1
|
Li X, Shen Y, Li D, Zhang K, Liu J, Yao L, Yang J, Qian J. PEG300 Protects Mitochondrial Function By Upregulating PGC-1α to Delay Central Nervous System Oxygen Toxicity in Mice. Neurotox Res 2024; 42:30. [PMID: 38884699 DOI: 10.1007/s12640-024-00708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/04/2024] [Accepted: 06/01/2024] [Indexed: 06/18/2024]
Abstract
Central nervous system oxygen toxicity (CNS-OT) is a complication of hyperbaric oxygen (HBO) treatment, with limited prevention and treatment options available. In this study, we aimed to explore the effect of polyethylene glycol 300 (PEG300) on CNS-OT and underlying mechanisms. Motor and cognitive functions of mice in normobaric conditions were evaluated by Morris water maze, passive active avoidance, and rotarod tests. HBO was applied at 6 atmospheres absolute (ATA) for 30 min after drug administration. The latency period of convulsion in mice was recorded, and hippocampal tissues were extracted for biochemical experiments. Our experimental results showed that PEG300 extended the convulsion latencies in CNS-OT mice, reduced oxidative stress and inflammation levels in hippocampal tissues. Furthermore, PEG300 preserved mitochondrial integrity and maintained mitochondrial membrane potential in hippocampal tissue by upregulating Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha (PGC-1α). This protective effect was enhanced following the administration of ZLN005, an agonist of PGC-1a. Hence, our study suggests that PEG300 might exert protective effects by upregulating PGC-1α expression and preserving mitochondrial health, offering promising prospects for CNS-OT treatment.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacy, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, Shanghai, China
| | - Yue Shen
- Department of Pharmacy, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, Shanghai, China
| | - Dan Li
- Naval Medical University, Shanghai, China
| | - Kun Zhang
- Department of Diving and Hyperbaric Medicine, Naval Special Medicine Center, Naval Medical University, Shanghai, China
| | - Jia Liu
- Department of Dermatology, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, Shanghai, China
| | - Lu Yao
- Department of Obstetrics and Gynecology, People's Hospital of Rugao City, Rugao, China
| | - Jun Yang
- Department of Orthopedics, The Second Affiliated Hospital (Changzheng Hospital), Naval Medical University, Shanghai, China.
| | - Jiao Qian
- Department of Pharmacy, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, Shanghai, China.
| |
Collapse
|
2
|
Pan JQ, Tian ZM, Xue LB. Hyperbaric Oxygen Treatment for Long COVID: From Molecular Mechanism to Clinical Practice. Curr Med Sci 2023; 43:1061-1065. [PMID: 37924387 DOI: 10.1007/s11596-023-2799-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/20/2023] [Indexed: 11/06/2023]
Abstract
Long COVID symptoms typically occur within 3 months of an initial COVID-19 infection, last for more than 2 months, and cannot be explained by other diagnoses. The most common symptoms include fatigue, dyspnea, coughing, and cognitive impairment. The mechanisms of long COVID are not fully understood, but several hypotheses have been put forth. These include coagulation and fibrosis pathway activation, inflammatory and autoimmune manifestations, persistent virus presence, and Epstein-Barr virus reactivation. Hyperbaric oxygen therapy (HBOT) is a therapeutic method in which a person inhales 100% oxygen under pressure greater than that of the atmosphere. HBOT has some therapeutic effects, including improvement of microcirculation, inhibition of cytokine release leading to a reduction in inflammatory responses, inhibition of autoimmune responses, and promotion of neurological repair. Several clinical trials have been carried out using HBOT to treat long COVID. The results suggest that HBOT helps to improve symptom severity, reduce symptom duration, and enhance patients' quality of life. It is believed that HBOT is an effective option for patients with long COVID, which is worth actively promoting.
Collapse
Affiliation(s)
- Jian-Qing Pan
- Department of Hyperbaric Oxygen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | | | - Lian-Bi Xue
- Department of Hyperbaric Oxygen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| |
Collapse
|
3
|
Demchenko IT, Suliman HB, Zhilyaey SY, Alekseeva OS, Platonova TF, Makowski MS, Piantadosi CA, Gasier HG. GAT inhibition preserves cerebral blood flow and reduces oxidant damage to mitochondria in rodents exposed to extreme hyperbaric oxygen. Front Mol Neurosci 2023; 15:1062410. [PMID: 36704328 PMCID: PMC9871636 DOI: 10.3389/fnmol.2022.1062410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Oxygen breathing at elevated partial pressures (PO2's) at or more than 3 atmospheres absolute (ATA) causes a reduction in brain γ-aminobutyric acid (GABA) levels that impacts the development of central nervous system oxygen toxicity (CNS-OT). Drugs that increase brain GABA content delay the onset of CNS-OT, but it is unknown if oxidant damage is lessened because brain tissue PO2 remains elevated during hyperbaric oxygen (HBO2) exposures. Experiments were performed in rats and mice to measure brain GABA levels with or without GABA transporter inhibitors (GATs) and its influence on cerebral blood flow, oxidant damage, and aspects of mitochondrial quality control signaling (mitophagy and biogenesis). In rats pretreated with tiagabine (GAT1 inhibitor), the tachycardia, secondary rise in mean arterial blood pressure, and cerebral hyperemia were prevented during HBO2 at 5 and 6 ATA. Tiagabine and the nonselective GAT inhibitor nipecotic acid similarly extended HBO2 seizure latencies. In mice pretreated with tiagabine and exposed to HBO2 at 5 ATA, nuclear and mitochondrial DNA oxidation and astrocytosis was attenuated in the cerebellum and hippocampus. Less oxidant injury in these regions was accompanied by reduced conjugated microtubule-associated protein 1A/1B-light chain 3 (LC3-II), an index of mitophagy, and phosphorylated cAMP response element binding protein (pCREB), an initiator of mitochondrial biogenesis. We conclude that GABA prevents cerebral hyperemia and delays neuroexcitation under extreme HBO2, limiting oxidant damage in the cerebellum and hippocampus, and likely lowering mitophagy flux and initiation of pCREB-initiated mitochondrial biogenesis.
Collapse
Affiliation(s)
- Ivan T. Demchenko
- The Duke Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, United States
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Hagir B. Suliman
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Sergey Y. Zhilyaey
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga S. Alekseeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Tatyana F. Platonova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Matthew S. Makowski
- The Duke Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, United States
| | - Claude A. Piantadosi
- The Duke Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, United States
| | - Heath G. Gasier
- The Duke Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
4
|
Sagris M, Theofilis P, Antonopoulos AS, Tsioufis K, Tousoulis D. Telomere Length: A Cardiovascular Biomarker and a Novel Therapeutic Target. Int J Mol Sci 2022; 23:16010. [PMID: 36555658 PMCID: PMC9781338 DOI: 10.3390/ijms232416010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Coronary artery disease (CAD) is a multifactorial disease with a high prevalence, particularly in developing countries. Currently, the investigation of telomeres as a potential tool for the early detection of the atherosclerotic disease seems to be a promising method. Telomeres are repetitive DNA sequences located at the extremities of chromosomes that maintain genetic stability. Telomere length (TL) has been associated with several human disorders and diseases while its attrition rate varies significantly in the population. The rate of TL shortening ranges between 20 and 50 bp and is affected by factors such as the end-replication phenomenon, oxidative stress, and other DNA-damaging agents. In this review, we delve not only into the pathophysiology of TL shortening but also into its association with cardiovascular disease and the progression of atherosclerosis. We also provide current and future treatment options based on TL and telomerase function, trying to highlight the importance of these cutting-edge developments and their clinical relevance.
Collapse
Affiliation(s)
| | | | | | | | - Dimitris Tousoulis
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| |
Collapse
|
5
|
Alvarez Villela M, Dunworth SA, Kraft BD, Harlan NP, Natoli MJ, Suliman HB, Moon RE. Effects of high-intensity interval training with hyperbaric oxygen. Front Physiol 2022; 13:963799. [PMID: 36060678 PMCID: PMC9437248 DOI: 10.3389/fphys.2022.963799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Hyperbaric Oxygen (HBO2) has been proposed as a pre-conditioning method to enhance exercise performance. Most prior studies testing this effect have been limited by inadequate methodologies. Its potential efficacy and mechanism of action remain unknown. We hypothesized that HBO2 could enhance aerobic capacity by inducing mitochondrial biogenesis via redox signaling in skeletal muscle. HBO2 was administered in combination with high-intensity interval training (HIIT), a potent redox stimulus known to induce mitochondrial biogenesis. Aerobic capacity was tested during acute hypobaric hypoxia seeking to shift the limiting site of whole body V̇O2 from convection to diffusion, more closely isolating any effect of improved oxidative capacity. Healthy volunteers were screened with sea-level (SL) V̇O2peak testing. Seventeen subjects were enrolled (10 men, 7 women, ages 26.5±1.3 years, BMI 24.6±0.6 kg m−2, V̇O2peak SL = 43.4±2.1). Each completed 6 HIIT sessions over 2 weeks randomized to breathing normobaric air, “HIIT+Air” (PiO2 = 0.21 ATM) or HBO2 (PiO2 = 1.4 ATM) during training, “HIIT+HBO2” group. Training workloads were individualized based on V̇O2peak SL test. Vastus Lateralis (VL) muscle biopsies were performed before and after HIIT in both groups. Baseline and post-training V̇O2peak tests were conducted in a hypobaric chamber at PiO2 = 0.12 ATM. HIIT significantly increased V̇O2peak in both groups: HIIT+HBO2 31.4±1.5 to 35.2±1.2 ml kg−1·min−1 and HIIT+Air 29.0±3.1 to 33.2±2.5 ml kg−1·min−1 (p = 0.005) without an additional effect of HBO2 (p = 0.9 for interaction of HIIT x HBO2). Subjects randomized to HIIT+HBO2 displayed higher skeletal muscle mRNA levels of PPARGC1A, a regulator of mitochondrial biogenesis, and HK2 and SLC2A4, regulators of glucose utilization and storage. All other tested markers of mitochondrial biogenesis showed no additional effect of HBO2 to HIIT. When combined with HIIT, short-term modest HBO2 (1.4 ATA) has does not increase whole-body V̇O2peak during acute hypobaric hypoxia. (ClinicalTrials.gov Identifier: NCT02356900; https://clinicaltrials.gov/ct2/show/NCT02356900).
Collapse
Affiliation(s)
- Miguel Alvarez Villela
- Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, United States
| | - Sophia A. Dunworth
- Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, United States
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Bryan D. Kraft
- Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, United States
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC, United States
| | - Nicole P. Harlan
- Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, United States
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC, United States
| | - Michael J. Natoli
- Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, United States
| | - Hagir B. Suliman
- Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, United States
| | - Richard E. Moon
- Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, United States
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC, United States
- *Correspondence: Richard E. Moon,
| |
Collapse
|
6
|
Lee CH, Choi YA, Heo SJ, Song P. The Effect of Hyperbaric Therapy on Brown Adipose Tissue in Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179165. [PMID: 34501754 PMCID: PMC8431214 DOI: 10.3390/ijerph18179165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022]
Abstract
Brown adipose tissue (BAT) plays an important role in thermogenic regulation, which contributes to alleviating diet-induced obesity through uncoupling protein 1 (UCP1) expression. While cold exposure and physical exercise are known to increase BAT development and UCP1 expression, the contribution of hyperbaric oxygen (HBO) therapy to BAT maturation remains largely unknown. Here, we show that HBO treatment sufficiently increases BAT volumes and thermogenic protein levels in Sprague-Dawley rats. Through 18F-FDG PET/CT analysis, we found that exposure to high-pressure oxygen (1.5–2.5 ATA) for 7 consecutive days increased radiolabeled glucose uptake and BAT development to an extent comparable to cold exposure. Consistent with BAT maturation, thermogenic protein levels, such as those of UCP1 and peroxisome proliferator-activated receptor γ coactivator 1α (PGC−1α), were largely increased by HBO treatment. Taken together, we suggest HBO therapy as a novel method of inducing BAT development, considering its therapeutic potential for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Chang-Hyung Lee
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Korea;
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (Y.-A.C.); (S.-J.H.)
| | - Young-A Choi
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (Y.-A.C.); (S.-J.H.)
| | - Sung-Jin Heo
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (Y.-A.C.); (S.-J.H.)
| | - Parkyong Song
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Korea
- Correspondence: ; Tel.: +82-51-510-8061; Fax: +82-51-510-8526
| |
Collapse
|
7
|
Hyperbaric Oxygen Therapy for Children and Youth with Autism Spectrum Disorder: A Review. Brain Sci 2021; 11:brainsci11070916. [PMID: 34356150 PMCID: PMC8303909 DOI: 10.3390/brainsci11070916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 01/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder determined by a complex of factors (genetic and environmental). On a pathophysiological basis hyperbaric oxygen therapy (HBOT) has been suggested as an effective therapeutic method in ASD, and thus many parents/guardians attempt to treat their child with ASD using this method. Therefore, this review aimed to verify the significant therapeutic value of this method for individuals with ASD. The literature review included all articles from the last 5 years (2015-2021) that met the inclusion criteria-both original papers and literature reviews. None of the 10 literature reviews indicated that HBOT was a clearly effective form of therapy in the case of ASD. Two out of four papers presenting the results of the intervention studies also did not recommend the use of this form of therapy in children with ASD. The results of the other two studies were not entirely relevant to the purpose of this review because one study had no control group, while the other study focused solely on auditory processing disorders. A review of the literature on whether HBOT as a therapy significantly affects the symptoms of ASD does not confirm its effectiveness.
Collapse
|
8
|
On SW, Cho SW, Byun SH, Yang BE. Various Therapeutic Methods for the Treatment of Medication-Related Osteonecrosis of the Jaw (MRONJ) and Their Limitations: A Narrative Review on New Molecular and Cellular Therapeutic Approaches. Antioxidants (Basel) 2021; 10:antiox10050680. [PMID: 33925361 PMCID: PMC8145192 DOI: 10.3390/antiox10050680] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is one of the most interesting diseases in the field of maxillofacial surgery. In addition to bisphosphonates, the use of antiresorptive and antiangiogenic agents is known to be the leading cause. However, the exact pathogenesis of MRONJ has not been established, and various hypotheses have been proposed, such as oxidative stress-related theory. As a result, a definitive treatment protocol for MRONJ has not been identified, while various therapeutic approaches are applied to manage patients with MRONJ. Although the surgical approach to treat osteomyelitis of the jaw has been proven to be most effective, there are limitations, such as recurrence and delayed healing. Many studies and clinical trials are being conducted to develop another effective therapeutic modality. The use of some materials, including platelet concentrates and bone morphogenetic proteins, showed a positive effect on MRONJ. Among them, teriparatide is currently the most promising material, and it has shown encouraging results when applied to patients with MRONJ. Furthermore, cell therapy using mesenchymal stem cells showed promising results, and it can be the new therapeutic approach for the treatment of MRONJ. This review presents various treatment methods for MRONJ and their limitations while investigating newly developed and researched molecular and cellular therapeutic approaches along with a literature review.
Collapse
Affiliation(s)
- Sung-Woon On
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong 18450, Korea;
- Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea; (S.-W.C.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
| | - Seoung-Won Cho
- Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea; (S.-W.C.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
- Division of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Korea
| | - Soo-Hwan Byun
- Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea; (S.-W.C.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
- Division of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Korea
| | - Byoung-Eun Yang
- Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea; (S.-W.C.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
- Division of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Korea
- Correspondence: ; Tel.: +82-380-3870
| |
Collapse
|
9
|
Yegorov YE, Poznyak AV, Nikiforov NG, Starodubova AV, Orekhov AN. Role of Telomeres Shortening in Atherogenesis: An Overview. Cells 2021; 10:395. [PMID: 33671887 PMCID: PMC7918954 DOI: 10.3390/cells10020395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
It is known that the shortening of the telomeres leads to cell senescence, accompanied by acquiring of pro-inflammatory phenotype. The expression of telomerase can elongate telomeres and resist the onset of senescence. The initiation of atherosclerosis is believed to be associated with local senescence of the endothelial cells of the arteries in places with either low or multidirectional oscillatory wall shear stress. The process of regeneration of the artery surface that has begun does not lead to success for several reasons. Atherosclerotic plaques are formed, which, when developed, lead to fatal consequences, which are the leading causes of death in the modern world. The pronounced age dependence of the manifestations of atherosclerosis pushes scientists to try to link the development of atherosclerosis with telomere length. The study of the role of telomere shortening in atherosclerosis is mainly limited to measuring the telomeres of blood cells, and only in rare cases (surgery or post-mortem examination) are the telomeres of local cells available for measurement. The review discusses the basic issues of cellular aging and the interpretation of telomere measurement data in atherosclerosis, as well as the prospects for the prevention and possible treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yegor E. Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
| | - Nikita G. Nikiforov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia;
- National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow 121552, Russia
- Institute of Gene Biology, Center of Collective Usage, Moscow 119334, Russia
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, Moscow 109240, Russia;
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia;
- Institute of Human Morphology, Moscow 117418, Russia
| |
Collapse
|
10
|
Abdel-Rahman EA, Zaky EA, Aboulsaoud M, Elhossiny RM, Youssef WY, Mahmoud AM, Ali SS. Autism spectrum disorder (ASD)-associated mitochondrial deficits are revealed in children's platelets but unimproved by hyperbaric oxygen therapy. Free Radic Res 2021; 55:26-40. [PMID: 33402007 DOI: 10.1080/10715762.2020.1856376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mitochondrial and immune dysfunctions are often implicated in the aetiology of autism spectrum disorder (ASD). Here, we studied for the first time the relationship between ASD severity measures and mitochondrial respiratory rates in freshly isolated platelets as well as the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) in isolated neutrophils. We also verified the impact of hyperbaric oxygen therapy (HBOT) on mitochondrial and immune functions as well as on ASD severity measures. Blood samples were collected from three age-matched male groups (Control (Norm-N), autistic (Aut-N), and autistic + HBOT (Aut-H); N = 10 per group). Using high resolution respirometry, we found that routine basal respiration, complex I- and complex I + II-dependent oxidative phosphorylation rate were significantly impaired in Aut-N platelets. Similarly, deficits in immune response of neutrophils were evidenced through lower rates of oxygen consumption and reactive oxygen species (ROS) production by phagocytic NOX. ASD-related behavioural outcomes were found to moderately correlate with platelets' mitochondrial bioenergetic parameters as well as with NOX-mediated activity in neutrophils. HBOT was not able to improve mitochondrial dysfunctions or to counteract ASD-related behavioral deficits. Although HBOT improved one measure of the immune response; namely, NOX-mediated superoxide burst, this was not associated with significant changes in trends of recurrent infections between groups. Taken together, our data suggest that ASD-associated mitochondria and immune deficits are detectable in platelets and neutrophils. We also found no evidence that HBOT confers any significant improvement of ASD-associated physiological or behavioural phenotypes.
Collapse
Affiliation(s)
- Engy A Abdel-Rahman
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,Basic Research Department, Children's Cancer Hospital, Cairo, Egypt.,Department of Pharmacology, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Eman A Zaky
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mahmoud Aboulsaoud
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Reham M Elhossiny
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Walaa Y Youssef
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ali M Mahmoud
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Sameh S Ali
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,Basic Research Department, Children's Cancer Hospital, Cairo, Egypt
| |
Collapse
|
11
|
Hadanny A, Efrati S. The Hyperoxic-Hypoxic Paradox. Biomolecules 2020; 10:biom10060958. [PMID: 32630465 PMCID: PMC7355982 DOI: 10.3390/biom10060958] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Effective metabolism is highly dependent on a narrow therapeutic range of oxygen. Accordingly, low levels of oxygen, or hypoxia, are one of the most powerful inducers of gene expression, metabolic changes, and regenerative processes, including angiogenesis and stimulation of stem cell proliferation, migration, and differentiation. The sensing of decreased oxygen levels (hypoxia) or increased oxygen levels (hyperoxia), occurs through specialized chemoreceptor cells and metabolic changes at the cellular level, which regulate the response. Interestingly, fluctuations in the free oxygen concentration rather than the absolute level of oxygen can be interpreted at the cellular level as a lack of oxygen. Thus, repeated intermittent hyperoxia can induce many of the mediators and cellular mechanisms that are usually induced during hypoxia. This is called the hyperoxic-hypoxic paradox (HHP). This article reviews oxygen physiology, the main cellular processes triggered by hypoxia, and the cascade of events triggered by the HHP.
Collapse
Affiliation(s)
- Amir Hadanny
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin 70300, Israel;
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
- Correspondence: ; Tel.: +972-544707381; Fax: +972-8-9779748
| | - Shai Efrati
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin 70300, Israel;
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
12
|
Hadanny A, Efrati S. The Hyperoxic-Hypoxic Paradox. Biomolecules 2020; 10:biom10060958. [PMID: 32630465 DOI: 10.3390/biom1006095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 05/21/2023] Open
Abstract
Effective metabolism is highly dependent on a narrow therapeutic range of oxygen. Accordingly, low levels of oxygen, or hypoxia, are one of the most powerful inducers of gene expression, metabolic changes, and regenerative processes, including angiogenesis and stimulation of stem cell proliferation, migration, and differentiation. The sensing of decreased oxygen levels (hypoxia) or increased oxygen levels (hyperoxia), occurs through specialized chemoreceptor cells and metabolic changes at the cellular level, which regulate the response. Interestingly, fluctuations in the free oxygen concentration rather than the absolute level of oxygen can be interpreted at the cellular level as a lack of oxygen. Thus, repeated intermittent hyperoxia can induce many of the mediators and cellular mechanisms that are usually induced during hypoxia. This is called the hyperoxic-hypoxic paradox (HHP). This article reviews oxygen physiology, the main cellular processes triggered by hypoxia, and the cascade of events triggered by the HHP.
Collapse
Affiliation(s)
- Amir Hadanny
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin 70300, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Shai Efrati
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin 70300, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
13
|
Leitman M, Efrati S, Fuchs S, Hadanny A, Vered Z. The effect of hyperbaric oxygenation therapy on myocardial function. Int J Cardiovasc Imaging 2020; 36:833-840. [PMID: 31953651 DOI: 10.1007/s10554-020-01773-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
Abstract
Hyperbaric oxygenation therapy is successfully implemented for the treatment of several disorders. Data on the effect of hyperbaric oxygenation on echocardiographic parameters in asymptomatic patients is limited. The current study sought to evaluate the effect of hyperbaric oxygenation therapy on echocardiographic parameters in asymptomatic patients. Thirty-one consecutive patients underwent a 60-sessions course of hyperbaric oxygenation therapy in an attempt to improve cognitive impairment. In all subjects, echocardiography examination was performed before and after a course of hyperbaric oxygenation therapy. Conventional and speckle tracking imaging parameters were calculated and analyzed. The mean age was 70 ± 9.5 years, 28 [90%] were males. History of coronary artery disease was present in 12 [39%]. 94% suffered from hypertension, 42% had diabetes mellitus. Baseline wall motion abnormalities were found in eight patients, however, global ejection fraction was within normal limits. During the study, ejection fraction [EF], increased from 60.71 ± 6.02 to 62.29 ± 5.19%, p = 0.02. Left ventricular end systolic volume [LVESV], decreased from 38.08 ± 13.30 to 35.39 ± 13.32 ml, p = 0.01. Myocardial performance index [MPi] improved, from 0.29 ± 0.07 to 0.26 ± 0.08, p = 0.03. Left ventricular [LV] global longitudinal strain increased from - 19.31 ± 3.17% to - 20.16 ± 3.34%, p = 0.036 due to improvement in regional strain in the apical and antero-septal segments. Twist increased from 18.32 ± 6.61° to 23.12 ± 6.35° p = 0.01, due to improvement in the apical rotation, from 11.76 ± 4.40° to 16.10 ± 5.56°, p = 0.004. Hyperbaric oxygen therapy appears to improve left ventricular function, especially in the apical segments, and is associated with better cardiac performance. If our results are confirmed in further studies, HBOT can be used in many patients with heart failure and systolic dysfunction.
Collapse
Affiliation(s)
- Marina Leitman
- Department of Cardiology, Shamir Medical Center, Zerifin, Israel. .,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Shai Efrati
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shmuel Fuchs
- Department of Cardiology, Shamir Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Hadanny
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Zvi Vered
- Department of Cardiology, Shamir Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
A Systematic Review of Oxygen Therapy for the Management of Medication-Related Osteonecrosis of the Jaw (MRONJ). APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9051026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Medication-related osteonecrosis of the jaw (MRONJ) can be a life changing iatrogenic complication of antiresorptive and antiangiogenic drug therapy. It is most often associated with high doses of these medications that are used to prevent skeletal-related events in patients with cancer and bone pathologies. Unfortunately, managing MRONJ lesions has proven difficult and remains a major challenge for clinicians. Due to the lack of efficacy in treating MRONJ by surgical modalities (local debridement and free flap reconstruction), the nonsurgical management of MRONJ is still advocated to aid healing or avoid disease progression. The aim of this systematic review is to identify, analyse and understand the published evidence related to the success of oxygen therapies such as ozone (OT) and hyperbaric oxygen (HBO) in treating MRONJ. Material and methods: A multi-database (PubMed, MEDLINE, EMBASE, CINAHL and Cochrane CENTRAL) systematic search was performed by three authors. The identified articles were independently assessed for their risk of bias. Any type of study evaluating humans treated with antiresorptive and antiangiogenic drugs were considered. The aim is primarily to evaluate the success of OT and HBO in resolving MRONJ and secondarily to identify any improvements in quality of life (QoL), rate of complications, time-to-event and severity of side effects related to these treatments. Results: In total, just 13 studies were eligible for analysis. A pooled total of 313 patients (HBO group n = 82; OT group n = 231) described in these studies have shown good tolerance for oxygen therapies. Complete resolution of MRONJ was reported in 44.58% of OT patients but only 5.17% of the HBO group. Progression of MRONJ was reported only in the HBO studies in 10.34% of cases (6 patients). The quality of evidence was low or very low in all studies. This was due to limitations in how the studies were designed, run and reported. Conclusions: Based on the limited data available, it is difficult to suggest OT is better or worse than HBO or whether it is better than a placebo. As the level of evidence available is low, this necessitates larger well-designed trials to justify these interventions for patients affected by MRONJ.
Collapse
|
15
|
Harch PG, Fogarty EF. Hyperbaric oxygen therapy for Alzheimer's dementia with positron emission tomography imaging: a case report. Med Gas Res 2019; 8:181-184. [PMID: 30713673 PMCID: PMC6352566 DOI: 10.4103/2045-9912.248271] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022] Open
Abstract
A 58-year-old female was diagnosed with Alzheimer's dementia (AD) which was rapidly progressive in the 8 months prior to initiation of hyperbaric oxygen therapy (HBOT). 18Fluorodeoxyglucose (18FDG) positron emission tomography (PET) brain imaging demonstrated global and typical metabolic deficits in AD (posterior temporal-parietal watershed and cingulate areas). An 8-week course of HBOT reversed the patient's symptomatic decline. Repeat PET imaging demonstrated a corresponding 6.5-38% regional and global increase in brain metabolism, including increased metabolism in the typical AD diagnostic areas of the brain. Continued HBOT in conjunction with standard pharmacotherapy maintained the patient's symptomatic level of function over an ensuing 22 months. This is the first reported case of simultaneous HBOT-induced symptomatic and 18FDG PET documented improvement of brain metabolism in AD and suggests an effect on global pathology in AD.
Collapse
Affiliation(s)
- Paul G Harch
- Department of Medicine, Section of Emergency and Hyperbaric Medicine, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Edward F Fogarty
- Department of Radiology, University of North Dakota School of Medicine and Health Sciences, Bismarck, ND, USA
| |
Collapse
|
16
|
Shah FA, Zeb A, Ali T, Muhammad T, Faheem M, Alam SI, Saeed K, Koh PO, Lee KW, Kim MO. Identification of Proteins Differentially Expressed in the Striatum by Melatonin in a Middle Cerebral Artery Occlusion Rat Model-a Proteomic and in silico Approach. Front Neurosci 2018; 12:888. [PMID: 30618542 PMCID: PMC6295458 DOI: 10.3389/fnins.2018.00888] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke is characterized by permanent or transient obstruction of blood flow, which initiates a cascading pathological process, starting from acute ATP loss to subsequent membrane depolarization, glutamate excitotoxicity, and calcium overload. Melatonin is a potent antioxidant that exerts protective effects in different experimental stroke models. In this study, melatonin effects were demonstrated by a proteomic and in silico approach. The proteomic study identified differentially expressed proteins by 2D gel electrophoresis in the striatum 24 h after middle cerebral artery occlusion. Proteomic analysis revealed several proteins with aberrant expression and was validated by western blot and immunofluorescence analysis. Homology modeling was performed to build 3D structures for γ-enolase, thioredoxin (TRX), and heat shock 60 (HSP60) by the template crystal structures using a protein data bank as a sequence database. The structure refinement of each model was achieved by energy minimization via molecular dynamic simulation, and the generated models were further assessed for stability by Procheck and ProSA. The models were processed for docking analysis using AutoDock Vina, and post-docking analysis was determined by discovery studio. The proteomic study showed decreased expression of γ-enolase, TRX, and protein phosphatase 2A subunit B and increased expression of collapsin response mediator protein 2 and HSP60 in the striatum after ischemic injury. Treatment with melatonin modulated the expression profiles of these proteins. This study demonstrated the neuroprotective role of melatonin in the ischemic striatum using a proteomic and in silico approach. Collectively, melatonin may act in a multimechanistic way by modulating the expression of several proteins in the ischemic striatum.
Collapse
Affiliation(s)
- Fawad Ali Shah
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea.,Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Rawalpindi, Pakistan
| | - Amir Zeb
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Tahir Ali
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea.,Department of Pharmacy, Faculty of Life Science, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Tahir Muhammad
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Muhammad Faheem
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Rawalpindi, Pakistan
| | - Sayed Ibrar Alam
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Kamran Saeed
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
17
|
Prophylactic melatonin significantly reduces Alzheimer's neuropathology and associated cognitive deficits independent of antioxidant pathways in AβPP(swe)/PS1 mice. Mol Neurodegener 2015; 10:27. [PMID: 26159703 PMCID: PMC4702331 DOI: 10.1186/s13024-015-0027-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023] Open
Abstract
Background Alzheimer’s disease (AD) underlies dementia for millions of people worldwide, and its occurrence is set to double in the next 20 years. Currently, approved drugs for treating AD only marginally ameliorate cognitive deficits, and provide limited symptomatic relief, while newer substances under therapeutic development are potentially years away from benefiting patients. Melatonin (MEL) for insomnia has been proven safe with >15 years of over-the-counter access in the US. MEL exerts multiple complementary mechanisms of action against AD in animal models; thus it may be an excellent disease-modifying therapeutic. While presumed to provide neuroprotection via activation of known G-protein-coupled melatonin receptors (MTNRs), some data indicate MEL acts intracellularly to protect mitochondria and neurons by scavenging reactive oxygen species and reducing free radical formation. We examined whether genetic deletion of MTNRs abolishes MEL’s neuroprotective actions in the AβPPswe/PSEN1dE9 mouse model of AD (2xAD). Beginning at 4 months of age, both AD and control mice either with or without both MTNRs were administered either MEL or vehicle in drinking water for 12 months. Results Behavioral and cognitive assessments of 15-month-old AD mice revealed receptor-dependent effects of MEL on spatial learning and memory (Barnes maze, Morris Water Maze), but receptor-independent neuroprotective actions of MEL on non-spatial cognitive performance (Novel Object Recognition Test). Similarly, amyloid plaque loads in hippocampus and frontal cortex, as well as plasma Aβ1–42 levels, were significantly reduced by MEL in a receptor-independent manner, in contrast to MEL’s efficacy in reducing cortical antioxidant gene expression (Catalase, SOD1, Glutathione Peroxidase-1, Nrf2) only when receptors were present. Increased cytochrome c oxidase activity was seen in 16mo AD mice as compared to non-AD control mice. This increase was completely prevented by MEL treatment of 2xAD/MTNR+ mice, but only partially prevented in 2xAD/MTNR- mice, consistent with mixed receptor-dependent and independent effects of MEL on this measure of mitochondrial function. Conclusions These findings demonstrate that prophylactic MEL significantly reduces AD neuropathology and associated cognitive deficits in a manner that is independent of antioxidant pathways. Future identification of direct molecular targets for MEL action in the brain should open new vistas for development of better AD therapeutics.
Collapse
|
18
|
Stoller KP. All the right moves: the need for the timely use of hyperbaric oxygen therapy for treating TBI/CTE/PTSD. Med Gas Res 2015. [PMID: 26207174 PMCID: PMC4512112 DOI: 10.1186/s13618-015-0028-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background The modern age of hyperbaric medicine began in 1937; however, today few know about hyperbaric oxygen’s effects on the body and medical conditions outside of diving medicine and wound care centers - a serious ethical issue as there are 20 US military veterans committing suicide every day directly related to Traumatic Brain Injury/Post Traumatic Stress Disorder. The problem is not whether hyperbaric oxygen is effective for treating brain injuries, but why the interference in offering this therapy to those who need it. Discussion Up against black-boxed anti-depressants that are not efficacious, it should be a “no-brainer” to use a safe, off-label drug, but in the case of military veterans, every suicide might be seen as a tremendous cost saving to certain technocrats. The unspoken rationale is that if the military were to embrace hyperbaric oxygen as the efficacious therapy that it is then current active troops that have suffered injuries will come forward and seek treatment and benefits for their Traumatic Brain Injuries now that they know there is a viable therapy and in so doing troop strength will be decimated. So, to attempt to delay the acceptance of hyperbaric oxygen the Department of Defense has funded faux-studies claiming low pressure room air to be a placebo or sham, and then proclaiming there is no statistical difference between treatment arms and sham or placebo treatment arms. With few who understand hyperbaric medicine there is almost no one to call them on this subterfuge and prevarication. Many peer-reviewed articles have been published in the last decade that demonstrate hyperbaric oxygen is effective in repairing an injured brain even long after that injury took place. One of the most notable showed that blast-induced brain injured war veterans experienced a 15 point IQ increase (p < 0.001). Summary Hyperbaric oxygen is an efficacious, benign and humanitarian way to affect brain repair but it has not been adopted because it lacks patent protection and has no large corporate sponsors. It has also met interference because other agendas are present be they the protection of the status quo, myopic budgetary constraints, or perceived liability issues.
Collapse
Affiliation(s)
- Kenneth P Stoller
- Chief of Hyperbaric Medicine, Hyperbaric Oxygen Clinic of San Francisco, HOCSF/Azzolino CN&IW, 1545 Broadway 1-A, San Francisco, CA 94109 USA
| |
Collapse
|
19
|
Drenjancevic I, Kibel A. Restoring Vascular Function with Hyperbaric Oxygen Treatment: Recovery Mechanisms. J Vasc Res 2013; 51:1-13. [DOI: 10.1159/000355925] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 09/05/2013] [Indexed: 11/19/2022] Open
|
20
|
Domachevsky L, Pick CG, Peled N, Gomori J, Abramovich A, Tempel-Brami C. MRI findings after hyperbaric oxygen-induced seizures. Epilepsy Res 2013; 105:62-8. [DOI: 10.1016/j.eplepsyres.2013.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 01/03/2013] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
|
21
|
Polman JAE, Welten JE, Bosch DS, de Jonge RT, Balog J, van der Maarel SM, de Kloet ER, Datson NA. A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells. BMC Neurosci 2012; 13:118. [PMID: 23031785 PMCID: PMC3519639 DOI: 10.1186/1471-2202-13-118] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/24/2012] [Indexed: 12/22/2022] Open
Abstract
Background Glucocorticoids, secreted by the adrenals in response to stress, profoundly affect structure and plasticity of neurons. Glucocorticoid action in neurons is mediated by glucocorticoid receptors (GR) that operate as transcription factors in the regulation of gene expression and either bind directly to genomic glucocorticoid response elements (GREs) or indirectly to the genome via interactions with bound transcription factors. These two modes of action, respectively called transactivation and transrepression, result in the regulation of a wide variety of genes important for neuronal function. The objective of the present study was to identify genome-wide glucocorticoid receptor binding sites in neuronal PC12 cells using Chromatin ImmunoPrecipitation combined with next generation sequencing (ChIP-Seq). Results In total we identified 1183 genomic binding sites of GR, the majority of which were novel and not identified in other ChIP-Seq studies on GR binding. More than half (58%) of the binding sites contained a GRE. The remaining 42% of the GBS did not harbour a GRE and therefore likely bind GR via an intermediate transcription factor tethering GR to the DNA. While the GRE-containing binding sites were more often located nearby genes involved in general cell functions and processes such as apoptosis, cell motion, protein dimerization activity and vasculature development, the binding sites without a GRE were located nearby genes with a clear role in neuronal processes such as neuron projection morphogenesis, neuron projection regeneration, synaptic transmission and catecholamine biosynthetic process. A closer look at the sequence of the GR binding sites revealed the presence of several motifs for transcription factors that are highly divergent from those previously linked to GR-signaling, including Gabpa, Prrx2, Zfp281, Gata1 and Zbtb3. These transcription factors may represent novel crosstalk partners of GR in a neuronal context. Conclusions Here we present the first genome-wide inventory of GR-binding sites in a neuronal context. These results provide an exciting first global view into neuronal GR targets and the neuron-specific modes of GR action and potentially contributes to our understanding of glucocorticoid action in the brain.
Collapse
Affiliation(s)
- J Annelies E Polman
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, 2333 CC, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Mitochondrial dysfunction contributes to the pathophysiology of acute neurologic disorders and neurodegenerative diseases. Bioenergetic failure is the primary cause of acute neuronal necrosis, and involves excitotoxicity-associated mitochondrial Ca(2+) overload, resulting in opening of the inner membrane permeability transition pore and inhibition of oxidative phosphorylation. Mitochondrial energy metabolism is also very sensitive to inhibition by reactive O(2) and nitrogen species, which modify many mitochondrial proteins, lipids, and DNA/RNA, thus impairing energy transduction and exacerbating free radical production. Oxidative stress and Ca(2+)-activated calpain protease activities also promote apoptosis and other forms of programmed cell death, primarily through modification of proteins and lipids present at the outer membrane, causing release of proapoptotic mitochondrial proteins, which initiate caspase-dependent and caspase-independent forms of cell death. This review focuses on three classifications of mitochondrial targets for neuroprotection. The first is mitochondrial quality control, maintained by the dynamic processes of mitochondrial fission and fusion and autophagy of abnormal mitochondria. The second includes targets amenable to ischemic preconditioning, e.g., electron transport chain components, ion channels, uncoupling proteins, and mitochondrial biogenesis. The third includes mitochondrial proteins and other molecules that defend against oxidative stress. Each class of targets exhibits excellent potential for translation to clinical neuroprotection.
Collapse
Affiliation(s)
- Miguel A Perez-Pinzon
- Department of Neurology, Cerebral Vascular Disease Research Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | |
Collapse
|
23
|
Freiberger JJ, Padilla-Burgos R, McGraw T, Suliman HB, Kraft KH, Stolp BW, Moon RE, Piantadosi CA. What Is the Role of Hyperbaric Oxygen in the Management of Bisphosphonate-Related Osteonecrosis of the Jaw: A Randomized Controlled Trial of Hyperbaric Oxygen as an Adjunct to Surgery and Antibiotics. J Oral Maxillofac Surg 2012; 70:1573-83. [DOI: 10.1016/j.joms.2012.04.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/06/2012] [Accepted: 04/06/2012] [Indexed: 12/28/2022]
|
24
|
Rossignol DA, Bradstreet JJ, Van Dyke K, Schneider C, Freedenfeld SH, O'Hara N, Cave S, Buckley JA, Mumper EA, Frye RE. Hyperbaric oxygen treatment in autism spectrum disorders. Med Gas Res 2012; 2:16. [PMID: 22703610 PMCID: PMC3472266 DOI: 10.1186/2045-9912-2-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/19/2012] [Indexed: 01/21/2023] Open
Abstract
Traditionally, hyperbaric oxygen treatment (HBOT) is indicated in several clinical disorders include decompression sickness, healing of problem wounds and arterial gas embolism. However, some investigators have used HBOT to treat individuals with autism spectrum disorders (ASD). A number of individuals with ASD possess certain physiological abnormalities that HBOT might ameliorate, including cerebral hypoperfusion, inflammation, mitochondrial dysfunction and oxidative stress. Studies of children with ASD have found positive changes in physiology and/or behavior from HBOT. For example, several studies have reported that HBOT improved cerebral perfusion, decreased markers of inflammation and did not worsen oxidative stress markers in children with ASD. Most studies of HBOT in children with ASD examined changes in behaviors and reported improvements in several behavioral domains although many of these studies were not controlled. Although the two trials employing a control group reported conflicting results, a recent systematic review noted several important distinctions between these trials. In the reviewed studies, HBOT had minimal adverse effects and was well tolerated. Studies which used a higher frequency of HBOT sessions (e.g., 10 sessions per week as opposed to 5 sessions per week) generally reported more significant improvements. Many of the studies had limitations which may have contributed to inconsistent findings across studies, including the use of many different standardized and non-standardized instruments, making it difficult to directly compare the results of studies or to know if there are specific areas of behavior in which HBOT is most effective. The variability in results between studies could also have been due to certain subgroups of children with ASD responding differently to HBOT. Most of the reviewed studies relied on changes in behavioral measurements, which may lag behind physiological changes. Additional studies enrolling children with ASD who have certain physiological abnormalities (such as inflammation, cerebral hypoperfusion, and mitochondrial dysfunction) and which measure changes in these physiological parameters would be helpful in further defining the effects of HBOT in ASD.
Collapse
Affiliation(s)
- Daniel A Rossignol
- Rossignol Medical Center, 3800 West Eau Gallie Blvd,, Melbourne, FL, 32934, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rossignol DA. Hyperbaric oxygen treatment for inflammatory bowel disease: a systematic review and analysis. Med Gas Res 2012; 2:6. [PMID: 22417628 PMCID: PMC3328239 DOI: 10.1186/2045-9912-2-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 03/15/2012] [Indexed: 01/14/2023] Open
Abstract
Background Traditionally, hyperbaric oxygen treatment (HBOT) has been used to treat a limited repertoire of disease, including decompression sickness and healing of problem wounds. However, some investigators have used HBOT to treat inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. Methods Comprehensive searches were conducted in 8 scientific databases through 2011 to identify publications using HBOT in IBD. Human studies and animal models were collated separately. Results Thirteen studies of HBOT in Crohn's disease and 6 studies in ulcerative colitis were identified. In all studies, participants had severe disease refractory to standard medical treatments, including corticosteroids, immunomodulators and anti-inflammatory medications. In patients with Crohn's disease, 31/40 (78%) had clinical improvements with HBOT, while all 39 patients with ulcerative colitis improved. One study in Crohn's disease reported a significant decrease in proinflammatory cytokines (IL-1, IL-6 and TNF-alpha) and one study in ulcerative colitis reported a decrease in IL-6 with HBOT. Adverse events were minimal. Twelve publications reported using HBOT in animal models of experimentally-induced IBD, including several studies reporting decreased markers of inflammation or immune dysregulation, including TNF-alpha (3 studies), IL-1beta (2 studies), neopterin (1 study) and myeloperoxidase activity (5 studies). HBOT also decreased oxidative stress markers including malondialdehyde (3 studies) and plasma carbonyl content (2 studies), except for one study that reported increased plasma carbonyl content. Several studies reported HBOT lowered nitric oxide (3 studies) and nitric oxide synthase (3 studies) and one study reported a decrease in prostaglandin E2 levels. Four animal studies reported decreased edema or colonic tissue weight with HBOT, and 8 studies reported microscopic improvements on histopathological examination. Although most publications reported improvements with HBOT, some studies suffered from limitations, including possible publication and referral biases, the lack of a control group, the retrospective nature and a small number of participants. Conclusions HBOT lowered markers of inflammation and oxidative stress and ameliorated IBD in both human and animal studies. Most treated patients were refractory to standard medical treatments. Additional studies are warranted to investigate the effects of HBOT on biomarkers of oxidative stress and inflammation as well as clinical outcomes in individuals with IBD.
Collapse
Affiliation(s)
- Daniel A Rossignol
- Rossignol Medical Center, 3800 West Eau Gallie Blvd,, Melbourne, FL 32934, USA.
| |
Collapse
|
26
|
Domachevsky L, Pick CG, Arieli Y, Krinsky N, Abramovich A, Eynan M. Do hyperbaric oxygen-induced seizures cause brain damage? Epilepsy Res 2012; 100:37-41. [PMID: 22293507 DOI: 10.1016/j.eplepsyres.2012.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 01/04/2012] [Accepted: 01/07/2012] [Indexed: 10/14/2022]
Abstract
It is commonly accepted that hyperbaric oxygen-induced seizures, the most severe manifestation of central nervous system oxygen toxicity, are harmless. However, this hypothesis has not been investigated in depth. We used apoptotic markers to determine whether cells in the cortex and hippocampus were damaged by hyperbaric oxygen-induced seizures in mice. Experimental animals were exposed to a pressure of 6 atmospheres absolute breathing oxygen, and were randomly assigned to two groups sacrificed 1h after the appearance of seizures or 7 days later. Control groups were not exposed to hyperbaric oxygen. Caspase 9, caspase 3, and cytochrome c were used as apoptotic markers. These were measured in the cortex and the hippocampus, and compared between the groups. Levels of caspase 3, cytochrome c, and caspase 9 in the hippocampus were significantly higher in the hyperbaric oxygenexposed groups compared with the control groups 1 week after seizures (p<0.01). The levels of two fragments of caspase 9 in the cortex were higher in the control group compared with the hyperbaric oxygen-exposed group 1h after seizures (p<0.01). Hyperbaric oxygen-induced seizures activate apoptosis in the mouse hippocampus. The reason for the changes in the cortex is not understood. Further investigation is necessary to elucidate the mechanism underlying these findings and their significance.
Collapse
|
27
|
Williams R, Buchheit CL, Berman NEJ, LeVine SM. Pathogenic implications of iron accumulation in multiple sclerosis. J Neurochem 2011; 120:7-25. [PMID: 22004421 DOI: 10.1111/j.1471-4159.2011.07536.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Iron, an essential element used for a multitude of biochemical reactions, abnormally accumulates in the CNS of patients with multiple sclerosis (MS). The mechanisms of abnormal iron deposition in MS are not fully understood, nor do we know whether these deposits have adverse consequences, that is, contribute to pathogenesis. With some exceptions, excess levels of iron are represented concomitantly in multiple deep gray matter structures often with bilateral representation, whereas in white matter, pathological iron deposits are usually located at sites of inflammation that are associated with veins. These distinct spatial patterns suggest disparate mechanisms of iron accumulation between these regions. Iron has been postulated to promote disease activity in MS by various means: (i) iron can amplify the activated state of microglia resulting in the increased production of proinflammatory mediators; (ii) excess intracellular iron deposits could promote mitochondria dysfunction; and (iii) improperly managed iron could catalyze the production of damaging reactive oxygen species (ROS). The pathological consequences of abnormal iron deposits may be dependent on the affected brain region and/or accumulation process. Here, we review putative mechanisms of enhanced iron uptake in MS and address the likely roles of iron in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Rachel Williams
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
28
|
Freiberger JJ, Feldmeier JJ. Evidence Supporting the Use of Hyperbaric Oxygen in the Treatment of Osteoradionecrosis of the Jaw. J Oral Maxillofac Surg 2010; 68:1903-6. [DOI: 10.1016/j.joms.2010.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 02/03/2010] [Indexed: 01/10/2023]
|
29
|
Foti R, Zucchelli S, Biagioli M, Roncaglia P, Vilotti S, Calligaris R, Krmac H, Girardini JE, Del Sal G, Gustincich S. Parkinson disease-associated DJ-1 is required for the expression of the glial cell line-derived neurotrophic factor receptor RET in human neuroblastoma cells. J Biol Chem 2010; 285:18565-74. [PMID: 20395301 PMCID: PMC2881782 DOI: 10.1074/jbc.m109.088294] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 04/14/2010] [Indexed: 11/06/2022] Open
Abstract
Mutations in PARK7/DJ-1 are associated with autosomal recessive, early onset Parkinson disease (PD). DJ-1 is an atypical peroxiredoxin-like peroxidase that may act as a redox-dependent chaperone and a regulator of transcription. Here we show that DJ-1 plays an essential role in the expression of rearranged during transfection (RET), a receptor for the glial cell line-derived neurotrophic factor, a neuroprotective molecule for dopaminergic neurons, the main target of degeneration in PD. The inducible loss of DJ-1 triggers the establishment of hypoxia and the production of reactive oxygen species that stabilize the hypoxia-inducible factor-1alpha (HIF-1a). HIF-1a expression is required for RET down-regulation. This study establishes for the first time a molecular link between the lack of functional DJ-1 and the glial cell line-derived neurotrophic factor signaling pathway that may explain the adult-onset loss of dopaminergic neurons. Furthermore, it suggests that hypoxia may play an important role in PD.
Collapse
Affiliation(s)
- Rossana Foti
- From the Sector of Neurobiology, International School for Advanced Studies (SISSA)
| | - Silvia Zucchelli
- From the Sector of Neurobiology, International School for Advanced Studies (SISSA)
- SISSA Unit, Italian Institute of Technology, and
- The Giovanni Armenise-Harvard Foundation Laboratory, AREA Science Park, S.S. 14, Km 163.5, Basovizza, and
| | - Marta Biagioli
- From the Sector of Neurobiology, International School for Advanced Studies (SISSA)
- The Giovanni Armenise-Harvard Foundation Laboratory, AREA Science Park, S.S. 14, Km 163.5, Basovizza, and
| | - Paola Roncaglia
- From the Sector of Neurobiology, International School for Advanced Studies (SISSA)
| | - Sandra Vilotti
- From the Sector of Neurobiology, International School for Advanced Studies (SISSA)
| | - Raffaella Calligaris
- From the Sector of Neurobiology, International School for Advanced Studies (SISSA)
- The Giovanni Armenise-Harvard Foundation Laboratory, AREA Science Park, S.S. 14, Km 163.5, Basovizza, and
| | - Helena Krmac
- From the Sector of Neurobiology, International School for Advanced Studies (SISSA)
- The Giovanni Armenise-Harvard Foundation Laboratory, AREA Science Park, S.S. 14, Km 163.5, Basovizza, and
| | | | - Giannino Del Sal
- The Laboratorio Nazionale CIB, Area Science Park Padriciano, 34149 Trieste, Italy, and
- the Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
| | - Stefano Gustincich
- From the Sector of Neurobiology, International School for Advanced Studies (SISSA)
- SISSA Unit, Italian Institute of Technology, and
- The Giovanni Armenise-Harvard Foundation Laboratory, AREA Science Park, S.S. 14, Km 163.5, Basovizza, and
| |
Collapse
|
30
|
Hokari M, Kuroda S, Kinugawa S, Ide T, Tsutsui H, Iwasaki Y. Overexpression of mitochondrial transcription factor A (TFAM) ameliorates delayed neuronal death due to transient forebrain ischemia in mice. Neuropathology 2010; 30:401-7. [DOI: 10.1111/j.1440-1789.2009.01086.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Abdullaev SA, Antipova VN, Gaziev AI. Extracellular mutant mitochondrial DNA content is dramatically elevated in the blood plasma of irradiated mice. Mol Biol 2009. [DOI: 10.1134/s0026893309060119] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Snyder AM, Wang X, Patton SM, Arosio P, Levi S, Earley CJ, Allen RP, Connor JR. Mitochondrial ferritin in the substantia nigra in restless legs syndrome. J Neuropathol Exp Neurol 2009; 68:1193-9. [PMID: 19816198 DOI: 10.1097/nen.0b013e3181bdc44f] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Restless legs syndrome (RLS) is a neurological disorder that is thought to involve decreased iron availability in the brain. Iron is required for oxidative metabolism and plays a critical role in redox reactions in mitochondria. The recent discovery of mitochondrial ferritin (FtMt) provided the opportunity to identify a potential correlation between iron and mitochondrial function in RLS. Human substantia nigra (SN) and putamen autopsy samples from 8 RLS cases and 8 controls were analyzed. Mitochondrial ferritin levels in RLS SN tissue homogenate samples assessed by immunoblots had more FtMt than control samples (p < 0.01), whereas there were no significant differences in FtMt in the putamen samples. By immunohistochemistry, neuromelanin-containing neurons in the SN were the predominant cell type expressing FtMt. Staining in neurons in RLS samples was consistently greater than that in controls. Cytochrome c oxidase staining, which reflects numbers of mitochondria, showed a similar staining pattern to that of FtMt, whereas there was less immunostaining in the RLS cases for cytosolic H-ferritin. These results suggest that increased numbers of mitochondria in neurons in RLS and increased FtMt might contribute to insufficient cytosolic iron levels in RLS SN neurons; they are consistent with the hypothesis that energy insufficiency in these neurons may be involved in the pathogenesis of RLS.
Collapse
Affiliation(s)
- Amanda M Snyder
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Unexpected expression of alpha- and beta-globin in mesencephalic dopaminergic neurons and glial cells. Proc Natl Acad Sci U S A 2009; 106:15454-9. [PMID: 19717439 DOI: 10.1073/pnas.0813216106] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mesencephalic dopaminergic (mDA) cell system is composed of two major groups of projecting cells in the substantia nigra (SN) (A9 neurons) and the ventral tegmental area (VTA) (A10 cells). A9 neurons form the nigrostriatal pathway and are involved in regulating voluntary movements and postural reflexes. Their selective degeneration leads to Parkinson's disease. Here, we report that gene expression analysis of A9 dopaminergic neurons (DA) identifies transcripts for alpha- and beta-chains of hemoglobin (Hb). Globin immunoreactivity decorates the majority of A9 DA, a subpopulation of cortical and hippocampal astrocytes and mature oligodendrocytes. This pattern of expression was confirmed in different mouse strains and in rat and human. We show that Hb is expressed in the SN of human postmortem brain. By microarray analysis of dopaminergic cell lines overexpressing alpha- and beta-globin chains, changes in genes involved in O(2) homeostasis and oxidative phopshorylation were observed, linking Hb expression to mitochondrial function. Our data suggest that the most famed oxygen-carrying globin is not exclusively restricted to the blood, but it may play a role in the normal physiology of the brain and neurodegenerative diseases.
Collapse
|
34
|
Utility of Hyperbaric Oxygen in Treatment of Bisphosphonate-Related Osteonecrosis of the Jaws. J Oral Maxillofac Surg 2009; 67:96-106. [DOI: 10.1016/j.joms.2008.12.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 12/08/2008] [Indexed: 01/08/2023]
|
35
|
Page MM, Salmon AB, Leiser SF, Robb EL, Brown MF, Miller RA, Stuart JA. Mechanisms of stress resistance in Snell dwarf mouse fibroblasts: enhanced antioxidant and DNA base excision repair capacity, but no differences in mitochondrial metabolism. Free Radic Biol Med 2009; 46:1109-18. [PMID: 19439226 PMCID: PMC2683197 DOI: 10.1016/j.freeradbiomed.2009.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 12/22/2008] [Accepted: 01/15/2009] [Indexed: 02/07/2023]
Abstract
Dermal fibroblasts from long-lived Snell dwarf mice can withstand a variety of oxidative and non-oxidative stressors compared to normal littermate controls. Here, we report differences in the levels and activities of intracellular antioxidant and DNA repair enzymes between normal and Snell dwarf mice fibroblasts cultured under a variety of conditions, including: 3% and 20% ambient O(2); the presence and absence of serum; and the addition of an exogenous oxidative stress. The only significant difference between normal and dwarf cells cultured in complete medium, at 20% O(2), was an approximately 40% elevation of glutathione peroxidase (GPx) activity in the mutant cells. Serum deprivation elicited increases in GPx in both genotypes, but these activities remained higher in dwarf mouse cells. Dwarf mouse cells deprived of serum and challenged with exposure to paraquat or hydrogen peroxide showed a generally greater upregulation of catalase and DNA base excision repair enzymes. As these toxins can interact with mitochondria to increase mitochondrial ROS production, we explored whether there were differences in mitochondrial metabolism between normal and dwarf mouse cells. However, neither mitochondrial content nor the apparent mitochondrial membrane potential differed between genotypes. Overall, the results suggest that superior hydrogen peroxide metabolism and a marginally greater DNA base excision repair capacity contribute to the stress resistance phenotype of Snell dwarf mouse fibroblasts.
Collapse
Affiliation(s)
- Melissa M. Page
- Affiliation for Melissa M. Page, Ellen L. Robb, Melanie F. Brown and Jeffrey A. Stuart is Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada, L2S 3A1
| | - Adam B. Salmon
- Affiliation for Adam B. Salmon and Scott F. Leiser is Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109-2200
| | - Scott F. Leiser
- Affiliation for Adam B. Salmon and Scott F. Leiser is Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109-2200
| | - Ellen L. Robb
- Affiliation for Melissa M. Page, Ellen L. Robb, Melanie F. Brown and Jeffrey A. Stuart is Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada, L2S 3A1
| | - Melanie F. Brown
- Affiliation for Melissa M. Page, Ellen L. Robb, Melanie F. Brown and Jeffrey A. Stuart is Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada, L2S 3A1
| | - Richard A. Miller
- Affiliation for Richard A. Miller is Department of Pathology and Geriatrics Center, University of Michigan, 3001 BSRB Box 2200, Ann Arbor, MI 48109-2200 and Ann Arbor VA Medical Center, Ann Arbor, MI
| | - Jeffrey A. Stuart
- Affiliation for Melissa M. Page, Ellen L. Robb, Melanie F. Brown and Jeffrey A. Stuart is Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada, L2S 3A1
| |
Collapse
|
36
|
Pandit A, Vadnal J, Houston S, Freeman E, McDonough J. Impaired regulation of electron transport chain subunit genes by nuclear respiratory factor 2 in multiple sclerosis. J Neurol Sci 2009; 279:14-20. [PMID: 19187944 DOI: 10.1016/j.jns.2009.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 12/09/2008] [Accepted: 01/08/2009] [Indexed: 11/27/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease. Recently, decreased expression of nuclear encoded electron transport chain genes was found in neurons in MS cortex. To understand the transcriptional mechanisms responsible for the coordinate down regulation of these genes, we performed electrophoretic mobility shifts with nuclear extracts isolated from gray matter from nonlesion areas of postmortem MS and control cortex. Nine tissue blocks from eight different MS brains and six matched control blocks from five control brains were analyzed. We identified a decrease in a transcription factor complex containing nuclear respiratory factor 2 (NRF-2) in nuclear extracts isolated from MS cortex. This decrease is correlated with decreased expression of electron transport chain subunit genes and increased oxidative damage measured by increased anti-nitrotyrosine immunoreactivity. We conclude that in MS cortex a chronic increase in oxidative stress leads to aberrant regulation of transcription of genes involved in energy metabolism.
Collapse
Affiliation(s)
- Ashish Pandit
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | | | | | | | | |
Collapse
|
37
|
Yin W, Signore AP, Iwai M, Cao G, Gao Y, Chen J. Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke 2008; 39:3057-63. [PMID: 18723421 PMCID: PMC2726706 DOI: 10.1161/strokeaha.108.520114] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 03/27/2008] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Mitochondrial biogenesis is regulated through the coordinated actions of both nuclear and mitochondrial genomes to ensure that the organelles are replenished on a regular basis. This highly regulated process has been well defined in skeletal and heart muscle, but its role in neuronal cells, particularly when under stress or injury, is not well understood. In this study, we report for the first time rapidly increased mitochondrial biogenesis in a rat model of neonatal hypoxic/ischemic brain injury (H-I). METHODS Postnatal day 7 rats were subjected to H-I induced by unilateral carotid artery ligation followed by 2.5 hours of hypoxia. The relative amount of brain mitochondrial DNA (mtDNA) was measured semiquantitatively using long fragment PCR at various time points after H-I. HSP60 and COXIV proteins were detected by Western blot. Expression of three genes critical for the transcriptional regulation of mitochondrial biogenesis, peroxisome proliferator-activated receptor coactivator-1 (PGC-1), nuclear respiratory factor-1 (NRF-1), and mitochondrial transcription factor A (TFAM), were examined by Western blot and RT-PCR. RESULTS Brain mtDNA content was markedly increased 6 hours after H-I, and continued to increase up to 24 hours after H-I. Paralleling the temporal change in mtDNA content, mitochondrial number and proteins HSP60 and COXIV, and citrate synthase activity were increased in neurons in the cortical infarct border zone after H-I. Moreover, cortical expression of NRF-1 and TFAM were increased 6 to 24 hours after H-I, whereas PGC-1 was not changed. CONCLUSIONS Neonatal H-I brain injury rapidly induces mitochondrial biogenesis, which may constitute a novel component of the endogenous repair mechanisms of the brain.
Collapse
Affiliation(s)
- Wei Yin
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
38
|
Gasiev AI, Shaikhaev GO. Lesions of the mitochondrial genome and ways of its preservation. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408040017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Lee HM, Greeley GH, Englander EW. Sustained hypoxia modulates mitochondrial DNA content in the neonatal rat brain. Free Radic Biol Med 2008; 44:807-14. [PMID: 18078825 PMCID: PMC2730834 DOI: 10.1016/j.freeradbiomed.2007.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 10/18/2007] [Accepted: 11/05/2007] [Indexed: 12/13/2022]
Abstract
The effects of placental insufficiency and preterm birth on neurodevelopment can be modeled in experimental settings of neonatal hypoxia in rodents. Here, rat pups were reared in reduced oxygen (9.5%) for 11 days, starting on postnatal day 3 (P3). This led to a significant reduction in brain and body weight gain in hypoxic pups compared to age-matched normoxia-reared controls, plausibly reflecting an inability to fulfill the energetic needs of normal growth and development. Adaptive processes designed to augment energetic capacity in eukaryotes include stimulation of mitochondrial biogenesis. We show that after 11 days of sustained hypoxia, the levels of nuclear respiratory factor-1 and mitochondrial transcription factor A are elevated and the content of mitochondrial DNA (mtDNA) is greater in the hypoxic P14 pup brain compared to normoxic conditions. Corresponding immunohistochemical analyses reveal increased density of mtDNA in large cortical neurons. In contrast, no changes in mtDNA content are observed in the brain of pups reared for 24 h (P3-P4) under hypoxic conditions. Together, these data suggest that prolonged inadequate oxygenation may trigger a compensatory increase in neuronal mitochondrial DNA content to partially mitigate compromised energy homeostasis and reduced energetic capacity in the developing hypoxic brain.
Collapse
Affiliation(s)
- Heung M Lee
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
- Shriners Hospitals for Children, Galveston, Texas
| | - George H Greeley
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Ella W Englander
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
- Shriners Hospitals for Children, Galveston, Texas
| |
Collapse
|
40
|
Gutsaeva DR, Carraway MS, Suliman HB, Demchenko IT, Shitara H, Yonekawa H, Piantadosi CA. Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism. J Neurosci 2008; 28:2015-24. [PMID: 18305236 PMCID: PMC6671843 DOI: 10.1523/jneurosci.5654-07.2008] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 12/27/2007] [Indexed: 02/06/2023] Open
Abstract
The adaptive mechanisms that protect brain metabolism during and after hypoxia, for instance, during hypoxic preconditioning, are coordinated in part by nitric oxide (NO). We tested the hypothesis that acute transient hypoxia stimulates NO synthase (NOS)-activated mechanisms of mitochondrial biogenesis in the hypoxia-sensitive subcortex of wild-type (Wt) and neuronal NOS (nNOS) and endothelial NOS (eNOS)-deficient mice. Mice were exposed to hypobaric hypoxia for 6 h, and changes in immediate hypoxic transcriptional regulation of mitochondrial biogenesis was assessed in relation to mitochondrial DNA (mtDNA) content and mitochondrial density. There were no differences in cerebral blood flow or hippocampal PO2 responses to acute hypoxia among these strains of mice. In Wt mice, hypoxia increased mRNA levels for peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1 alpha), nuclear respiratory factor-1, and mitochondrial transcription factor A. After 24 h, new mitochondria, localized in reporter mice expressing mitochondrial green fluorescence protein, were seen primarily in hippocampal neurons. eNOS-/- mice displayed lower basal levels but maintained hypoxic induction of these transcripts. In contrast, nuclear transcriptional regulation of mitochondrial biogenesis in nNOS-/- mice was normal at baseline but did not respond to hypoxia. After hypoxia, subcortical mtDNA content increased in Wt and eNOS-/- mice but not in nNOS-/- mice. Hypoxia stimulated PGC-1alpha protein expression and phosphorylation of protein kinase A and cAMP response element binding (CREB) protein in Wt mice, but CREB only was activated in eNOS-/- mice and not in nNOS-/- mice. These findings demonstrate that hypoxic preconditioning elicits subcortical mitochondrial biogenesis by a novel mechanism that requires nNOS regulation of PGC-1alpha and CREB.
Collapse
Affiliation(s)
- Diana R. Gutsaeva
- Departments of Medicine, Anesthesiology, and Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, North Carolina 27710
- Institute of Evolutionary Physiology and Biochemistry RAS, St. Petersburg 197376, Russia, and
| | - Martha Sue Carraway
- Departments of Medicine, Anesthesiology, and Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Hagir B. Suliman
- Departments of Medicine, Anesthesiology, and Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Ivan T. Demchenko
- Departments of Medicine, Anesthesiology, and Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, North Carolina 27710
- Institute of Evolutionary Physiology and Biochemistry RAS, St. Petersburg 197376, Russia, and
| | - Hiroshi Shitara
- Department of Laboratory Animal Science, Tokyo Metropolitan Institute of Medical Science, Tokyo 113 8613, Japan
| | - Hiromichi Yonekawa
- Department of Laboratory Animal Science, Tokyo Metropolitan Institute of Medical Science, Tokyo 113 8613, Japan
| | - Claude A. Piantadosi
- Departments of Medicine, Anesthesiology, and Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
41
|
Carraway MS, Suliman HB, Kliment C, Welty-Wolf KE, Oury TD, Piantadosi CA. Mitochondrial biogenesis in the pulmonary vasculature during inhalational lung injury and fibrosis. Antioxid Redox Signal 2008; 10:269-75. [PMID: 17999632 PMCID: PMC2268979 DOI: 10.1089/ars.2007.1910] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cell survival and injury repair is facilitated by mitochondrial biogenesis; however, the role of this process in lung repair is unknown. We evaluated mitochondrial biogenesis in the mouse lung in two injuries that cause acute inflammation and in two that cause chronic inflammation and pulmonary fibrosis. By using reporter mice that express green fluorescent protein (GFP) exclusively in mitochondria, we tracked mitochondrial biogenesis and correlated it with histologic lung injury, proliferation, and fibrosis. At 72 hours after acute LPS or continuous exposure to hyperoxia (Fio2, 1.0), the lungs showed diffuse infiltration by inflammatory cells in the alveolar region. In reporter mice, patchy new mitochondrial fluorescence was found in the alveolar region but was most prominent and unexpected in perivascular regions. At 14 days after instillation of asbestos or bleomycin, diffuse chronic inflammation had developed, and green fluorescence appeared in inflammatory cells in the expanded interstitium and was most intense in smooth muscle cells of pulmonary vessels. In all four lung injuries, mitochondrial fluorescence colocalized with mitochondrial superoxide dismutase, but not with proliferating cell nuclear antigen. These data indicate that vascular mitochondrial biogenesis is activated in diverse inhalational lung injuries along with oxidative stress. This finding indicates a unique and unexpected mechanism of metabolic adaptation to pulmonary fibrotic injuries.
Collapse
Affiliation(s)
- Martha S Carraway
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Chou YF, Yu CC, Huang RFS. Changes in mitochondrial DNA deletion, content, and biogenesis in folate-deficient tissues of young rats depend on mitochondrial folate and oxidative DNA injuries. J Nutr 2007; 137:2036-42. [PMID: 17709439 DOI: 10.1093/jn/137.9.2036] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We aimed to characterize folate-related changes in mitochondrial (mt) DNA of various tissues of young rats. Weaning Wistar rats were fed folate-deficient (FD) or folate-replete (control) diet for 2 or 4 wk. The mtDNA 4834-bp large deletion (mtDNA(4834) deletion) and mtDNA content were analyzed by quantitative real-time PCR. Compared with pooled 2-wk and 4-wk control groups, 4-wk folate deprivation significantly increased the frequency of the mtDNA(4834) deletion in pancreas, heart, brain, liver, and kidney and reduced mtDNA contents in brain, heart, and liver (P < 0.05). Decreased mt folate levels were correlated with increased mtDNA(4834) deletion frequency in tissues from FD rats after 2 wk (r = -0.380, P = 0.001) and 4 wk FD (r = -0.275, P = 0.033) and with reduced mtDNA content after 4 wk (r = 0.513, P = 0.005). In liver of 4-wk FD rats, the accumulated mtDNA large deletions and decline in mtDNA accompanied increased expressions of messenger RNAs (mRNA) of factors that regulate mtDNA proliferation and transcription, including nuclear respiratory factor 1, mt transcriptional factor A, mt single-strand DNA-binding protein, and mt polymerase r. In parallel, expression of mRNA for nuclear-encoded cytochrome c oxidase subunits (CcOX) IV, V, cytochrome c, and mtDNA-encoded CcOX III increased significantly. This enhanced mt biogenesis in 4-wk FD liver coincided with an elevated ratio of 8 hydroxydeoxyguanosine (8-OHdG):deoxyguanosine (dG) (2.67 +/- 1.41) relative to the controls (0.99 +/- 0.36; P = 0.0002). The 8-OHdG:dG levels in FD liver were correlated with liver mt folate (r = -0.819, P < 0.001), mtDNA deletions (r = 0.580, P = 0.001), and mtDNA contents (r = -0.395, P = 0.045). Thus, folate deprivation induced aberrant changes of mtDNA(4834) deletion and mtDNA content in a manner that was dependent on mt folate and oxidative DNA injuries. The folate-related mt biogenesis provides a molecular mechanism to compensate mtDNA impairment in FD tissues.
Collapse
Affiliation(s)
- Yi-Fang Chou
- Department of Nutritional Science, Fu-Jen University, HsinChuang 242, Tapei, Taiwan, ROC
| | | | | |
Collapse
|
43
|
Coppedè F, Mancuso M, Lo Gerfo A, Carlesi C, Piazza S, Rocchi A, Petrozzi L, Nesti C, Micheli D, Bacci A, Migliore L, Murri L, Siciliano G. Association of the hOGG1 Ser326Cys polymorphism with sporadic amyotrophic lateral sclerosis. Neurosci Lett 2007; 420:163-8. [PMID: 17531381 DOI: 10.1016/j.neulet.2007.04.067] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 04/24/2007] [Accepted: 04/30/2007] [Indexed: 02/01/2023]
Abstract
Amyotropic lateral sclerosis (ALS) is a fatal and progressive neurodegenerative disease causing the loss of motoneurons of the brain and the spinal cord. The etiology of ALS is still uncertain, but males are at increased risk for the disease than females. Several studies have suggested that motoneurons in ALS might be subjected to the double insult of increased DNA oxidative damage and deficiencies in DNA repair systems. Particularly, increased levels of 8-oxoguanine and impairments of the DNA base excision repair system have been observed in neurons of ALS patients. There is evidence that the Ser326Cys polymorphism of the human 8-oxoguanine DNA glycosylase 1 (hOGG1) gene is associated with a reduced DNA repair activity. To evaluate the role of the hOGG1 Ser326Cys polymorphism in sporadic ALS (sALS), we screened 136 patients and 129 matched controls. In the total population, we observed association between both the Cys326 allele (p=0.02) and the combined Ser326Cys+Cys326Cys genotype (OR=1.65, 95% CI=1.06-2.88) and increased risk of disease. After stratification by gender, the Cys326 allele (p=0.01), both the Ser326Cys genotype (OR=2.14, 95% CI=1.09-4.19) and the combined Ser326Cys+Cys326Cys genotype (OR=2.15, 95% CI=1.16-4.01) were associated with sALS risk only in males. No significant association between the Ser326Cys polymorphism and disease phenotype, including age and site of onset and disease progression, was observed. Present results suggest a possible involvement of the hOGG1 Ser326Cys polymorphism in sALS pathogenesis.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Neurosciences, Neurological Clinic, University of Pisa, Via Roma 67, 56126 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rossignol DA. Hyperbaric oxygen therapy might improve certain pathophysiological findings in autism. Med Hypotheses 2007; 68:1208-27. [PMID: 17141962 DOI: 10.1016/j.mehy.2006.09.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 09/28/2006] [Indexed: 12/18/2022]
Abstract
Autism is a neurodevelopmental disorder currently affecting as many as 1 out of 166 children in the United States. Numerous studies of autistic individuals have revealed evidence of cerebral hypoperfusion, neuroinflammation and gastrointestinal inflammation, immune dysregulation, oxidative stress, relative mitochondrial dysfunction, neurotransmitter abnormalities, impaired detoxification of toxins, dysbiosis, and impaired production of porphyrins. Many of these findings have been correlated with core autistic symptoms. For example, cerebral hypoperfusion in autistic children has been correlated with repetitive, self-stimulatory and stereotypical behaviors, and impairments in communication, sensory perception, and social interaction. Hyperbaric oxygen therapy (HBOT) might be able to improve each of these problems in autistic individuals. Specifically, HBOT has been used with clinical success in several cerebral hypoperfusion conditions and can compensate for decreased blood flow by increasing the oxygen content of plasma and body tissues. HBOT has been reported to possess strong anti-inflammatory properties and has been shown to improve immune function. There is evidence that oxidative stress can be reduced with HBOT through the upregulation of antioxidant enzymes. HBOT can also increase the function and production of mitochondria and improve neurotransmitter abnormalities. In addition, HBOT upregulates enzymes that can help with detoxification problems specifically found in autistic children. Dysbiosis is common in autistic children and HBOT can improve this. Impaired production of porphyrins in autistic children might affect the production of heme, and HBOT might help overcome the effects of this problem. Finally, HBOT has been shown to mobilize stem cells from the bone marrow to the systemic circulation. Recent studies in humans have shown that stem cells can enter the brain and form new neurons, astrocytes, and microglia. It is expected that amelioration of these underlying pathophysiological problems through the use of HBOT will lead to improvements in autistic symptoms. Several studies on the use of HBOT in autistic children are currently underway and early results are promising.
Collapse
Affiliation(s)
- Daniel A Rossignol
- University of Virginia, Department of Family Medicine, P.O. Box 800729, Charlottesville, VA 22908, USA.
| |
Collapse
|
45
|
Ahmad S, Yousuf S, Ishrat T, Khan MB, Bhatia K, Fazli IS, Khan JS, Ansari NH, Islam F. Effect of dietary sesame oil as antioxidant on brain hippocampus of rat in focal cerebral ischemia. Life Sci 2006; 79:1921-8. [PMID: 16822528 DOI: 10.1016/j.lfs.2006.06.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/10/2006] [Accepted: 06/13/2006] [Indexed: 11/30/2022]
Abstract
Oxidative stress may be regarded as an imbalance between free radical production and opposing antioxidant defenses. Free radical oxidative stress is implicated in rat cerebral ischemia and naturaceutical antioxidants are dietary supplements that have been reported to have neuroprotective activity. Many studies have reported dietary sesame oil (SO) as an effective antioxidant. In the present study the neuroprotective effect of dietary SO was evaluated against middle cerebral artery occlusion (MCAO)-induced cerebral ischemia injury in rats. Rats were fed on diet (20% SO) for 15 days. The middle cerebral artery of adult male Wistar rat was occluded for 2 h and reperfused for 22 h. The antioxidant properties of brain were measured as levels of reduced glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxide (GPx), glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD) and thiobarbituric acid reactive substance (TBARS). A decrease in the activity of all the enzymatic and non-enzymatic antioxidants was observed along with an increase in lipid peroxidation (LPO) in MCAO group. The neurobehavioral activity of rats was also observed by using videopath analyzer. Dietary SO improved the antioxidant status in MCAO+SO group when compared with MCAO group. The results of neurobehavioral activity also support our biochemical data. The results obtained suggest protective effect of SO against cerebral ischemia in rat brain through their antioxidant properties.
Collapse
Affiliation(s)
- Saif Ahmad
- Neurotoxicology Laboratory, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi 110 062, India.
| | | | | | | | | | | | | | | | | |
Collapse
|