| | - Vilmos Oláh
- Grastyán Translational Research Center, University of Pécs & Gedeon Richter Plc., 6 Ifjúság út, H-7624, Pécs, Hungary; Department of Experimental Zoology and Neurobiology, Faculty of Sciences, University of Pécs, 6 Ifjúság út, H-7624, Pécs, Hungary
| | - Attila Trunk
- Grastyán Translational Research Center, University of Pécs & Gedeon Richter Plc., 6 Ifjúság út, H-7624, Pécs, Hungary
| | - Balázs Lendvai
- Department of Pharmacology and Drug Safety Research, Gedeon Richter Plc., 19-21 Gyömrői út, H-1103, Budapest, Hungary
| | - György Lévay
- Department of Pharmacology and Drug Safety Research, Gedeon Richter Plc., 19-21 Gyömrői út, H-1103, Budapest, Hungary; Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas út, Budapest, H-1088, Hungary
| | - István Hernádi
- Grastyán Translational Research Center, University of Pécs & Gedeon Richter Plc., 6 Ifjúság út, H-7624, Pécs, Hungary; Department of Experimental Zoology and Neurobiology, Faculty of Sciences, University of Pécs, 6 Ifjúság út, H-7624, Pécs, Hungary; Szentágothai Research Center, Center for Neuroscience, University of Pécs, 20 Ifjúság út, H-7624, Pécs, Hungary; Institute of Physiology, Medical School, University of Pécs, 12 Szigeti út, H-7624, Pécs, Hungary.
| |
Collapse
|
50
|
Scott GA, Cai S, Song Y, Liu MC, Greba Q, Howland JG. Task phase-specific involvement of the rat posterior parietal cortex in performance of the TUNL task. GENES BRAIN AND BEHAVIOR 2020; 20:e12659. [PMID: 32348610 DOI: 10.1111/gbb.12659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Abstract
The posterior parietal cortex (PPC) participates in cognitive processes including working memory (WM), sensory evidence accumulation, and perceptually guided decision making. However, surprisingly little work has used temporally precise manipulations to dissect its role in different epochs of behavior taking place over short timespans, such as WM tasks. As a result, a consistent view of the temporally precise role of the PPC in these processes has not been described. In the present study, we investigated the temporally specific role of the PPC in the Trial-Unique, Nonmatching-to-Location (TUNL) task, a touchscreen-based, visuospatial WM task that relies on the PPC. To disrupt PPC activity in a temporally precise manner, we applied mild intracranial electrical stimulation (ICES). We found that intra-PPC ICES (100 μA) significantly impaired accuracy in TUNL without significantly altering response latency. Moreover, we found that the impairment was specific to ICES applied during the delay and test phases of TUNL. Consistent with previous reports showing delay- and choice-specific neuronal activity in the PPC, the results provide evidence that the rat PPC is required for maintaining memory representations of stimuli over a delay period as well as for making successful comparisons and choices between test stimuli. In contrast, the PPC appears not to be critical for initial encoding of sample stimuli. This pattern of results may indicate that early encoding of visual stimuli is independent of the PPC or that the PPC becomes engaged only when visual stimuli are spatially complex or involve memory or decision making.
Collapse
Affiliation(s)
- Gavin A Scott
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Shuang Cai
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuanyi Song
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Max C Liu
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|