1
|
Tripathi S, Sharma Y, Rane R, Kumar D. CRISPR/Cas9 Gene Editing: A Novel Approach Towards Alzheimer's Disease Treatment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1405-1424. [PMID: 38716549 DOI: 10.2174/0118715273283786240408034408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 10/22/2024]
Abstract
In defiance of the vast amount of information regarding Alzheimer's disease (AD) that has been learned over the past thirty years, progress toward developing an effective therapy has been difficult. A neurological ailment that progresses and cannot be reversed is Alzheimer's disease, which shows neurofibrillary tangles, beta-amyloid plaque, and a lack of cognitive processes that is created by tau protein clumps with hyperphosphorylation that finally advances to neuronal damage without a recognized treatment, which has stimulated research into new therapeutic strategies. The protein CAS9 is linked to CRISPR, which is a clustered Regularly Interspaced Short Palindromic Repeat that inactivates or corrects a gene by recognizing a gene sequence that produces a doublestranded break has enchanted a whole amount of interest towards its potency to cure gene sequences in AD. The novel CRISPR-Cas9 applications for developing in vitro and in vivo models to the benefit of AD investigation and therapies are thoroughly analyzed in this work. The discussion will also touch on the creation of delivery methods, which is a significant obstacle to the therapeutic use of CRISPR/Cas9 technology. By concentrating on specific genes, such as those that are significant early- onset AD risk factors and late-onset AD risk factors, like the apolipoprotein E4 (APOE4) gene, this study aims to evaluate the potential application of CRISPR/Cas9 as a possible treatment for AD.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Department of Pharm Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra 411038, India
| | - Yashika Sharma
- Department of Pharm Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra 411038, India
| | - Rajesh Rane
- Department of Pharm Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra 411038, India
| | - Dileep Kumar
- Department of Pharm Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra 411038, India
| |
Collapse
|
2
|
Ma J, Wang Z, Chen S, Sun W, Gu Q, Li D, Zheng J, Yang H, Li X. EphA1 Activation Induces Neuropathological Changes in a Mouse Model of Parkinson's Disease Through the CXCL12/CXCR4 Signaling Pathway. Mol Neurobiol 2021; 58:913-925. [PMID: 33057926 DOI: 10.1007/s12035-020-02122-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/05/2020] [Indexed: 01/12/2023]
Abstract
There is increasing evidence that EphA1 is involved in the function and development of the central nervous system, especially in neuroinflammation. It has been found to affect the disease progression of Alzheimer's disease (AD) by regulating the neuroinflammatory process. Neuroinflammation has always been regarded as the mechanism of the development of Parkinson's disease (PD) and possible therapeutic targets. Therefore, it is worth studying whether EphA1 has a potential therapeutic value for PD. The purpose of this study is to investigate the effect of EphA1 in mice and PD cell models and its mechanism.In this study, we verified the difference in expression of EphA1 and the effect and mechanism of EphA1 on neuropathological changes through Parkinson's patient samples, Parkinson's mice model, and Parkinson's model prepared from SH-SY5Y cells in vitro.EphA1 was highly expressed in the substantia nigra (SN) region of Parkinson mice and the Parkinson cell model, while the expression of tyrosine hydroxylase (TH) in the SN region of Parkinson mice was significantly reduced. After silenced EphA1 in the SH-SY5Y cell PD model, the expression levels of α-synuclein, inflammatory factors, and microglia-activated chemokine decreased. The co-immunoprecipitation experiment proved that EphA1 overexpression could promote the binding of CXCL12 and CXCR4. However, after silenced EphA1 and CXCL12 at the same time, the above effects brought by silenced EphA1 were suppressed. The same result appeared in mice with PD.EphA1 improves the inflammatory responses and neuropathological changes of the PD model in vivo and in vitro through the CXCL12/CXCR4 signaling pathway. Graphical abstract.
Collapse
Affiliation(s)
- Jianjun Ma
- Department of Neurology, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
- People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
- People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| | - Zhidong Wang
- Department of Neurology, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
- People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Siyuan Chen
- Department of Neurology, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
- People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
- People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Wenhua Sun
- Department of Neurology, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
- People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Qi Gu
- Department of Neurology, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
- People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
- People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Dongsheng Li
- Department of Neurology, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
- People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
- People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Jinhua Zheng
- Department of Neurology, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
- People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
- People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Hongqi Yang
- Department of Neurology, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
- People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
- People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Xue Li
- Department of Neurology, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
- People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
- People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| |
Collapse
|
3
|
Yan Y, Zhao A, Qui Y, Li Y, Yan R, Wang Y, Xu W, Deng Y. Genetic Association of FERMT2, HLA-DRB1, CD2AP, and PTK2B Polymorphisms With Alzheimer's Disease Risk in the Southern Chinese Population. Front Aging Neurosci 2020; 12:16. [PMID: 32116649 PMCID: PMC7010721 DOI: 10.3389/fnagi.2020.00016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives This study aimed to explore the relationship between 18 single nucleotide polymorphisms (SNPs) and Alzheimer’s disease (AD) within the southern Chinese population. Methods A total of 420 participants, consisting of 215 AD patients and 205 sex- and age-matched controls, were recruited. The SNaPshot technique and polymer chain reaction (PCR) were used to detect the 18 SNPs. Combined with the apolipoprotein E (APOE) ε4 allele and age at onset, we performed an association analysis between these SNPs and AD susceptibility. Furthermore, we analyzed SNP-associated gene expression using the expression quantitative trait loci analysis. Results Our study found that rs17125924 of FERMT2 was associated with the risk of developing AD in the dominant (P = 0.022, odds ratio [OR] = 1.57, 95% confidence interval [CI]: 1.07–2.32) and overdominant (P = 0.005, OR = 1.76, 95% CI: 1.18–2.61) models. Moreover, compared with APOE ε4 non-carriers, the frequency of the G-allele at rs17125924 was significantly higher among AD patients in APOE ε4 allele carriers (P = 0.029). The rs9271058 of HLA-DRB1 (dominant, overdominant, and additive models), rs9473117 of CD2AP (dominant and additive models), and rs73223431 of PTK2B (dominant, overdominant, and additive models) were associated with early onset AD (EOAD). Using the genotype-tissue expression (GTEx) and Braineac database, we found a significant association between rs9271058 genotypes and HLA-DRB1 expression levels, while the CC genotype at rs9473117 and the TT genotype of rs73223431 increased CD2AP and PTK2B gene expression, respectively. Conclusion Our study identifies the G-allele at rs17125924 as a risk factor for developing AD, especially in APOE ε4 carriers. In addition, we found that rs9271058 of HLA-DRB1, rs9473117 of CD2AP, and rs73223431 of PTK2B were associated with EOAD. Further studies with larger sample sizes are needed to confirm our results.
Collapse
Affiliation(s)
- Yi Yan
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aonan Zhao
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghui Qui
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Li
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Yan
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulei Deng
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Neurology, Ruijin Hospital, Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Wei CJ, Cui P, Li H, Lang WJ, Liu GY, Ma XF. Shared genes between Alzheimer's disease and ischemic stroke. CNS Neurosci Ther 2019; 25:855-864. [PMID: 30859738 PMCID: PMC6630005 DOI: 10.1111/cns.13117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
Aims Although converging evidence from experimental and epidemiological studies indicates Alzheimer's disease (AD) and ischemic stroke (IS) are related, the genetic basis underlying their links is less well characterized. Traditional SNP‐based genome‐wide association studies (GWAS) have failed to uncover shared susceptibility variants of AD and IS. Therefore, this study was designed to investigate whether pleiotropic genes existed between AD and IS to account for their phenotypic association, although this was not reported in previous studies. Methods Taking advantage of large‐scale GWAS summary statistics of AD (17,008 AD cases and 37,154 controls) and IS (10,307 IS cases and 19,326 controls), we performed gene‐based analysis implemented in VEGAS2 and Fisher's meta‐analysis of the set of overlapped genes of nominal significance in both diseases. Subsequently, gene expression analysis in AD‐ or IS‐associated expression datasets was conducted to explore the transcriptional alterations of pleiotropic genes identified. Results 16 AD‐IS pleiotropic genes surpassed the cutoff for Bonferroni‐corrected significance. Notably, MS4A4A and TREM2, two established AD‐susceptibility genes showed remarkable alterations in the spleens and brains afflicted by IS, respectively. Among the prioritized genes identified by virtue of literature‐based knowledge, most are immune‐relevant genes (EPHA1, MS4A4A, UBE2L3 and TREM2), implicating crucial roles of the immune system in the pathogenesis of AD and IS. Conclusions The observation that AD and IS had shared disease‐associated genes offered mechanistic insights into their common pathogenesis, predominantly involving the immune system. More importantly, our findings have important implications for future research directions, which are encouraged to verify the involvement of these candidates in AD and IS and interpret the exact molecular mechanisms of action.
Collapse
Affiliation(s)
- Chang-Juan Wei
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Pan Cui
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - He Li
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Wen-Jing Lang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Gui-You Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiao-Feng Ma
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Over the last decade over 40 loci have been associated with risk of Alzheimer's disease (AD). However, most studies have either focused on identifying risk loci or performing unbiased screens without a focus on protective variation in AD. Here, we provide a review of known protective variants in AD and their putative mechanisms of action. Additionally, we recommend strategies for finding new protective variants. RECENT FINDINGS Recent Genome-Wide Association Studies have identified both common and rare protective variants associated with AD. These include variants in or near APP, APOE, PLCG2, MS4A, MAPT-KANSL1, RAB10, ABCA1, CCL11, SORL1, NOCT, SCL24A4-RIN3, CASS4, EPHA1, SPPL2A, and NFIC. SUMMARY There are very few protective variants with functional evidence and a derived allele with a frequency below 20%. Additional fine mapping and multi-omic studies are needed to further validate and characterize known variants as well as specialized genome-wide scans to identify novel variants.
Collapse
Affiliation(s)
- Shea J Andrews
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Equal first author
| | - Brian Fulton-Howard
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Equal first author
| | - Alison Goate
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Andrews SJ, Ismail Z, Anstey KJ, Mortby M. Association of Alzheimer's genetic loci with mild behavioral impairment. Am J Med Genet B Neuropsychiatr Genet 2018; 177:727-735. [PMID: 30378268 DOI: 10.1002/ajmg.b.32684] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 11/10/2022]
Abstract
Mild behavioral impairment (MBI) describes the emergence of later-life neuropsychiatric symptoms (NPS) as an at-risk state for incident cognitive decline and dementia, and for some as a potential manifestation of prodromal dementia. How NPS mechanistically link to the development of mild cognitive impairment and Alzheimer's disease (AD) is not fully understood, with potential mechanisms including shared risk factors related to both NPS and cognitive impairment, or AD pathology promoting NPS. This is the first exploratory study to examine whether AD genetic loci as a genetic risk score (GRS), or individually, are a shared risk factor with MBI. Participants were 1,226 older adults (aged 72-79; 738 males; 763 normal cognition) from the Personality and Total Health Through Life project. MBI was approximated in accordance with Criterion 1 of the ISTAART-AA diagnostic criteria using a transformation algorithm for the neuropsychiatric inventory. A GRS was constructed from 25 AD risk loci. Binomial logistic regression adjusting for age, gender, and education examined the association between GRS and MBI. A higher GRS and APOE*ε4 were associated with increased likelihood of affective dysregulation. Nominally significant associations were observed between MS4A4A-rs4938933*C and MS4A6A-rs610932*G with a reduced likelihood of affective dysregulation; ZCWPW1-rs1476679*C with a reduced likelihood of social inappropriateness and abnormal perception/thought content; BIN1-rs744373*G and EPHA1-rs11767557*C with higher likelihood of abnormal perception/thought content; NME8-rs2718058*G with a reduced likelihood of decreased motivation. These preliminary findings suggest a common genetic etiology between MBI and traditionally recognized cognitive problems observed in AD and improve our understanding of the pathophysiological features underlying MBI.
Collapse
Affiliation(s)
- Shea J Andrews
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.,Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zahinoor Ismail
- Department of Psychiatry, Mathison Centre for Mental Health Research & Education, Ron and Rene Centre for Healthy Brain Aging Research, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Mathison Centre for Mental Health Research & Education, Ron and Rene Centre for Healthy Brain Aging Research, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Community Health Sciences, Mathison Centre for Mental Health Research & Education, Ron and Rene Centre for Healthy Brain Aging Research, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kaarin J Anstey
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia.,Lifecourse Ageing Research Centre, Neuroscience Research Australia, Sydney, New South Wales, Australia.,Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Moyra Mortby
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia.,Lifecourse Ageing Research Centre, Neuroscience Research Australia, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Moustafa AA, Hassan M, Hewedi DH, Hewedi I, Garami JK, Al Ashwal H, Zaki N, Seo SY, Cutsuridis V, Angulo SL, Natesh JY, Herzallah MM, Frydecka D, Misiak B, Salama M, Mohamed W, El Haj M, Hornberger M. Genetic underpinnings in Alzheimer's disease - a review. Rev Neurosci 2018; 29:21-38. [PMID: 28949931 DOI: 10.1515/revneuro-2017-0036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/10/2017] [Indexed: 12/13/2022]
Abstract
In this review, we discuss the genetic etiologies of Alzheimer's disease (AD). Furthermore, we review genetic links to protein signaling pathways as novel pharmacological targets to treat AD. Moreover, we also discuss the clumps of AD-m ediated genes according to their single nucleotide polymorphism mutations. Rigorous data mining approaches justified the significant role of genes in AD prevalence. Pedigree analysis and twin studies suggest that genetic components are part of the etiology, rather than only being risk factors for AD. The first autosomal dominant mutation in the amyloid precursor protein (APP) gene was described in 1991. Later, AD was also associated with mutated early-onset (presenilin 1/2, PSEN1/2 and APP) and late-onset (apolipoprotein E, ApoE) genes. Genome-wide association and linkage analysis studies with identified multiple genomic areas have implications for the treatment of AD. We conclude this review with future directions and clinical implications of genetic research in AD.
Collapse
Affiliation(s)
- Ahmed A Moustafa
- School of Social Sciences and Psychology, Western Sydney University, 48 Martin Pl, Sydney, New South Wales 2000, Australia
| | - Mubashir Hassan
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Chungcheongnam 32588, Republic of Korea
| | - Doaa H Hewedi
- Psychogeriatric Research Center, Institute of Psychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Iman Hewedi
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Julia K Garami
- School of Social Sciences and Psychology, Western Sydney University, 48 Martin Pl, Sydney, New South Wales 2000, Australia
| | - Hany Al Ashwal
- College of Information Technology, Department of Computer Science and Software Eng-(CIT), United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Nazar Zaki
- College of Information Technology, Department of Computer Science and Software Eng-(CIT), United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Sung-Yum Seo
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Chungcheongnam 32588, Republic of Korea
| | - Vassilis Cutsuridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Nikolaou Plastira 100, GR-70013 Heraklion, Crete, Greece
| | - Sergio L Angulo
- Departments of Physiology/Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Joman Y Natesh
- Center for Molecular and Behavioural Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Mohammad M Herzallah
- Center for Molecular and Behavioural Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Dorota Frydecka
- Wroclaw Medical University, Department and Clinic of Psychiatry, 50-367 Wrocław, Poland
| | - Błażej Misiak
- Wroclaw Medical University, Department of Genetics, 50-368 Wroclaw, Poland
| | - Mohamed Salama
- School of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Wael Mohamed
- International Islamic University Malaysia, Jalan Gombak, Selangor 53100, Malaysia
| | - Mohamad El Haj
- University of Lille, CNRS, CHU Lille, UMR 9193 - SCALab - Sciences Cognitive Sciences Affectives, F-59000 Lille, France
| | - Michael Hornberger
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
8
|
Song H, Zheng Y, Cai F, Ma Y, Yang J, Wu Y. c-Fos downregulation positively regulates EphA5 expression in a congenital hypothyroidism rat model. J Mol Histol 2018; 49:147-155. [PMID: 29330744 DOI: 10.1007/s10735-018-9754-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/05/2018] [Indexed: 12/16/2022]
Abstract
The EphA5 receptor is well established as an axon guidance molecule during neural system development and plays an important role in dendritic spine formation and synaptogenesis. Our previous study has showed that EphA5 is decreased in the developing brain of congenital hypothyroidism (CH) and the EphA5 promoter methylation modification participates in its decrease. c-Fos, a well-kown transcription factor, has been considered in association with brain development. Bioinformatics analysis showed that the EphA5 promoter region contained five putative c-fos binding sites. The chromatin immunoprecipitation (ChIP) assays were used to assess the direct binding of c-fos to the EphA5 promoter. Furthermore, dual-luciferase assays showed that these three c-fos protein binding sites were positive regulatory elements for EphA5 expression in PC12 cells. Moreover, We verified c-fos positively regulation for EphA5 expression in CH model. Q-PCR and Western blot showed that c-fos overexpression could upregulate EphA5 expression in hippocampal neurons of rats with CH. Our results suggest that c-fos positively regulates EphA5 expression in CH rat model.
Collapse
Affiliation(s)
- Honghua Song
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China
| | - Yuqin Zheng
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China
| | - Fuying Cai
- Department of Pediatrics, Yin Shan Lake Hospital of Wuzhong District, Suzhou, 215100, Jiangsu Province, China
| | - Yanyan Ma
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China
| | - Jingyue Yang
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China
| | - Youjia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
9
|
Amegandjin CA, Jammow W, Laforest S, Riad M, Baharnoori M, Badeaux F, DesGroseillers L, Murai KK, Pasquale EB, Drolet G, Doucet G. Regional expression and ultrastructural localization of EphA7 in the hippocampus and cerebellum of adult rat. J Comp Neurol 2016; 524:2462-78. [PMID: 26780036 DOI: 10.1002/cne.23962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/18/2015] [Accepted: 01/04/2016] [Indexed: 11/06/2022]
Abstract
EphA7 is expressed in the adult central nervous system (CNS), where its roles are yet poorly defined. We mapped its distribution using in situ hybridization (ISH) and immunohistochemistry (IHC) combined with light (LM) and electron microscopy (EM) in adult rat and mouse brain. The strongest ISH signal was in the hippocampal pyramidal and granule cell layers. Moderate levels were detected in habenula, striatum, amygdala, the cingulate, piriform and entorhinal cortex, and in cerebellum, notably the Purkinje cell layer. The IHC signal distribution was consistent with ISH results, with transport of the protein to processes, as exemplified in the hippocampal neuropil layers and weakly stained pyramidal cell layers. In contrast, in the cerebellum, the Purkinje cell bodies were the most strongly immunolabeled elements. EM localized the cell surface-expression of EphA7 essentially in postsynaptic densities (PSDs) of dendritic spines and shafts, and on some astrocytic leaflets, in both hippocampus and cerebellum. Perikaryal and dendritic labeling was mostly intracellular, associated with the synthetic and trafficking machineries. Immunopositive vesicles were also observed in axons and axon terminals. Quantitative analysis in EM showed significant differences in the frequency of labeled elements between regions. Notably, labeled dendrites were ∼3-5 times less frequent in cerebellum than in hippocampus, but they were individually endowed with ∼10-40 times higher frequencies of PSDs, on their shafts and spines. The cell surface localization of EphA7, being preferentially in PSDs, and in perisynaptic astrocytic leaflets, provides morphologic evidence that EphA7 plays key roles in adult CNS synaptic maintenance, plasticity, or function. J. Comp. Neurol. 524:2462-2478, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Clara A Amegandjin
- Département de neurosciences and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Montréal, QC, Canada
| | - Wafaa Jammow
- Département de neurosciences and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Montréal, QC, Canada
| | - Sylvie Laforest
- Centre hospitalier de l'Université Laval (CHUL), Québec, QC, Canada
| | - Mustapha Riad
- Département de neurosciences and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Montréal, QC, Canada
| | - Moogeh Baharnoori
- Département de neurosciences and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Montréal, QC, Canada
| | - Frédérique Badeaux
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Luc DesGroseillers
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Keith K Murai
- Department of Neurology and Neurosurgery, McGill University, and Center for Research in Neuroscience, Montréal, QC, Canada
| | - Elena B Pasquale
- Sanford-Burnham Medical Research Institute, La Jolla, California, and Pathology Department, University of California, San Diego, La Jolla, California, USA
| | - Guy Drolet
- Centre hospitalier de l'Université Laval (CHUL), Québec, QC, Canada
| | - Guy Doucet
- Département de neurosciences and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
10
|
Karch CM, Goate AM. Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 2015; 77:43-51. [PMID: 24951455 PMCID: PMC4234692 DOI: 10.1016/j.biopsych.2014.05.006] [Citation(s) in RCA: 941] [Impact Index Per Article: 94.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 01/18/2023]
Abstract
We review the genetic risk factors for late-onset Alzheimer's disease (AD) and their role in AD pathogenesis. More recent advances in understanding of the human genome-technologic advances in methods to analyze millions of polymorphisms in thousands of subjects-have revealed new genes associated with AD risk, including ABCA7, BIN1, CASS4, CD33, CD2AP, CELF1, CLU, CR1, DSG2, EPHA1, FERMT2, HLA-DRB5-DBR1, INPP5D, MS4A, MEF2C, NME8, PICALM, PTK2B, SLC24H4-RIN3, SORL1, and ZCWPW1. Emerging technologies to analyze the entire genome in large data sets have also revealed coding variants that increase AD risk: PLD3 and TREM2. We review the relationship between these AD risk genes and the cellular and neuropathologic features of AD. Understanding the mechanisms underlying the association of these genes with risk for disease will provide the most meaningful targets for therapeutic development to date.
Collapse
Affiliation(s)
| | - Alison M. Goate
- Corresponding author Contact information: Department of Psychiatry, Washington University School of Medicine, 425 S. Euclid Ave, Campus Box 8134, St. Louis, MO 63110, phone: 314-362-8691, fax: 314-747-2983,
| |
Collapse
|
11
|
Aujla PK, Huntley GW. Early postnatal expression and localization of matrix metalloproteinases-2 and -9 during establishment of rat hippocampal synaptic circuitry. J Comp Neurol 2014; 522:1249-63. [PMID: 24114974 DOI: 10.1002/cne.23468] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/06/2013] [Accepted: 09/17/2013] [Indexed: 11/10/2022]
Abstract
Matrix metalloproteinases (MMPs) are extracellular proteolytic enzymes that contribute to pericellular remodeling in a variety of tissues, including brain, where they function in adult hippocampal synaptic structural and functional plasticity. Synaptic plasticity and remodeling are also important for development of connectivity, but it is unclear whether MMPs--particularly MMP-2 and -9, the major MMPs operative in brain--contribute at these stages. Here, we use a combination of biochemical and anatomical methods to characterize expression and localization of MMP-2 and MMP-9 in early postnatal and adult rat hippocampus. Gene and protein expression of these MMPs were evident throughout hippocampus at all ages examined, but expression levels were highest during the first postnatal week. MMP-2 and MMP-9 immunolocalized to punctate structures within the neuropil that codistributed with foci of proteolytic activity, as well as with markers of growing axons and synapses. Taken together, discrete foci of MMP proteolysis are likely important for actively shaping and remodeling cellular and connectional architecture as hippocampal circuitry is becoming established during early postnatal life.
Collapse
Affiliation(s)
- Paven K Aujla
- Fishberg Department of Neuroscience, Friedman Brain Institute and The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029
| | | |
Collapse
|
12
|
Cortical abnormalities and non-spatial learning deficits in a mouse model of CranioFrontoNasal syndrome. PLoS One 2014; 9:e88325. [PMID: 24520368 PMCID: PMC3919725 DOI: 10.1371/journal.pone.0088325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/07/2014] [Indexed: 11/22/2022] Open
Abstract
Eph receptors and their ephrin ligands play critical roles in the development of the nervous system, however, less is known about their functions in the adult brain. Here, we investigated the function of ephrinB1, an ephrinB family member that is mutated in CranioFrontoNasal Syndrome. We show that ephrinB1 deficient mice (EfnB1Y/−) demonstrate spared spatial learning and memory but exhibit exclusive impairment in non-spatial learning and memory tasks. We established that ephrinB1 does not control learning and memory through direct modulation of synaptic plasticity in adults, since it is not expressed in the adult brain. Rather we show that the cortex of EfnB1Y/− mice displayed supernumerary neurons, with a particular increase in calretinin-positive interneurons. Further, the increased neuron number in EfnB1Y/− mutants correlated with shorter dendritic arborization and decreased spine densities of cortical pyramidal neurons. Our findings indicate that ephrinB1 plays an important role in cortical maturation and that its loss has deleterious consequences on selective cognitive functions in the adult.
Collapse
|
13
|
Yates N, Robertson D, Martin-Iverson M, Rodger J. Auditory brainstem responses of ephrin-A2, ephrin-A5(-/-) and ephrin-A2A5(-/-) mice. Audiol Neurootol 2014; 19:115-26. [PMID: 24457350 DOI: 10.1159/000357029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 10/30/2013] [Indexed: 01/04/2023] Open
Abstract
Eph receptors and ephrin ligands are large families of cell surface proteins which have established roles in axonal growth and guidance. These are well characterized in the visual and somatosensory systems but are less well documented in the auditory pathway. We examined the possible functional role of two ephrin genes (ephrin-A2 and ephrin-A5) in the auditory system by measuring auditory brainstem responses (ABR) to tone bursts from 6 to 30 kHz in ephrin-A2(-/-), ephrin-A5(-/-) and ephrin-A2A5(-/-) (knockout) mice. At high frequencies, the ephrin-A2A5(-/-) mice exhibited thresholds that were significantly lower than in wild-type mice by approximately 20 dB, suggesting ephrin-A2 and ephrin-A5 may have frequency-specific effects on the auditory system. There were also alterations in ABR wave peak amplitudes that were specific to each mouse strain which suggested both peripheral and central involvement of EphA-ephrin-A signalling in auditory function.
Collapse
Affiliation(s)
- Nathanael Yates
- School of Animal Biology, University of Western Australia, Crawley, W.A., Australia
| | | | | | | |
Collapse
|
14
|
Further insights into Alzheimer's disease. QUALITY IN AGEING AND OLDER ADULTS 2012. [DOI: 10.1108/14717791211264043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Meier C, Anastasiadou S, Knöll B. Ephrin-A5 suppresses neurotrophin evoked neuronal motility, ERK activation and gene expression. PLoS One 2011; 6:e26089. [PMID: 22022520 PMCID: PMC3191169 DOI: 10.1371/journal.pone.0026089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 09/19/2011] [Indexed: 12/20/2022] Open
Abstract
During brain development, growth cones respond to attractive and repulsive axon guidance cues. How growth cones integrate guidance instructions is poorly understood. Here, we demonstrate a link between BDNF (brain derived neurotrophic factor), promoting axonal branching and ephrin-A5, mediating axonal repulsion via Eph receptor tyrosine kinase activation. BDNF enhanced growth cone filopodial dynamics and neurite branching of primary neurons. We show that ephrin-A5 antagonized this BDNF-evoked neuronal motility. BDNF increased ERK phosphorylation (P-ERK) and nuclear ERK entry. Ephrin-A5 suppressed BDNF-induced ERK activity and might sequester P-ERK in the cytoplasm. Neurotrophins are well established stimulators of a neuronal immediate early gene (IEG) response. This is confirmed in this study by e.g. c-fos, Egr1 and Arc upregulation upon BDNF application. This BDNF-evoked IEG response required the transcription factor SRF (serum response factor). Notably, ephrin-A5 suppressed a BDNF-evoked neuronal IEG response, suggesting a role of Eph receptors in modulating gene expression. In opposite to IEGs, long-term ephrin-A5 application induced cytoskeletal gene expression of tropomyosin and actinin. To uncover specific Eph receptors mediating ephrin-As impact on neurotrophin signaling, EphA7 deficient mice were analyzed. In EphA7 deficient neurons alterations in growth cone morphology were observed. However, ephrin-A5 still counteracted neurotrophin signaling suggesting that EphA7 is not required for ephrin and BDNF crosstalk. In sum, our data suggest an interaction of ephrin-As and neurotrophin signaling pathways converging at ERK signaling and nuclear gene activity. As ephrins are involved in development and function of many organs, such modulation of receptor tyrosine kinase signaling and gene expression by Ephs might not be limited to the nervous system.
Collapse
Affiliation(s)
- Christin Meier
- Neuronal Gene Expression Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Sofia Anastasiadou
- Neuronal Gene Expression Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Bernd Knöll
- Neuronal Gene Expression Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
16
|
Bi C, Yue X, Zhou R, Plummer MR. EphA activation overrides the presynaptic actions of BDNF. J Neurophysiol 2011; 105:2364-74. [PMID: 21411563 DOI: 10.1152/jn.00564.2010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The adult pattern of neural connectivity is shaped by repulsive and attractive factors, many of which are modulated by activity. Although much is known about the actions of these factors when studied in isolation, little is known about how they interact. To address this question, we examined the effects of sequential or coapplication of brain-derived neurotrophic factor (BDNF) and Fc-conjugated ephrin-A5 or EphA5 in cultured embryonic hippocampal neurons. BDNF promotes neurite outgrowth and synapse formation, and when applied acutely, it elicits an increase in ongoing synaptic activity. Members of the ephrin family of ligands and receptors can be repulsive and prevent formation of synaptic contacts. Acute exposure to either ephrin-A5-Fc or EphA5-Fc transiently enhanced synaptic activity when applied alone, but when applied prior to BDNF, they dramatically reduced the electrophysiological effects of the neurotrophin. Conversely, BDNF had no effect on subsequently applied ephrin-A5-Fc or EphA5-Fc. Consistent with this, ephrin-A5-Fc also prevented BDNF-induced activation of p42/44 MAPK. The effect of ephrin-A5-Fc appears to be presynaptic, as it prevented the BDNF-induced increase in spontaneous miniature postsynaptic current frequency, whereas EphA5-Fc did not. These results suggest that these factors can be categorized differently, with the contact-mediated activation of EphA receptors by ephrin-A5 overriding the diffusion-mediated effect of BDNF.
Collapse
Affiliation(s)
- Caixia Bi
- Rutgers University, Department of Cell Biology & Neuroscience, Nelson Laboratories, 604 Allison Rd., Piscataway, NJ 08854-8082, USA
| | | | | | | |
Collapse
|
17
|
Ephrin-A5 and EphA5 interaction induces synaptogenesis during early hippocampal development. PLoS One 2010; 5:e12486. [PMID: 20824214 PMCID: PMC2930854 DOI: 10.1371/journal.pone.0012486] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 07/22/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Synaptogenesis is a fundamental step in neuronal development. For spiny glutamatergic synapses in hippocampus and cortex, synaptogenesis involves adhesion of pre and postsynaptic membranes, delivery and anchorage of pre and postsynaptic structures including scaffolds such as PSD-95 and NMDA and AMPA receptors, which are glutamate-gated ion channels, as well as the morphological maturation of spines. Although electrical activity-dependent mechanisms are established regulators of these processes, the mechanisms that function during early development, prior to the onset of electrical activity, are unclear. The Eph receptors and ephrins provide cell contact-dependent pathways that regulate axonal and dendritic development. Members of the ephrin-A family are glycosyl-phosphatidylinositol-anchored to the cell surface and activate EphA receptors, which are receptor tyrosine kinases. METHODOLOGY/PRINCIPAL FINDINGS Here we show that ephrin-A5 interaction with the EphA5 receptor following neuron-neuron contact during early development of hippocampus induces a complex program of synaptogenic events, including expression of functional synaptic NMDA receptor-PSD-95 complexes plus morphological spine maturation and the emergence of electrical activity. The program depends upon voltage-sensitive calcium channel Ca2+ fluxes that activate PKA, CaMKII and PI3 kinase, leading to CREB phosphorylation and a synaptogenic program of gene expression. AMPA receptor subunits, their scaffolds and electrical activity are not induced. Strikingly, in contrast to wild type, stimulation of hippocampal slices from P6 EphA5 receptor functional knockout mice yielded no NMDA receptor currents. CONCLUSIONS/SIGNIFICANCE These studies suggest that ephrin-A5 and EphA5 signals play a necessary, activity-independent role in the initiation of the early phases of synaptogenesis. The coordinated expression of the NMDAR and PSD-95 induced by eprhin-A5 interaction with EphA5 receptors may be the developmental switch that induces expression of AMPAR and their interacting proteins and the transition to activity-dependent synaptic regulation.
Collapse
|
18
|
Tremblay ME, Riad M, Chierzi S, Murai KK, Pasquale EB, Doucet G. Developmental course of EphA4 cellular and subcellular localization in the postnatal rat hippocampus. J Comp Neurol 2009; 512:798-813. [PMID: 19086003 DOI: 10.1002/cne.21922] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
From embryonic development to adulthood, the EphA4 receptor and several of its ephrin-A or -B ligands are expressed in the hippocampus, where they presumably play distinct roles at different developmental stages. To help clarify these diverse roles in the assembly and function of the hippocampus, we examined the cellular and subcellular localization of EphA4 in postnatal rat hippocampus by light and electron microscopic immunocytochemistry. On postnatal day (P) 1, the EphA4 immunostaining was robust in most layers of CA1, CA3, and dentate gyrus and then decreased gradually, until P21, especially in the cell body layers. At the ultrastructural level, focal spots of EphA4 immunoreactivity were detected all over the plasma membrane of pyramidal and granule cells, between P1 and P14, from the perikarya to the dendritic and axonal extremities, including growth cones and filopodia. This cell surface immunoreactivity then became restricted to the synapse-associated dendritic spines and axon terminals by P21. In astrocytes, the EphA4 immunolabeling showed a similar cell surface redistribution, from the perikarya and large processes at P1-P7, to small perisynaptic processes at P14-P21. In both cell types, spots of EphA4 immunoreactivity were also detected, with an incidence decreasing with maturation, on the endoplasmic reticulum, Golgi apparatus, and vesicles, organelles involved in protein synthesis, posttranslational modifications, and transport. The cell surface evolution of EphA4 localization in neuronal and glial cells is consistent with successive involvements in the developmental movements of cell bodies first, followed by process outgrowth and guidance, synaptogenesis, and finally synaptic maintenance and plasticity.
Collapse
Affiliation(s)
- Marie-Eve Tremblay
- Département de Pathologie et Biologie Cellulaire, Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Toward understanding topographically specific branching of retinal axons in their target area, we have studied the interaction between neurotrophin receptors and members of the Eph family. TrkB and its ligand BDNF are uniformly expressed in the retina and tectum, respectively, and exert a branch-promoting activity, whereas EphAs and ephrinAs are expressed in gradients in retina and tectum and can mediate a suppression of axonal branching. We have identified a novel cis interaction between ephrinA5 and TrkB on retinal ganglion cell axons. TrkB interacts with ephrinA5 via its second cysteine-rich domain (CC2), which is necessary and sufficient for binding to ephrinA5. Their functional interaction is twofold: ephrinA5 augments BDNF-promoted retinal axon branching in the absence of its activator EphA7-Fc, whereas EphA7-Fc application abolishes branching in a local and concentration-dependent manner. The importance of TrkB in this process is shown by the fact that overexpression of an isolated TrkB-CC2 domain interfering with the ephrinA/TrkB interaction abolishes this regulatory interplay, whereas knockdown of TrkB via RNA interference diminishes the ephrinA5-evoked increase in branching. The ephrinA/Trk interaction is neurotrophin induced and specifically augments the PI-3 kinase/Akt pathway generally known to be involved in the promotion of branching. In addition, ephrinAs/TrkB modulate axon branching and also synapse formation of hippocampal neurons. Our findings uncover molecular mechanisms of how spatially restricted axon branching can be achieved by linking globally expressed branch-promoting with differentially expressed branch-suppressing activities. In addition, our data suggest that growth factors and the EphA-ephrinA system interact in a way that affects axon branching and synapse development.
Collapse
|
20
|
Learning and memory impairment in Eph receptor A6 knockout mice. Neurosci Lett 2008; 438:205-9. [PMID: 18450376 DOI: 10.1016/j.neulet.2008.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 04/01/2008] [Accepted: 04/07/2008] [Indexed: 11/20/2022]
Abstract
Genetic inhibition of the ephrin receptor (EphA6) in mice produced behavioral deficits specifically in tests of learning and memory. Using a fear conditioning training paradigm, mice deficient in EphA6 did not acquire the task as strongly as did wild type (WT) mice. When tested in the same context 24h later, knockout (KO) mice did not freeze as much as WT mice indicating reduced memory of the consequences of the training context. The KO mice also displayed less freezing when presented with the conditioning stimulus (CS) in a separate context. In the hidden platform phase of the Morris water maze (MWM) task, KO mice did not reach the same level of proficiency as did WT mice. KO mice also exhibited less preference for the target quadrant during a probe trial and were significantly impaired on an initial reversal of the platform. These findings suggest that EphA6, in line with a number of other Eph receptors and their ephrin ligands, is involved in neural circuits underlying aspects of learning and memory.
Collapse
|
21
|
Numachi Y, Yoshida S, Yamashita M, Fujiyama K, Toda S, Matsuoka H, Kajii Y, Nishikawa T. Altered EphA5 mRNA expression in rat brain with a single methamphetamine treatment. Neurosci Lett 2007; 424:116-21. [PMID: 17714871 DOI: 10.1016/j.neulet.2007.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/08/2007] [Accepted: 07/23/2007] [Indexed: 11/25/2022]
Abstract
Methamphetamine is a potent and indirect dopaminergic agonist which can cause chronic brain dysfunctions including drug abuse, drug dependence and drug-induced psychosis. Methamphetamine is known to trigger molecular mechanisms involved in associative learning and memory, and thereby alter patterns of synaptic connectivity. The persistent risk of relapse in methamphetamine abuse, dependence and psychosis may be caused by such alterations in synaptic connectivity. EphA5 receptors constitute large families of tyrosine kinase receptor and are expressed almost exclusively in the nervous system, especially in the limbic structures. Recent studies suggest EphA5 to be important in the topographic projection, development, and plasticity of limbic structures, and to be involved in dopaminergic neurotransmission. We used in situ hybridization to examine whether methamphetamine alters EphA5 mRNA expression in the brains of adult male Wister rats. EphA5 mRNA was widely distributed in the medial frontal cortex, cingulate cortex, piriform cortex, hippocampus, habenular nucleus and amygdala. Compared to baseline expression at 0h, EphA5 mRNA was significantly decreased (by 20%) in the medial frontal cortex at 24h, significantly increased (by 30%) in the amygdala at 9 and 24h, significantly but transiently decreased (by 30%) in the habenular nucleus at 1h after a single injection of methamphetamine. Methamphetamine did not change EphA5 mRNA expression in the cingulate cortex, piriform cortex or hippocampus. Our results that methamphetamine altered EphA5 mRNA expression in rat brain suggest methamphetamine could affect patterns of synaptic connectivity, which might be responsible for methamphetamine-induced chronic brain dysfunctions.
Collapse
Affiliation(s)
- Yohtaro Numachi
- Musashi Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Astrocytes contribute on both development and function of synapses, but it remains unclear whether direct astrocytic contacts regulate development of individual synapses. Two-photon time-lapse imaging of astrocytic and dendritic protrusive activity revealed the correlation of astrocytic contacts with both lifetime and morphological maturation of dendritic protrusions. Astrocytic motility was essential in maturation of spines, because its suppression by manipulating Rac1-dependent signaling in astrocytes resulted in induction of longer, filopodia-like dendritic protrusions. Manipulation of ephrin/Eph-dependent neuron-astrocyte signaling suggested involvement of this signaling pathway in astrocyte-dependent stabilization of newly generated dendritic protrusions. Our data support a model in which astrocytic protrusive activity in development acts as a key local regulator for stabilization of individual dendritic protrusions and subsequent maturation into spines.
Collapse
Affiliation(s)
- Hideko Nishida
- Department of Cell Biology, School of Medicine, and
- COE Program for Brain Integration and its Disorders, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Shigeo Okabe
- Department of Cell Biology, School of Medicine, and
- COE Program for Brain Integration and its Disorders, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan, and
- Molecular Neurophysiology Group, Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| |
Collapse
|
23
|
Faulkner RL, Low LK, Cheng HJ. Axon pruning in the developing vertebrate hippocampus. Dev Neurosci 2007; 29:6-13. [PMID: 17148945 DOI: 10.1159/000096207] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 03/23/2006] [Indexed: 11/19/2022] Open
Abstract
During early development of the central nervous system (CNS), there is an exuberant outgrowth of projections which later need to be refined to achieve precise connectivity. One widely used strategy for this refinement is axon pruning. Axon pruning has also been suggested to be involved in creating more diverse connection patterns between different species. An understanding of the mechanism of pruning, however, has been elusive in the CNS. Recent studies have focused on a stereotyped pruning event that occurs within the mossy fibers of the developing vertebrate hippocampus. In the following discussion, we will review the cellular and molecular factors that are known to regulate pruning in the hippocampus and highlight some advantages this system presents for future studies on pruning in the developing CNS.
Collapse
Affiliation(s)
- Regina L Faulkner
- Center for Neuroscience, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
24
|
Tornieri K, Rehder V. Nitric oxide release from a single cell affects filopodial motility on growth cones of neighboring neurons. Dev Neurobiol 2007; 67:1932-43. [PMID: 17874460 DOI: 10.1002/dneu.20572] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nitric oxide (NO), a gaseous messenger, has been reported to be involved in a variety of functions in the nervous system, ranging from neuronal pathfinding to learning and memory. We have shown previously that the application of NO via NO donors to growth cones of identified Helisoma buccal neurons B5 in vitro induces an increase in filopodial length, a decrease in filopodial number, and a slowing in neurite advance. It is unclear, however, whether NO released from a physiological source would affect growth cone dynamics. Here we used cell bodies of identified neurons known to express the NO synthesizing enzyme nitric oxide synthase (NOS) as a source of constitutive NO production and tested their effect on growth cones of other cells in a sender-receiver paradigm. We showed that B5 cell bodies induced a rapid increase in filopodial length in NO-responsive growth cones, and that this effect was blocked by the NOS inhibitor 7-NI, suggesting that the effect was mediated by NO. Inhibition of soluble guanylyl cyclase (sGC) with ODQ blocked filopodial elongation induced by B5 somata, confirming that NO acted via sGC. We also demonstrate that the effect of NO was reversible and that a cell releasing NO can affect growth cones over a distance of at least 100 microm. Our results suggest that NO released from a physiological source can affect the motility of nearby growth cones and thus should be considered a signaling molecule with the potential to affect the outcome of neuronal pathfinding in vivo.
Collapse
Affiliation(s)
- Karine Tornieri
- Department of Biology, Georgia State University, Atlanta, GA 30302-4010, USA
| | | |
Collapse
|
25
|
Abstract
The mammalian central nervous system (CNS) requires the proper formation of exquisitely precise circuits to function correctly. These neuronal circuits are assembled during development by the formation of synaptic connections between thousands of differentiating neurons. Proper synapse formation during childhood provides the substrate for cognition, whereas improper formation or function of these synapses leads to neurodevelopmental disorders, including mental retardation and autism. Recent work has begun to identify some of the early cellular events in synapse formation as well as the molecular signals that initiate this process. However, despite the wealth of information published on this topic in the past few years, some of the most fundamental questions about how, whether, and where glutamatergic synapses form in the mammalian CNS remain unanswered. This review focuses on the dynamic aspects of the early cellular and molecular events in the initial assembly of glutamatergic synapses in the mammalian CNS.
Collapse
|
26
|
Jassen AK, Yang H, Miller GM, Calder E, Madras BK. Receptor regulation of gene expression of axon guidance molecules: implications for adaptation. Mol Pharmacol 2006; 70:71-7. [PMID: 16595738 DOI: 10.1124/mol.105.021998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Axon guidance molecules, critical for neurodevelopment, are also implicated in morphological and other neurodaptative changes mediated by physiological or pharmacological events in adult brain. As an example, the psychostimulant cocaine markedly alters axon guidance molecules in adult brain of cocaine-treated rats. To decipher a potential link between drug-induced activation of G-protein-coupled receptors (GPCRs) and modulation of axon guidance molecules, we investigated whether GPCR activity in a SK-N-MC human neuroepithelioma cell line (which expresses low levels of D1 dopamine receptors) affects gene expression of axon guidance molecules (semaphorins, ephrins, netrins, and their receptors). Using real-time polymerase chain reaction, we identified 17 of 26 axon guidance molecules in these cells, with varying levels of expression. Forskolin, which raised intracellular cAMP levels 340%, increased EphA5, EphB2, and Neuropilin1 expression, paralleling reported changes in the rat hippocampus after cocaine treatment. The dopamine receptor agonist dihydrexidine, which raised cAMP levels 22%, promoted regulatory changes in EphrinA1, EphrinA5, EphB1, DCC, and Semaphorin3C, whereas (+/-)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF81297) altered EphA5, EphrinA1, EphrinA5, and neuropilin1. cAMP and other signal transduction pathways may regulate gene expression of axon guidance molecules, potentially linking monoamine receptor activation to signal transduction cascades, transcriptional regulation of axon guidance molecules, and alterations in neural networks.
Collapse
Affiliation(s)
- Amy K Jassen
- Department of Psychiatry, Harvard Medical School, Division of Neurochemistry, New England Regional Primate Research Center, 1 Pine Hill Drive, Southborough, MA 01772-9102, USA
| | | | | | | | | |
Collapse
|
27
|
Otal R, Burgaya F, Frisén J, Soriano E, Martínez A. Ephrin-A5 modulates the topographic mapping and connectivity of commissural axons in murine hippocampus. Neuroscience 2006; 141:109-21. [PMID: 16690216 DOI: 10.1016/j.neuroscience.2006.03.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 02/17/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
Entorhinal and commissural/associational projections show a non-overlapping distribution in the hippocampus proper and the dentate gyrus. The expression of Ephrins and their Eph receptors in the developing hippocampus indicates that this family of axonal guidance molecules may modulate the formation of these connections. Here we focused on the role of the ephrin-A5 ligand in the development of the main hippocampal afferents. In situ hybridization showed that ephrin-A5 mRNA was detected mainly in the principal cells of the hippocampus proper and in the dentate gyrus throughout postnatal development. Immunocytochemical analyses revealed prominent expression of the EphA3 receptor, a putative receptor for ephrin-A5, in the main cells and the neuropil of the developing hippocampus. Tracing experiments in ephrin-A5(-/-) mice showed that commissural projections were transiently altered in the hippocampus proper at P5, but they were mistargeted throughout the postnatal development in the dentate gyrus. Immunocytochemistry with anti-calbindin antibodies revealed that the dentate mossy fiber projection was not altered in ephrin-A5(-/-) mice. Electron microscopy studies showed alterations in the density of synapses and spines in commissural/associational layers, but not in entorhinal layers, and in the mossy fibers in these animals. Taken together, these findings indicate that ephrin-A5 signaling is involved in the formation and maturation of synapses in the hippocampus.
Collapse
Affiliation(s)
- R Otal
- Department of Cell Biology, University of Barcelona and Institut de Recerca Biomèdica, Parc Científic de Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|