1
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
2
|
Bhat AH, Dar KB, Khan A, Alshahrani S, Alshehri SM, Ghoneim MM, Alam P, Shakeel F. Tricyclodecan-9-yl-Xanthogenate (D609): Mechanism of Action and Pharmacological Applications. Int J Mol Sci 2022; 23:3305. [PMID: 35328726 PMCID: PMC8954530 DOI: 10.3390/ijms23063305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Tricyclodecan-9-yl xanthogenate (D609) is a synthetic tricyclic compound possessing a xanthate group. This xanthogenate compound is known for its diverse pharmacological properties. Over the last three decades, many studies have reported the biological activities of D609, including antioxidant, antiapoptotic, anticholinergic, anti-tumor, anti-inflammatory, anti-viral, anti-proliferative, and neuroprotective activities. Its mechanism of action is extensively attributed to its ability to cause the competitive inhibition of phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) and sphingomyelin synthase (SMS). The inhibition of PCPLC or SMS affects secondary messengers with a lipidic nature, i.e., 1,2-diacylglycerol (DAG) and ceramide. Various in vitro/in vivo studies suggest that PCPLC and SMS inhibition regulate the cell cycle, block cellular proliferation, and induce differentiation. D609 acts as a pro-inflammatory cytokine antagonist and diminishes Aβ-stimulated toxicity. PCPLC enzymatic activity essentially requires Zn2+, and D609 might act as a potential chelator of Zn2+, thereby blocking PCPLC enzymatic activity. D609 also demonstrates promising results in reducing atherosclerotic plaque formation, post-stroke cerebral infarction, and cancer progression. The present compilation provides a comprehensive mechanistic insight into D609, including its chemistry, mechanism of action, and regulation of various pharmacological activities.
Collapse
Affiliation(s)
- Aashiq Hussain Bhat
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India; (A.H.B.); (K.B.D.)
| | - Khalid Bashir Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India; (A.H.B.); (K.B.D.)
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Sultan M. Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (F.S.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (F.S.)
| |
Collapse
|
3
|
Qadir AM, Kansiz S, Dege N, Saif E. Crystal structure and Hirshfeld surface analysis of bis-[(eth-oxy-methane-thio-yl)sulfanido]( N, N, N', N'-tetra-methyl-ethane-1,2-di-amine)-mercury(II). Acta Crystallogr E Crystallogr Commun 2021; 77:1126-1129. [PMID: 34868649 PMCID: PMC8587978 DOI: 10.1107/s2056989021010549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/11/2021] [Indexed: 11/10/2022]
Abstract
The title four-coordinate mononuclear complex, [Hg(C3H5OS2)2(C6H16N2)] or [Hg(C3H5OS2)2(tmeda)] (tmeda: N,N,N',N'-tetra-methyl-ethane-1,2-di-amine), has a distorted tetra-hedral geometry. The HgII ion is coordinated to two N atoms of the N,N,N',N'-tetra-methyl-ethylenedi-amine ligand and two S atoms from two ethylxanthate xanthate ligands. In the crystal, mol-ecules are linked by weak C-H⋯S hydrogen bonds, forming a two-dimensional supra-molecular architecture in the ab plane. The most important contributions for the crystal packing are from H⋯H (59.3%), S⋯H (27.4%) and O⋯H (7.5%) inter-actions.
Collapse
Affiliation(s)
- Adnan M. Qadir
- Department of Chemistry, College of Science, Salahaddin University, Erbil, 44001, Iraq
| | - Sevgi Kansiz
- Samsun University, Faculty of Engineering, Department of Fundamental Sciences, 55420, Samsun, Turkey
| | - Necmi Dege
- Ondokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey
| | - Eiad Saif
- Department of Computer and Electronic Engineering Technology, Sanaa Community College, Sanaa, Yemen
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Ondokuz Mayıs University, 55139, Samsun, Turkey
| |
Collapse
|
4
|
Butterfield DA. Brain lipid peroxidation and alzheimer disease: Synergy between the Butterfield and Mattson laboratories. Ageing Res Rev 2020; 64:101049. [PMID: 32205035 PMCID: PMC7502429 DOI: 10.1016/j.arr.2020.101049] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 02/05/2023]
Abstract
Brains from persons with Alzheimer disease (AD) and its earlier stage, amnestic mild cognitive impairment (MCI), exhibit high levels of oxidative damage, including that to phospholipids. One type of oxidative damage is lipid peroxidation, the most important index of which is protein-bound 4-hydroxy-2-trans-nonenal (HNE). This highly reactive alkenal changes the conformations and lowers the activities of brain proteins to which HNE is covalently bound. Evidence exists that suggests that lipid peroxidation is the first type of oxidative damage associated with amyloid β-peptide (Aβ), a 38-42 amino acid peptide that is highly neurotoxic and critical to the pathophysiology of AD. The Butterfield laboratory is one of, if not the, first research group to show that Aβ42 oligomers led to lipid peroxidation and to demonstrate this modification in brains of subjects with AD and MCI. The Mattson laboratory, particularly when Dr. Mattson was a faculty member at the University of Kentucky, also showed evidence for lipid peroxidation associated with Aβ peptides, mostly in in vitro systems. Consequently, there is synergy between our two laboratories. Since this special tribute issue of Aging Research Reviews is dedicated to the career of Dr. Mattson, a review of some aspects of this synergy of lipid peroxidation and its relevance to AD, as well as the role of lipid peroxidation in the progression of this dementing disorder seems germane. Accordingly, this review outlines some of the individual and/or complementary research on lipid peroxidation related to AD published from our two laboratories either separately or jointly.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University Of Kentucky, Lexington, KY, 40506, United States.
| |
Collapse
|
5
|
Ahmad F, Liu P. Synaptosome as a tool in Alzheimer's disease research. Brain Res 2020; 1746:147009. [PMID: 32659233 DOI: 10.1016/j.brainres.2020.147009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/21/2020] [Accepted: 07/04/2020] [Indexed: 12/29/2022]
Abstract
Synapse dysfunction is an integral feature of Alzheimer's disease (AD) pathophysiology. In fact, prodromal manifestation of structural and functional deficits in synapses much prior to appearance of overt pathological hallmarks of the disease indicates that AD might be considered as a degenerative disorder of the synapses. Several research instruments and techniques have allowed us to study synaptic function and plasticity and their alterations in pathological conditions, such as AD. One such tool is the biochemically isolated preparations of detached and resealed synaptic terminals, the "synaptosomes". Because of the preservation of many of the physiological processes such as metabolic and enzymatic activities, synaptosomes have proved to be an indispensable ex vivo model system to study synapse physiology both when isolated from fresh or cryopreserved tissues, and from animal or human post-mortem tissues. This model system has been tremendously successful in the case of post-mortem tissues because of their accessibility relative to acute brain slices or cultures. The current review details the use of synaptosomes in AD research and its potential as a valuable tool in furthering our understanding of the pathogenesis and in devising and testing of therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Anatomy, School of Biomedical Sciences, Brain Research New Zealand, University of Otago, Dunedin, New Zealand.
| | - Ping Liu
- Department of Anatomy, School of Biomedical Sciences, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Ravi SK, Narasingappa RB, Prasad M, Javagal MR, Vincent B. Cassia tora prevents Aβ 1-42 aggregation, inhibits acetylcholinesterase activity and protects against Aβ 1-42-induced cell death and oxidative stress in human neuroblastoma cells. Pharmacol Rep 2019; 71:1151-1159. [PMID: 31655280 DOI: 10.1016/j.pharep.2019.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 06/15/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alzheimer's is a complex neurodegenerative disease and is characterized by extraneuronal accumulation of β-amyloid peptide. Because of its complex nature, multi-target directed ligands (MTDLs) are increasingly being considered as promising anti-Alzheimer therapeutic agents. This study is aimed at determining the effects of Cassia tora ethyl acetate fraction on several Alzheimer-associated deleterious events in test tubes as well as in human neuroblastoma SK-N-SH and SH-SY5Y cell lines. METHOD Ethyl acetate fraction of C. tora was purified by chromatography, characterized by 1H and 13C NMR, and tested for its ability to prevent Aβ 1-42 aggregation by thioflavin-T fluorescence and transmission electron microscopy. We also analyzed the intracellular ROS level and cytotoxicity in SK-N-SH and SH-SY5Y cell lines. RESULTS The extract inhibits the formation of Aβ 1-42 aggregation from monomers and oligomers, as also acetylcholinesterase activity, Aβ 1-42 -induced cell death, and Aβ 1-42 -dependent intracellular ROS production in both SK-N-SH and SH-SY5Y cells. In-depth chromatographic and spectroscopic analysis of the extract revealed that the active molecules are most likely triglycerides of oleic acid (C18H34O2). CONCLUSION We demonstrate for the first time that Cassia tora fraction prevents Aβ 1-42 aggregation, inhibits acetylcholinesterase and alleviates Aβ 1-42 -induced oxidative stress in human neuroblastoma cells. We further suggest the possible use of triglycerides of oleic acid as efficient anti-Alzheimer agents.
Collapse
Affiliation(s)
- Sunil K Ravi
- Department of Biotechnology, A constituent College of University of Agriculture Sciences, Bangalore, Karnataka, India
| | - Ramesh B Narasingappa
- Department of Biotechnology, A constituent College of University of Agriculture Sciences, Bangalore, Karnataka, India.
| | - Mahadesh Prasad
- Department of Biochemstry, Pooja Bhagavat Memorial Mahajana Post Graduate Centre, Metagalli, Mysuru, Karnataka, India
| | - Manjunath R Javagal
- Department of Plantation Products, Spices and Flavour Technology, Central Food Technological Research Institute, Mysore, India
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
7
|
Glutathione-mimetic D609 alleviates memory deficits and reduces amyloid-β deposition in an AβPP/PS1 transgenic mouse model. Neuroreport 2019; 29:833-838. [PMID: 29672445 PMCID: PMC5999370 DOI: 10.1097/wnr.0000000000001040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Excessive extracellular deposition of amyloid-β-peptide (Aβ) in the brain is a pathological hallmark of Alzheimer’s disease (AD). Oxidative stress is associated with the onset and progression of AD and contributes to Aβ generation. Tricyclodecan-9-yl-xanthogenate (D609) is a glutathione (GSH)-mimetic compound. Although the antioxidant properties of D609 have been well-studied, its potential therapeutic significance on AD remains unclear. In the present study, we used a mouse model of AD to investigate the effects and the mechanism of action of D609 on AD. We found that D609 treatment significantly improved the spatial learning and alleviated the memory decline in the mice harboring amyloid precursor protein (APP) and presenilin-1 (PS1) double mutations (AβPP/PS1 mice). D609 treatment also increased GSH level, GSH and oxidative glutathione ratio, and superoxide dismutase activity, whereas decreased malondialdehyde and protein carbonyl levels, suggesting that D609 alleviated oxidative stress in AβPP/PS1 mice. In addition, D609 reduced β-secretase 1 level and decreased amyloidogenic processing of AβPP, consequently reducing Aβ deposition in the mice. Thus, our findings suggest that D609 might produce beneficial effects on the prevention and treatment of AD.
Collapse
|
8
|
Gill I, Kaur S, Kaur N, Dhiman M, Mantha AK. Phytochemical Ginkgolide B Attenuates Amyloid-β1-42 Induced Oxidative Damage and Altered Cellular Responses in Human Neuroblastoma SH-SY5Y Cells. J Alzheimers Dis 2018; 60:S25-S40. [PMID: 28234255 DOI: 10.3233/jad-161086] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidative stress is an upsurge in reactive oxygen/nitrogen species (ROS/RNS), which aggravates damage to cellular components viz. lipids, proteins, and nucleic acids resulting in impaired cellular functions and neurological pathologies including Alzheimer's disease (AD). In the present study, we have examined amyloid-β (Aβ)-induced oxidative stress responses, a major cause for AD, in the undifferentiated and differentiated human neuroblastoma SH-SY5Y cells. Aβ1-42-induced oxidative damage was evaluated on lipids by lipid peroxidation; proteins by protein carbonyls; antioxidant status by SOD and GSH enzyme activities; and DNA and RNA damage levels by evaluating the number of AP sites and 8-OHG base damages produced. In addition, the neuro-protective role of the phytochemical ginkgolide B (GB) in countering Aβ1-42-induced oxidative stress was assessed. We report that the differentiated cells are highly vulnerable to Aβ1-42-induced oxidative stress events as exerted by the deposition of Aβ in AD. Results of the current study suggest that the pre-treatment of GB, followed by Aβ1-42 treatment for 24 h, displayed neuro-protective potential, which countered Aβ1-42-induced oxidative stress responses in both undifferentiated and differentiated SH-SY5Y neuronal cells by: 1) hampering production of ROS and RNS; 2) reducing lipid peroxidation; 3) decreasing protein carbonyl content; 4) restoring antioxidant activities of SOD and GSH enzymes; and 5) maintaining genome integrity by reducing the oxidative DNA and RNA base damages. In conclusion, Aβ1-42 induces oxidative damage to the cellular biomolecules, which are associated with AD pathology, and are protected by the pre-treatment of GB against Aβ-toxicity. Taken together, this study advocates for phytochemical-based therapeutic interventions against AD.
Collapse
Affiliation(s)
- Iqbal Gill
- Centre for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Sukhchain Kaur
- Centre for Biochemistry and Microbial Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Navrattan Kaur
- Centre for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Centre for Biochemistry and Microbial Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil K Mantha
- Centre for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
9
|
Spectroscopic, thermal, quantum chemical calculations and in vitro biological studies of titanium/zirconium(IV) complexes of mono-and disubstituted aryldithiocarbonates. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.10.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Butterfield DA, Boyd-Kimball D. Oxidative Stress, Amyloid-β Peptide, and Altered Key Molecular Pathways in the Pathogenesis and Progression of Alzheimer's Disease. J Alzheimers Dis 2018; 62:1345-1367. [PMID: 29562527 PMCID: PMC5870019 DOI: 10.3233/jad-170543] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 12/12/2022]
Abstract
Oxidative stress is implicated in the pathogenesis and progression of Alzheimer's disease (AD) and its earlier stage, amnestic mild cognitive impairment (aMCI). One source of oxidative stress in AD and aMCI brains is that associated with amyloid-β peptide, Aβ1-42 oligomers. Our laboratory first showed in AD elevated oxidative stress occurred in brain regions rich in Aβ1-42, but not in Aβ1-42-poor regions, and was among the first to demonstrate Aβ peptides led to lipid peroxidation (indexed by HNE) in AD and aMCI brains. Oxidatively modified proteins have decreased function and contribute to damaged key biochemical and metabolic pathways in which these proteins normally play a role. Identification of oxidatively modified brain proteins by the methods of redox proteomics was pioneered in the Butterfield laboratory. Four recurring altered pathways secondary to oxidative damage in brain from persons with AD, aMCI, or Down syndrome with AD are interrelated and contribute to neuronal death. This "Quadrilateral of Neuronal Death" includes altered: glucose metabolism, mTOR activation, proteostasis network, and protein phosphorylation. Some of these pathways are altered even in brains of persons with preclinical AD. We opine that targeting these pathways pharmacologically and with lifestyle changes potentially may provide strategies to slow or perhaps one day, prevent, progression or development of this devastating dementing disorder. This invited review outlines both in vitro and in vivo studies from the Butterfield laboratory related to Aβ1-42 and AD and discusses the importance and implications of some of the major achievements of the Butterfield laboratory in AD research.
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Debra Boyd-Kimball
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH, USA
| |
Collapse
|
11
|
|
12
|
Hormesis, cellular stress response and neuroinflammation in schizophrenia: Early onset versus late onset state. J Neurosci Res 2016; 95:1182-1193. [DOI: 10.1002/jnr.23967] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022]
|
13
|
Synthesis, characterization and antibacterial activities of two nickel(II) complexes with xanthate derivatives and N,N,N′,N′-tetramethylethylenediamine as ligands. TRANSIT METAL CHEM 2016. [DOI: 10.1007/s11243-016-0103-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Liu XY, Wang LX, Chen Z, Liu LB. Liraglutide prevents beta-amyloid-induced neurotoxicity in SH-SY5Y cells via a PI3K-dependent signaling pathway. Neurol Res 2016; 38:313-9. [DOI: 10.1080/01616412.2016.1145914] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Organotin(IV) derivatives of o-isobutyl carbonodithioate: Synthesis, spectroscopic characterization, X-ray structure, HOMO/LUMO and in vitro biological activities. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.11.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Calabrese V, Dattilo S, Petralia A, Parenti R, Pennisi M, Koverech G, Calabrese V, Graziano A, Monte I, Maiolino L, Ferreri T, Calabrese EJ. Analytical approaches to the diagnosis and treatment of aging and aging-related disease: redox status and proteomics. Free Radic Res 2015; 49:511-24. [PMID: 25824967 DOI: 10.3109/10715762.2015.1020799] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Basal levels of oxidants are indispensible for redox signaling to produce adaptive cellular responses such as vitagenes linked to cell survival; however, at higher levels, they are detrimental to cells, contributing to aging and to the pathogenesis of numerous age-related diseases. Aging is a complex systemic process and the major gap in aging research reminds the insufficient knowledge about pathways shifting from normal "healthy" aging to disease-associated pathological aging. The major complication of normal "healthy" aging is in fact the increasing risk of age-related diseases such as cardiovascular diseases, diabetes mellitus, and neurodegenerative pathologies that can adversely affect the quality of life in general, with enhanced incidences of comorbidities and mortality. In this context, global "omics" approaches may help to dissect and fully study the cellular and molecular mechanisms of aging and age-associated processes. The proteome, being more close to the phenotype than the transcriptome and more stable than the metabolome, represents the most promising "omics" field in aging research. In the present study, we exploit recent advances in the redox biology of aging and discuss the potential of proteomics approaches as innovative tools for monitoring at the proteome level the extent of protein oxidative insult and related modifications with the identification of targeted proteins.
Collapse
Affiliation(s)
- V Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania , Catania , Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Tricyclodecan-9-yl-xanthogenate (D609) is an antioxidative molecule with antiproliferative and neuroprotective properties in a variety of cells. Previously, we have shown that D609 decreased the proliferation of neural progenitor cells. In this study, we examined the antioxidative property of D609 on neural progenitor cells isolated from the subventricular zone of the rat brain. Cellular oxidation was assessed by measuring the ATP content of the cells. Our results show that D609 decreased the ATP content of the neural progenitor cells by ∼40%, suggesting the possible inhibition of cellular metabolic activity. Cytochrome c oxidase (Cox), also known as complex IV of the electron transport chain, is a terminal enzyme involved in the oxidation of substrates resulting in the generation of energy required for the cellular activity. Therefore, regulating the activity of Cox could interfere with the generation of ATP, consequently affecting the proliferation of cells. Consistent with this hypothesis, we also observed a decrease in the Cox activity following the incubation of neural progenitor cells with D609. These results suggest that D609 could inhibit the activity of Cox and subsequent ATP synthesis in the neural progenitor cells.
Collapse
|
18
|
Di Domenico F, Barone E, Perluigi M, Butterfield DA. Strategy to reduce free radical species in Alzheimer’s disease: an update of selected antioxidants. Expert Rev Neurother 2014; 15:19-40. [DOI: 10.1586/14737175.2015.955853] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Syntheses, Characterization, Thermal, and Antimicrobial Studies of Lanthanum(III) Tolyl/Benzyldithiocarbonates. Bioinorg Chem Appl 2014; 2014:780631. [PMID: 24817836 PMCID: PMC4000956 DOI: 10.1155/2014/780631] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/03/2014] [Indexed: 11/17/2022] Open
Abstract
Lanthanum(III) tris(O-tolyl/benzyldithiocarbonates), [La(ROCS2)] (R = o-, m-, p-CH3C6H4 and C6H5CH2), were isolated as yellow solid by the reaction of LaCl3·7H2O with sodium salt of tolyl/benzyldithiocarbonates, ROCS2Na (R = o-, m-, p-CH3C6H4 and C6H5CH2), in methanol under anhydrous conditions in 1 : 3 molar ratio. These complexes have formed adducts with nitrogen and phosphorus donor molecules by straightforward reaction of these complexes with donor ligands, which have the composition of the type [La(ROCS2)3·nL] (where n = 2, L = NC5H5 or P(C6H5)3 and n = 1, L = N2C12H8 or N2C10H8). Elemental analyses, mass, IR, TGA, and heteronuclear NMR (1H, 13C and 31P) spectroscopic studies indicated bidentate mode of bonding by dithiocarbonate ligands leading to hexacoordinated and octacoordinated geometry around the lanthanum atom. Antimicrobial (antifungal and antibacterial) activity of the free ligands and some of the complexes have also been investigated which exhibited significantly more activity for the complexes than the free ligands.
Collapse
|
20
|
Kalluri HSG, Gusain A, Dempsey RJ. Regulation of Neural Progenitor Cell Proliferation by D609: Potential Role for ERK. Mol Neurobiol 2012; 47:782-9. [DOI: 10.1007/s12035-012-8390-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/17/2012] [Indexed: 12/27/2022]
|
21
|
Kyeong IG, Eum WS, Choi SY, Kang JH. Oxidative modification of neurofilament-L and neuronal cell death induced by the catechol neurotoxin, tetrahydropapaveroline. Toxicol Lett 2012; 217:59-66. [PMID: 23228886 DOI: 10.1016/j.toxlet.2012.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 11/20/2022]
Abstract
Tetrahydropapaveroline (THP), which is an endogenous neurotoxin, has been suspected to be associated with dopaminergic neurotoxicity of l-DOPA. In this study, we examined oxidative modification of neurofilament-L (NF-L) and neuronal cell death induced by THP. When disassembled NF-L was incubated with THP, protein aggregation was increased in a time- and THP dose-dependent manner. The formation of carbonyl compounds and dityrosine were observed in the THP-mediated NF-L aggregates. Radical scavengers reduced THP-mediated NF-L modification. These results suggest that the modification of NF-L by THP may be due to oxidative damage resulting from the generation of reactive oxygen species (ROS). When THP exposed NF-L was subjected to amino acid analysis, glutamate, proline and lysine residues were found to be particularly sensitive. We also investigated the effects of copper ions on THP-mediated NF-L modification. At a low concentration of THP, copper ions enhanced the modification of NF-L. Treatment of C6 astrocyte cells with THP led to a concentration-dependent reduction in cell viability. When these cells were treated with 100μM THP, the levels of ROS increased 3.5-fold compared with control cells. Furthermore, treatment of cells with THP increased NF-L aggregate formation, suggesting the involvement of NF-L modification in THP-induced cell damage.
Collapse
Affiliation(s)
- Inn Goo Kyeong
- Department of Genetic Engineering, Cheongju University, Cheongju 360-764, South Korea
| | | | | | | |
Collapse
|
22
|
Adibhatla RM, Hatcher JF, Gusain A. Tricyclodecan-9-yl-xanthogenate (D609) mechanism of actions: a mini-review of literature. Neurochem Res 2011; 37:671-9. [PMID: 22101393 DOI: 10.1007/s11064-011-0659-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/14/2011] [Accepted: 11/10/2011] [Indexed: 12/21/2022]
Abstract
Tricyclodecan-9-yl-xanthogenate (D609) is known for its antiviral and antitumor properties. D609 actions are widely attributed to inhibiting phosphatidylcholine (PC)-specific phospholipase C (PC-PLC). D609 also inhibits sphingomyelin synthase (SMS). PC-PLC and/or SMS inhibition will affect lipid second messengers 1,2-diacylglycerol (DAG) and/or ceramide. Evidence indicates either PC-PLC and/or SMS inhibition affected the cell cycle and arrested proliferation, and stimulated differentiation in various in vitro and in vivo studies. Xanthogenate compounds are also potent antioxidants and D609 reduced Aß-induced toxicity, attributed to its antioxidant properties. Zn²⁺ is necessary for PC-PLC enzymatic activity; inhibition by D609 might be attributed to its Zn²⁺ chelation. D609 has also been proposed to inhibit acidic sphingomyelinase or down-regulate hypoxia inducible factor-1α; however these are down-stream events related to PC-PLC inhibition. Characterization of the mammalian PC-PLC is limited to inhibition of enzymatic activity (frequently measured using Amplex red assay with bacterial PC-PLC as a standard). The mammalian PC-PLC has not been cloned; sequenced and structural information is unavailable. D609 showed promise in cancer studies, reduced atherosclerotic plaques (inhibition of PC-PLC) and cerebral infarction after stroke (PC-PLC or SMS). D609 actions as an antagonist to pro-inflammatory cytokines have been attributed to PC-PLC. The purpose of this review is to comprehensively evaluate the literature and summarize the findings and relevance to cell cycle and CNS pathologies.
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, Clinical Science Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3232, USA.
| | | | | |
Collapse
|
23
|
Kang JH. Oxidative Modification of Neurofilament-L Induced by Endogenous Neurotoxin, Salsolinol. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.9.3421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Larsson AC, Öberg S. Study on potassium iso-propylxanthate and its decomposition products: experimental 13C CP/MAS NMR combined with DFT calculations. J Phys Chem A 2011; 115:1396-407. [PMID: 21309541 DOI: 10.1021/jp110233d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solid-state (13)C NMR is believed to be a valuable tool for studying adsorption and speciation of xanthates on sulfide mineral surfaces, but to do that, model compounds of possible xanthate species need to be investigated. (13)C NMR chemical shift tensors for molecular fragments of potassium iso-propylxanthate and six of its decomposition products have been determined by combining DFT calculations and (13)C CP/MAS NMR experiments. DFT calculations were performed in NWChem using GIAO method for the NMR shielding tensor calculations. The results of the calculations are in good agreement with experimental data. In the -XCYZ moiety (X, Y, Z = O, S), the more sulfur atoms, the more deshielded the chemical shift becomes and the larger the span of the chemical shift tensor. The δ11 principal value has the largest influence on the span, decreasing when the number of sulfur atoms decreases and the number of oxygen atoms increases. The significant differences in chemical shifts make it possible to distinguish between different species and, hence, in future studies, interpret surface speciation. The tensor parameters can also aid in the interpretation.
Collapse
Affiliation(s)
- Anna-Carin Larsson
- Division of Chemical Engineering, Department of Chemical Engineering and Geosciences, Luleå University of Technology, SE 971 87 Luleå, Sweden
| | | |
Collapse
|
25
|
|
26
|
Kang JH. Salsolinol, a catechol neurotoxin, induces modification of ferritin: Protection by histidine dipeptide. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 29:246-251. [PMID: 21787609 DOI: 10.1016/j.etap.2010.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 01/22/2010] [Accepted: 01/26/2010] [Indexed: 05/31/2023]
Abstract
1-Methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), an endogenous neurotoxin present in the mammalian brain, is known to perform a role in the pathogenesis of Parkinson's disease. In this study, we evaluated oxidative modifications of ferritin occurring after incubation with salsolinol. When ferritin was incubated with salsolinol, protein aggregation increased in a time-dependent manner. Free radical scavengers inhibited this salsolinol-mediated ferritin modification. The exposure of ferritin to salsolinol also results in the generation of protein carbonyl compounds and the formation of dityrosine. The results of this study show that free radicals may perform a pivotal role in salsolinol-mediated ferritin modification. Histidine dipeptides, such as carnosine, have been proposed to function as antioxidant agents in vivo. In this study, we also attempted to determine whether the histidine dipeptides, carnosine and N-acetyl-carnosine, could prevent salsolinol-mediated oxidative modification of ferritin. Our results showed that both carnosine and N-acetyl-carnosine significantly reduced ferritin aggregation. Both compounds effectively inhibited the formation of both carbonyl compounds and dityrosine. These results suggest that carnosine derivatives can, indeed, protect against salsolinol-mediated ferritin modification, as the consequence of free radical-scavenging activity.
Collapse
Affiliation(s)
- Jung Hoon Kang
- Department of Genetic Engineering, Cheongju University, Cheongju 360-764, Republic of Korea
| |
Collapse
|
27
|
Adibhatla RM, Hatcher JF. Protection by D609 through cell-cycle regulation after stroke. Mol Neurobiol 2010; 41:206-17. [PMID: 20148315 DOI: 10.1007/s12035-010-8100-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 01/08/2010] [Indexed: 12/13/2022]
Abstract
Expressions of cell-cycle regulating proteins are altered after stroke. Cell-cycle inhibition has shown dramatic reduction in infarction after stroke. Ceramide can induce cell-cycle arrest by up-regulation of cyclin-dependent kinase (Cdk) inhibitors p21 and p27 through activation of protein phosphatase 2A (PP2A). Tricyclodecan-9-yl-xanthogenate (D609)-increased ceramide levels after transient middle cerebral artery occlusion (tMCAO) in spontaneously hypertensive rat (SHR) probably by inhibiting sphingomyelin synthase (SMS). D609 significantly reduced cerebral infarction and up-regulated Cdk inhibitor p21 and down-regulated phospho-retinoblastoma (pRb) expression after tMCAO in rat. Others have suggested bFGF-induced astrocyte proliferation is attenuated by D609 due to an increase in ceramide by SMS inhibition. D609 also reduced the formation of oxidized phosphatidylcholine (OxPC) protein adducts. D609 may attenuate generation of reactive oxygen species and formation of OxPC by inhibiting microglia/macrophage proliferation after tMCAO (please also see note added in proof: D609 may prevent mature neurons from entering the cell cycle at the early reperfusion, however may not interfere with later proliferation of microglia/ macrophages that are the source of brain derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF-1) in offering protection). It has been proposed that D609 provides benefit after tMCAO by attenuating hypoxia-inducible factor-1alpha and Bcl2/adenovirus E1B 19 kDa interacting protein 3 expressions. Our data suggest that D609 provides benefit after stoke through inhibition of SMS, increased ceramide levels, and induction of cell-cycle arrest by up-regulating p21 and causing hypophosphorylation of Rb (through increased protein phosphatase activity and/or Cdk inhibition).
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-3232, USA.
| | | |
Collapse
|
28
|
Jin H, Randazzo J, Zhang P, Kador PF. Multifunctional antioxidants for the treatment of age-related diseases. J Med Chem 2010; 53:1117-27. [PMID: 20078105 PMCID: PMC2826224 DOI: 10.1021/jm901381j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analogues of N,N-dimethyl-4-(pyrimidin-2-yl)piperazine-1-sulfonamide possessing a free radical scavenger group (FRS), chelating groups (CHL), or both (FRS + CHL) have been synthesized. Electrospray ionization mass spectrometry studies indicate that select members of this series bind ions in the relative order of Cu(1+) = Cu(2+) > Fe(2+) = Fe(3+) > Zn(2+) with no binding of Ca(2+) or Mg(2+) observed. In vitro evaluation of these compounds in human lens epithelial, human retinal pigmented epithelial, and human hippocampal astrocyte cell lines indicates that all analogues possessing the FRS group as well as the water-soluble vitamin E analogue 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid protect these cells against decreased cell viability and glutathione levels induced by hydrogen peroxide. In addition, those compounds possessing CHL groups also protected these cells against hydroxyl radicals generated by the Fenton reaction. These compounds are good candidates for the preventive treatment of cataract, age-related macular degeneration (AMD), and Alzheimer's dementia (AD).
Collapse
Affiliation(s)
- Hongxia Jin
- College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198
| | - James Randazzo
- College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198
| | - Peng Zhang
- College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198
| | - Peter F. Kador
- College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
29
|
Sultana R, Perluigi M, Butterfield DA. Oxidatively modified proteins in Alzheimer's disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis. Acta Neuropathol 2009; 118:131-50. [PMID: 19288120 PMCID: PMC2818870 DOI: 10.1007/s00401-009-0517-0] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 02/06/2023]
Abstract
Oxidative stress has been implicated in the pathogenesis of a number of diseases including Alzheimer's disease (AD). The oxidative stress hypothesis of AD pathogenesis, in part, is based on beta-amyloid peptide (Abeta)-induced oxidative stress in both in vitro and in vivo studies. Oxidative modification of the protein may induce structural changes in a protein that might lead to its functional impairment. A number of oxidatively modified brain proteins were identified using redox proteomics in AD, mild cognitive impairment (MCI) and Abeta models of AD, which support a role of Abeta in the alteration of a number of biochemical and cellular processes such as energy metabolism, protein degradation, synaptic function, neuritic growth, neurotransmission, cellular defense system, long term potentiation involved in formation of memory, etc. All the redox proteomics-identified brain proteins fit well with the appearance of the three histopathological hallmarks of AD, i.e., synapse loss, amyloid plaque formation and neurofibrillary tangle formation and suggest a direct or indirect association of the identified proteins with the pathological and/or biochemical alterations in AD. Further, Abeta models of AD strongly support the notion that oxidative stress induced by Abeta may be a driving force in AD pathogenesis. Studies conducted on arguably the earliest stage of AD, MCI, may elucidate the mechanism(s) leading to AD pathogenesis by identifying early markers of the disease, and to develop therapeutic strategies to slow or prevent the progression of AD. In this review, we summarized our findings of redox proteomics identified oxidatively modified proteins in AD, MCI and AD models.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506-0055, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, University of Rome “La Sapienza”, Rome 00185, Italy
| | - D. Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506-0055, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
30
|
Activation of phosphatidylcholine signalling during oxidative stress in synaptic endings. Neurochem Int 2008; 53:199-206. [DOI: 10.1016/j.neuint.2008.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 07/10/2008] [Accepted: 07/17/2008] [Indexed: 12/22/2022]
|
31
|
Biran Y, Masters CL, Barnham KJ, Bush AI, Adlard PA. Pharmacotherapeutic targets in Alzheimer's disease. J Cell Mol Med 2008; 13:61-86. [PMID: 19040415 PMCID: PMC3823037 DOI: 10.1111/j.1582-4934.2008.00595.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder which is characterized by an increasing impairment in normal memory and cognitive processes that significantly diminishes a person's daily functioning. Despite decades of research and advances in our understanding of disease aetiology and pathogenesis, there are still no effective disease-modifying drugs available for the treatment of AD. However, numerous compounds are currently undergoing pre-clinical and clinical evaluations. These candidate pharma-cotherapeutics are aimed at various aspects of the disease, such as the microtubule-associated τ-protein, the amyloid-β (Aβ) peptide and metal ion dyshomeostasis – all of which are involved in the development and progression of AD. We will review the way these pharmacological strategies target the biochemical and clinical features of the disease and the investigational drugs for each category.
Collapse
Affiliation(s)
- Yif'at Biran
- The Oxidation Biology Laboratory, The Mental Health Research Institute, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
32
|
Pensalfini A, Cecchi C, Zampagni M, Becatti M, Favilli F, Paoli P, Catarzi S, Bagnoli S, Nacmias B, Sorbi S, Liguri G. Protective effect of new S-acylglutathione derivatives against amyloid-induced oxidative stress. Free Radic Biol Med 2008; 44:1624-36. [PMID: 18294463 DOI: 10.1016/j.freeradbiomed.2008.01.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 12/27/2007] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
Abstract
Recent data support the role of oxidative stress in the pathogenesis of Alzheimer disease (AD). In particular, glutathione (GSH) metabolism is altered and its levels are decreased in affected brain regions and peripheral cells from AD patients and in experimental models of AD. In the past decade, interest in the protective effects of various antioxidants aimed at increasing intracellular GSH content has been growing. Because much experimental evidence suggests a possible protective role of unsaturated fatty acids in age-related diseases, we designed the synthesis of new S-acylglutathione (acyl-SG) thioesters. S-Lauroylglutathione (lauroyl-SG) and S-palmitoleoylglutathione (palmitoleoyl-SG) were easily internalized into the cells and they significantly reduced Abeta42-induced oxidative stress in human neurotypic SH-SY5Y cells. In particular, acyl-SG thioesters can prevent the impairment of intracellular ROS scavengers, intracellular ROS accumulation, lipid peroxidation, and apoptotic pathway activation. Palmitoleoyl-SG seemed more effective in cellular protection against Abeta-induced oxidative damage than lauroyl-SG, suggesting a valuable role for the monounsaturated fatty acid. In this study, we demonstrate that acyl-SG derivatives completely avoid the sharp lipoperoxidation in primary fibroblasts from familial AD patients occurring after exposure to Abeta42 aggregates. Hence, we put forward these derivatives as new antioxidant compounds which could be excellent candidates for therapeutic treatment of AD and other oxidative stress-related diseases.
Collapse
Affiliation(s)
- Anna Pensalfini
- Department of Biochemical Sciences, University of Florence, 50134 Florence, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dong YL, Zuo PP, Li Q, Liu FH, Dai SL, Ge QS. Protective effects of phytoestrogen alpha-zearalanol on beta amyloid25-35 induced oxidative damage in cultured rat hippocampal neurons. Endocrine 2007; 32:206-11. [PMID: 18064574 DOI: 10.1007/s12020-007-9032-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 11/12/2007] [Accepted: 11/12/2007] [Indexed: 11/24/2022]
Abstract
Although experimental evidence has shown that the neuroprotective effect from estrogen may benefit postmenopausal women, but the clinical use of estrogen was limited by the risk of increasing the cases of mammary and endometrial cancer. This study was designed to evaluate the neuroprotective effects of a novel phytoestrogen alpha-zearalanol (alpha-ZAL), on the cultured rat hippocampal neurons. Following a 24-h exposure of the cells to amyloid beta-peptide fragment 25-35 (A beta 25-35), a significant reduction in cell survival and activities of total superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), as well as increased of malondialdehyde (MDA) were observed. Preincubation of the cells with alpha-ZAL or 17 beta-estradiol(17 beta-E2) prior to A beta 25-35 exposure elevated the cell survival and SOD and GSH-Px activities, and decreased the level of MDA. These data suggested that the phytoestrogen alpha-ZAL, like estrogen, may effectively antagonize A beta 25-35-induced cell toxicity, which might be beneficial for neurons.
Collapse
Affiliation(s)
- Yi-Long Dong
- Department of Pharmacology, Institute of Basic Science, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China
| | | | | | | | | | | |
Collapse
|
34
|
Butterfield DA, Reed T, Newman SF, Sultana R. Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer's disease and mild cognitive impairment. Free Radic Biol Med 2007; 43:658-77. [PMID: 17664130 PMCID: PMC2031860 DOI: 10.1016/j.freeradbiomed.2007.05.037] [Citation(s) in RCA: 440] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 05/20/2007] [Accepted: 05/25/2007] [Indexed: 12/17/2022]
Abstract
Oxidative stress has been implicated to play a crucial role in the pathogenesis of a number of diseases, including neurodegenerative disorders, cancer, and ischemia, just to name a few. Alzheimer disease (AD) is an age-related neurodegenerative disorder that is recognized as the most common form of dementia. AD is histopathologically characterized by the presence of extracellular amyloid plaques, intracellular neurofibrillary tangles, the presence of oligomers of amyloid beta-peptide (Abeta), and synapse loss. In this review we discuss the role of Abeta in the pathogenesis of AD and also the use of redox proteomics to identify oxidatively modified brain proteins in AD and mild cognitive impairment. In addition, redox proteomics studies in in vivo models of AD centered around human Abeta(1-42) are discussed.
Collapse
|
35
|
Cappai R, Barnham KJ. Delineating the Mechanism of Alzheimer’s Disease Aβ Peptide Neurotoxicity. Neurochem Res 2007; 33:526-32. [PMID: 17762917 DOI: 10.1007/s11064-007-9469-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 07/24/2007] [Indexed: 12/21/2022]
Abstract
The Alzheimer's disease neurotoxic amyloid-beta (A beta) peptide is derived from the larger amyloid precursor protein (APP) and is the principal component of the senile plaques in Alzheimer's disease (AD) brains. This mechanism by which A beta mediates neurotoxicity or neuronal dysfunction is not fully resolved. This review will outline some of the key determinants that modulate A beta's activity and the cellular pathways and mechanisms involved.
Collapse
Affiliation(s)
- Roberto Cappai
- Department of Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | | |
Collapse
|
36
|
Cappai R, Barnham KJ. Molecular determinants of Alzheimer’s disease Aβ peptide neurotoxicity. FUTURE NEUROLOGY 2007. [DOI: 10.2217/14796708.2.4.397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The Alzheimer’s disease amyloid precursor protein is sequentially processed to yield the neurotoxic amyloid-β (Aβ) peptide, which is the principal component of the senile plaques in Alzheimer’s disease brains. This review will outline the current thinking on how Aβ mediates neurotoxicity or neuronal dysfunction. In particular, this article will focus on the key residues that modulate Aβ’s activity and the cellular pathways and mechanisms involved. It will detail how Aβ–metal interactions are a key determinate in Alzheimer’s disease pathogenesis.
Collapse
Affiliation(s)
- Roberto Cappai
- The University of Melbourne, Department of Pathology, Bio21 Molecular Science & Biotechnology Institute, Victoria, 3010, Australia, and, The Mental Health Research Institute of Victoria, Parkville, Victoria, 3052, Australia
| | - Kevin J Barnham
- The University of Melbourne, Department of Pathology, Bio21 Molecular Science & Biotechnology Institute, Victoria, 3010, Australia, and, The Mental Health Research Institute of Victoria, Parkville, Victoria, 3052, Australia
| |
Collapse
|
37
|
Larsen EC, Hatcher JF, Adibhatla RM. Effect of tricyclodecan-9-yl potassium xanthate (D609) on phospholipid metabolism and cell death during oxygen-glucose deprivation in PC12 cells. Neuroscience 2007; 146:946-61. [PMID: 17434680 PMCID: PMC2041837 DOI: 10.1016/j.neuroscience.2007.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 02/05/2007] [Accepted: 02/08/2007] [Indexed: 02/02/2023]
Abstract
Alterations in lipid metabolism play an integral role in neuronal death in cerebral ischemia. Here we used an in vitro model, oxygen-glucose deprivation (OGD) of rat pheochromocytoma (PC12) cells, and analyzed changes in phosphatidylcholine (PC) and sphingomyelin (SM) metabolism. OGD (4-8 h) of PC12 cells triggered a dramatic reduction in PC and SM levels, and a significant increase in ceramide. OGD also caused increases in phosphatidylcholine-phospholipase C (PC-PLC) and phospholipase D (PLD) activities and PLD2 protein expression, and reduction in cytidine triphosphate:phosphocholine cytidylyltransferase-alpha (CCTalpha, the rate-limiting enzyme in PC synthesis) protein expression and activity. Phospholipase A2 activity and expression were unaltered during OGD. Increased neutral sphingomyelinase activity during OGD could account for SM loss and increased ceramide. Surprisingly, treatment with PC-PLC inhibitor tricyclodecan-9-yl potassium xanthate (D609) aggravated cell death in PC12 cells during OGD. D609 was cytotoxic only during OGD; cell death could be prevented by inclusion of sera, glucose or oxygen. During OGD, D609 caused further loss of PC and SM, depletion of 1,2-diacylglycerol (DAG), increase in ceramide and free fatty acids (FFA), cytochrome c release from mitochondria, increases in intracellular Ca2+ ([Ca2+]i), poly-ADP ribose polymerase (PARP) cleavage and phosphatidylserine externalization, indicative of apoptotic cell death. Exogenous PC during OGD in PC12 cells with D609 attenuated PC, SM loss, restored DAG, attenuated ceramide levels, decreased cytochrome c release, PARP cleavage, annexin V binding, attenuated the increase in [Ca2+]i, FFA release, and significantly increased cell viability. Exogenous PC may have elicited these effects by restoring membrane PC levels. A tentative scheme depicting the mechanism of action of D609 (inhibiting PC-PLC, SM synthase, PC synthesis at the CDP-choline-1,2-diacylglycerol phosphocholine transferase (CPT) step and causing mitochondrial dysfunction) has been proposed based on our observations and literature.
Collapse
Affiliation(s)
- E. C. Larsen
- Department of Neurological Surgery, University of Wisconsin, Madison, WI
| | - J. F. Hatcher
- Department of Neurological Surgery, University of Wisconsin, Madison, WI
| | - Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI
- Cardiovascular Research Center, University of Wisconsin, Madison, WI
- Neuroscience Training Program, University of Wisconsin, Madison, WI
- Veterans Administration Hospital, Madison, WI
| |
Collapse
|
38
|
Opii WO, Sultana R, Abdul HM, Ansari MA, Nath A, Butterfield DA. Oxidative stress and toxicity induced by the nucleoside reverse transcriptase inhibitor (NRTI)--2',3'-dideoxycytidine (ddC): relevance to HIV-dementia. Exp Neurol 2007; 204:29-38. [PMID: 17069802 PMCID: PMC1857338 DOI: 10.1016/j.expneurol.2006.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 09/01/2006] [Accepted: 09/21/2006] [Indexed: 11/24/2022]
Abstract
Human immunodeficiency virus dementia (HIVD) is the most common form of dementia occurring among young adults. In HIVD, neuronal cell loss occurs in the absence of neuronal infection. With the advent of highly active anti-retroviral therapy (HAART), the incidence of HIVD has drastically reduced, though prevalence of milder forms of HIVD continues to rise. Though these agents have been used successfully in suppressing viral production, they have also been associated with a number of side effects. Here we examine the possible role of NRTIs, in particular 2',3'-dideoxycytidine (ddC), in the neuropathology of HIVD. Synaptosomes and isolated mitochondria treated and incubated for 6 h with CSF-achievable concentrations of ddC, i.e., 6-11 ng/ml, were found to show a significant increase in oxidative stress with 40 nM ddC as measured by protein carbonyls and 3-nitrotyrosine (3NT), effects that were not observed in the more tolerable NRTI, 3TC. Protection against protein oxidation induced by ddC was observed when brain mitochondria were isolated from gerbils 1 h after injection i.p. with the brain accessible antioxidant and glutathione mimetic, tricyclodecan-9-yl-xanthogenate (D609). In addition, there is a significant reduction in the levels of anti-apoptotic protein Bcl-2 and a significant increase in cytochrome c release and also a significant increase in the expression of pro-apoptotic protein caspase-3 after mitochondria were treated with 40 nM ddC. The results reported here show that ddC at 40 nM can induce oxidative stress, cause the release of cytochrome c, and in addition, reduce the levels of anti-apoptotic proteins, increase the levels of pro-apoptotic proteins, thereby increasing the possibility for induction of apoptosis. These findings are consistent with the notion of a possible role of the NRTIs, and in particular, ddC, in the mechanisms involved in HIVD.
Collapse
Affiliation(s)
- Wycliffe. O. Opii
- Dept of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055
| | - Rukhsana Sultana
- Dept of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055
| | - Hafiz Mohmmad Abdul
- Dept of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055
| | - Mubeen-Ahmad Ansari
- Dept of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055
| | - Avindra Nath
- Dept of Neurology, Johns Hopkins University, School of Medicine, Baltimore Maryland, 21287 - USA
| | - D. Allan Butterfield
- Dept of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055
| |
Collapse
|
39
|
Smith DG, Cappai R, Barnham KJ. The redox chemistry of the Alzheimer's disease amyloid beta peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1976-90. [PMID: 17433250 DOI: 10.1016/j.bbamem.2007.02.002] [Citation(s) in RCA: 462] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 12/28/2022]
Abstract
There is a growing body of evidence to support a role for oxidative stress in Alzheimer's disease (AD), with increased levels of lipid peroxidation, DNA and protein oxidation products (HNE, 8-HO-guanidine and protein carbonyls respectively) in AD brains. The brain is a highly oxidative organ consuming 20% of the body's oxygen despite accounting for only 2% of the total body weight. With normal ageing the brain accumulates metals ions such iron (Fe), zinc (Zn) and copper (Cu). Consequently the brain is abundant in antioxidants to control and prevent the detrimental formation of reactive oxygen species (ROS) generated via Fenton chemistry involving redox active metal ion reduction and activation of molecular oxygen. In AD there is an over accumulation of the Amyloid beta peptide (Abeta), this is the result of either an elevated generation from amyloid precursor protein (APP) or inefficient clearance of Abeta from the brain. Abeta can efficiently generate reactive oxygen species in the presence of the transition metals copper and iron in vitro. Under oxidative conditions Abeta will form stable dityrosine cross-linked dimers which are generated from free radical attack on the tyrosine residue at position 10. There are elevated levels of urea and SDS resistant stable linked Abeta oligomers as well as dityrosine cross-linked peptides and proteins in AD brain. Since soluble Abeta levels correlate best with the degree of degeneration [C.A. McLean, R.A. Cherny, F.W. Fraser, S.J. Fuller, M.J. Smith, K. Beyreuther, A.I. Bush, C.L. Masters, Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease, Ann. Neurol. 46 (1999) 860-866] we suggest that the toxic Abeta species corresponds to a soluble dityrosine cross-linked oligomer. Current therapeutic strategies using metal chelators such as clioquinol and desferrioxamine have had some success in altering the progression of AD symptoms. Similarly, natural antioxidants curcumin and ginkgo extract have modest but positive effects in slowing AD development. Therefore, drugs that target the oxidative pathways in AD could have genuine therapeutic efficacy.
Collapse
Affiliation(s)
- Danielle G Smith
- Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
40
|
Ansari MA, Joshi G, Huang Q, Opii WO, Abdul HM, Sultana R, Butterfield DA. In vivo administration of D609 leads to protection of subsequently isolated gerbil brain mitochondria subjected to in vitro oxidative stress induced by amyloid beta-peptide and other oxidative stressors: relevance to Alzheimer's disease and other oxidative stress-related neurodegenerative disorders. Free Radic Biol Med 2006; 41:1694-703. [PMID: 17145558 PMCID: PMC1827074 DOI: 10.1016/j.freeradbiomed.2006.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 08/28/2006] [Accepted: 09/04/2006] [Indexed: 11/20/2022]
Abstract
Tricyclodecan-9-yl-xanthogenate (D609) has in vivo and in vitro antioxidant properties. D609 mimics glutathione (GSH) and has a free thiol group, which upon oxidation forms a disulfide. The resulting dixanthate is a substrate for glutathione reductase, regenerating D609. Recent studies have also shown that D609 protects brain in vivo and neuronal cultures in vitro against the potential Alzheimer's disease (AD) causative factor, Abeta(1-42)-induced oxidative stress and cytotoxicity. Mitochondria are important organelles with both pro- and antiapoptotic factor proteins. The present study was undertaken to test the hypothesis that intraperitoneal injection of D609 would provide neuroprotection against free radical-induced, mitochondria-mediated apoptosis in vitro. Brain mitochondria were isolated from gerbils 1 h post injection intraperitoneally (ip) with D609 and subsequently treated in vitro with the oxidants Fe(2+)/H(2)O(2) (hydroxyl free radicals), 2,2-azobis-(2-amidinopropane) dihydrochloride (AAPH, alkoxyl and peroxyl free radicals), and AD-relevant amyloid beta-peptide 1-42 [Abeta(1-42)]. Brain mitochondria isolated from the gerbils previously injected ip with D609 and subjected to these oxidative stress inducers, in vitro, showed significant reduction in levels of protein carbonyls, protein-bound hydroxynonenal [a lipid peroxidation product], 3-nitrotyrosine, and cytochrome c release compared to oxidant-treated brain mitochondria isolated from saline-injected gerbils. D609 treatment significantly maintains the GSH/GSSG ratio in oxidant-treated mitochondria. Increased activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in brain isolated from D609-injected gerbils is consistent with the notion that D609 acts like GSH. These antiapoptotic findings are discussed with reference to the potential use of this brain-accessible glutathione mimetic in the treatment of oxidative stress-related neurodegenerative disorders, including AD.
Collapse
|
41
|
Mancuso C, Perluigi M, Cini C, De Marco C, Giuffrida Stella AM, Calabrese V. Heme oxygenase and cyclooxygenase in the central nervous system: A functional interplay. J Neurosci Res 2006; 84:1385-91. [PMID: 16998916 DOI: 10.1002/jnr.21049] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heme oxygenase (HO) and cyclooxygenase (COX) are two hemeproteins involved in the regulation of several functions in the nervous system. Heme oxygenase is the enzyme responsible for the degradation of heme into ferrous iron, carbon monoxide (CO), and biliverdin, the latter being further reduced in bilirubin (BR) by biliverdin reductase. Heme oxygenase-derived CO is a gaseous neuromodulator and plays an important role in the synaptic plasticity, learning and memory processes, as well as in the regulation of hypothalamic neuropeptide release, whereas BR is an endogenous molecules with antioxidant and anti-nitrosative activities. Cyclooxygenase is considered a pro-inflammatory enzyme as free radicals and prostaglandins (PGs) are produced during its catalytic cycle. Although PGs are also involved in a variety of physiologic conditions including angiogenesis, hemostasis, or regulation of kidney function, upregulation of COX and increase in PGs levels are a common feature of neuroinflammation. In the brain, a functional interplay exists between HO and COX. Heme oxygenase regulates COX activity by reducing the intracellular heme content or by generating CO, which stimulates PGE(2) release. Increased levels of PGs, free radicals, and the associated oxidative stress serve in the brain as a trigger for the induction of HO isoforms which increases cellular antioxidant defenses to counteract oxidative damage. The importance of the interaction between HO and COX in the regulation of physiologic brain functions, and its relevance to neuroprotective or neurodegenerative mechanisms are discussed.
Collapse
Affiliation(s)
- Cesare Mancuso
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy
| | | | | | | | | | | |
Collapse
|