1
|
Li N, Gao S, Gao S, Wang Y, Huang H, Wang J, Shen X. Knockdown of thioredoxin interacting protein in Müller cells attenuates photoreceptor apoptosis in streptozotocin-induced diabetic mouse model. Int J Biol Macromol 2024; 271:132731. [PMID: 38815945 DOI: 10.1016/j.ijbiomac.2024.132731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
We explored the effect of inhibition of thioredoxin interacting protein (Txnip) on neuroprotection in Müller cells under high glucose. Wild-type (WT) and Txnip knockout (Txnip-/-) mice were used to establish a streptozotocin (STZ)-induced diabetes model and a Müller cells high glucose model. We detected BDNF expression and PI3K/AKT/CREB pathway activation levels in the retina and Müller cells of each group in vivo and in vitro experiments. The Txnip-/- STZ group showed higher expression of BDNF and phosphorylation of PI3K/AKT/CREB in retina, and less retinal photoreceptor apoptosis was observed in Txnip-/- diabetic group than in WT. After using an inhibitor of PI3K signaling pathway, BDNF expression was reduced; In vitro co-cultured with Müller cells in different groups, 661 W cells showed different situations, Txnip-/- Müller cells maximum downregulated Cleaved-caspase 3 expression in 661 W, accompanied by an increase in Bcl-2/Bax ratio. These findings indicate that inhibiting endogenous Txnip in mouse Müller cells can promote their expression and secretion of BDNF, thereby reducing HG induced photoreceptor apoptosis and having important neuroprotective effects on DR. The regulation of BDNF expression by Txnip may be achieved by activating the PI3K/AKT/CREB pathway. This study suggests that regulating Txnip may be a potential target for DR treatment.
Collapse
Affiliation(s)
- Na Li
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuang Gao
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sha Gao
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanuo Wang
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hanwen Huang
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Wang
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Van Hook MJ, McCool S. Nonuniform scaling of synaptic inhibition in the dorsolateral geniculate nucleus in a mouse model of glaucoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587036. [PMID: 38586044 PMCID: PMC10996666 DOI: 10.1101/2024.03.27.587036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Elevated intraocular pressure (IOP) triggers glaucoma by damaging the output neurons of the retina called retinal ganglion cells (RGCs). This leads to the loss of RGC signaling to visual centers of the brain such as the dorsolateral geniculate nucleus (dLGN), which is critical for processing and relaying information to the cortex for conscious vision. In response to altered levels of activity or synaptic input, neurons can homeostatically modulate postsynaptic neurotransmitter receptor numbers, allowing them to scale their synaptic responses to stabilize spike output. While prior work has indicated unaltered glutamate receptor properties in the glaucomatous dLGN, it is unknown whether glaucoma impacts dLGN inhibition. Here, using DBA/2J mice, which develop elevated IOP beginning at 6-7 months of age, we tested whether the strength of inhibitory synapses on dLGN thalamocortical relay neurons is altered in response to the disease state. We found an enhancement of feed-forward disynaptic inhibition arising from local interneurons along with increased amplitude of quantal inhibitory synaptic currents. A combination of immunofluorescence staining for the GABA A -α1 receptor subunit, peak-scaled nonstationary fluctuation analysis, and measures of homeostatic synaptic scaling indicated this was the result of an approximately 1.4-fold increase in GABA receptor number at post-synaptic inhibitory synapses, although several pieces of evidence strongly indicate a non-uniform scaling across inhibitory synapses within individual relay neurons. Together, these results indicate an increase in inhibitory synaptic strength in the glaucomatous dLGN, potentially pointing toward homeostatic compensation for disruptions in network and neuronal function triggered by increased IOP. Significance Statement Elevated eye pressure in glaucoma leads to loss of retinal outputs to the dorsolateral geniculate nucleus (dLGN), which is critical for relaying information to the cortex for conscious vision. Alterations in neuronal activity, as could arise from excitatory synapse loss, can trigger homeostatic adaptations to synaptic function that attempt to maintain activity within a meaningful dynamic range, although whether this occurs uniformly at all synapses within a given neuron or is a non-uniform process is debated. Here, using a mouse model of glaucoma, we show that dLGN inhibitory synapses undergo non-uniform upregulation due to addition of post-synaptic GABA receptors. This is likely to be a neuronal adaptation to glaucomatous pathology in an important sub-cortical visual center.
Collapse
|
3
|
Van Hook MJ. Brain-derived neurotrophic factor is a regulator of synaptic transmission in the adult visual thalamus. J Neurophysiol 2022; 128:1267-1277. [PMID: 36224192 PMCID: PMC9662800 DOI: 10.1152/jn.00540.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an important regulator of circuit development, neuronal survival, and plasticity throughout the nervous system. In the visual system, BDNF is produced by retinal ganglion cells (RGCs) and transported along their axons to central targets. Within the dorsolateral geniculate nucleus (dLGN), a key RGC projection target for conscious vision, the BDNF receptor tropomyosin receptor kinase B (TrkB) is present on RGC axon terminals and postsynaptic thalamocortical (TC) relay neuron dendrites. Based on this, the goal of this study was to determine how BDNF modulates the conveyance of signals through the retinogeniculate (RG) pathway of adult mice. Application of BDNF to dLGN brain slices increased TC neuron spiking evoked by optogenetic stimulation of RGC axons. There was a modest contribution to this effect from a BDNF-dependent enhancement of TC neuron intrinsic excitability including increased input resistance and membrane depolarization. BDNF also increased evoked vesicle release from RGC axon terminals, as evidenced by increased amplitude of evoked excitatory postsynaptic currents (EPSCs), which was blocked by inhibition of TrkB or phospholipase C. High-frequency stimulation revealed that BDNF increased synaptic vesicle pool size, release probability, and replenishment rate. There was no effect of BDNF on EPSC amplitude or short-term plasticity of corticothalamic feedback synapses. Thus, BDNF regulates RG synapses by both presynaptic and postsynaptic mechanisms. These findings suggest that BNDF influences the flow of visual information through the retinogeniculate pathway.NEW & NOTEWORTHY Brain-derived neurotrophic factor (BDNF) is an important regulator of neuronal development and plasticity. In the visual system, BDNF is transported along retinal ganglion cell (RGC) axons to the dorsolateral geniculate nucleus (dLGN), although it is not known how it influences mature dLGN function. Here, BDNF enhanced thalamocortical relay neuron responses to signals arising from RGC axons in the dLGN, pointing toward an important role for BDNF in processing signals en route to the visual cortex.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
4
|
Lambuk L, Mohd Lazaldin MA, Ahmad S, Iezhitsa I, Agarwal R, Uskoković V, Mohamud R. Brain-Derived Neurotrophic Factor-Mediated Neuroprotection in Glaucoma: A Review of Current State of the Art. Front Pharmacol 2022; 13:875662. [PMID: 35668928 PMCID: PMC9163364 DOI: 10.3389/fphar.2022.875662] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cells (RGCs) are neurons of the visual system that are responsible for transmitting signals from the retina to the brain via the optic nerve. Glaucoma is an optic neuropathy characterized by apoptotic loss of RGCs and degeneration of optic nerve fibers. Risk factors such as elevated intraocular pressure and vascular dysregulation trigger the injury that culminates in RGC apoptosis. In the event of injury, the survival of RGCs is facilitated by neurotrophic factors (NTFs), the most widely studied of which is brain-derived neurotrophic factor (BDNF). Its production is regulated locally in the retina, but transport of BDNF retrogradely from the brain to retina is also crucial. Not only that the interruption of this retrograde transport has been detected in the early stages of glaucoma, but significantly low levels of BDNF have also been detected in the sera and ocular fluids of glaucoma patients, supporting the notion that neurotrophic deprivation is a likely mechanism of glaucomatous optic neuropathy. Moreover, exogenous NTF including BDNF administration was shown reduce neuronal loss in animal models of various neurodegenerative diseases, indicating the possibility that exogenous BDNF may be a treatment option in glaucoma. Current literature provides an extensive insight not only into the sources, transport, and target sites of BDNF but also the intracellular signaling pathways, other pathways that influence BDNF signaling and a wide range of its functions. In this review, the authors discuss the neuroprotective role of BDNF in promoting the survival of RGCs and its possible application as a therapeutic tool to meet the challenges in glaucoma management. We also highlight the possibility of using BDNF as a biomarker in neurodegenerative disease such as glaucoma. Further we discuss the challenges and future strategies to explore the utility of BDNF in the management of glaucoma.
Collapse
Affiliation(s)
- Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | | | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Igor Iezhitsa
- Department of Pharmacology and Therapeutics, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia
| | - Renu Agarwal
- Department of Pharmacology and Therapeutics, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, United States
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, United States
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
5
|
Pöstyéni E, Ganczer A, Kovács-Valasek A, Gabriel R. Relevance of Peptide Homeostasis in Metabolic Retinal Degenerative Disorders: Curative Potential in Genetically Modified Mice. Front Pharmacol 2022; 12:808315. [PMID: 35095518 PMCID: PMC8793341 DOI: 10.3389/fphar.2021.808315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian retina contains approximately 30 neuropeptides that are synthetized by different neuronal cell populations, glia, and the pigmented epithelium. The presence of these neuropeptides leaves a mark on normal retinal molecular processes and physiology, and they are also crucial in fighting various pathologies (e.g., diabetic retinopathy, ischemia, age-related pathologies, glaucoma) because of their protective abilities. Retinal pathologies of different origin (metabolic, genetic) are extensively investigated by genetically manipulated in vivo mouse models that help us gain a better understanding of the molecular background of these pathomechanisms. These models offer opportunities to manipulate gene expression in different cell types to help reveal their roles in the preservation of retinal health or identify malfunction during diseases. In order to assess the current status of transgenic technologies available, we have conducted a literature survey focused on retinal disorders of metabolic origin, zooming in on the role of retinal neuropeptides in diabetic retinopathy and ischemia. First, we identified those neuropeptides that are most relevant to retinal pathologies in humans and the two clinically most relevant models, mice and rats. Then we continued our analysis with metabolic disorders, examining neuropeptide-related pathways leading to systemic or cellular damage and rescue. Last but not least, we reviewed the available literature on genetically modified mouse strains to understand how the manipulation of a single element of any given pathway (e.g., signal molecules, receptors, intracellular signaling pathways) could lead either to the worsening of disease conditions or, more frequently, to substantial improvements in retinal health. Most attention was given to studies which reported successful intervention against specific disorders. For these experiments, a detailed evaluation will be given and the possible role of converging intracellular pathways will be discussed. Using these converging intracellular pathways, curative effects of peptides could potentially be utilized in fighting metabolic retinal disorders.
Collapse
Affiliation(s)
- Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
6
|
Chu-Tan JA, Kirkby M, Natoli R. Running to save sight: The effects of exercise on retinal health and function. Clin Exp Ophthalmol 2021; 50:74-90. [PMID: 34741489 DOI: 10.1111/ceo.14023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/29/2022]
Abstract
The benefits of exercise to human health have long been recognised. However, only in the past decade have researchers started to discover the molecular benefits that exercise confers, especially to the central nervous system (CNS). These discoveries include the magnitude of molecular messages that are communicated from skeletal muscle to the CNS. Despite these advances in understanding, very limited studies have been conducted to decipher the molecular benefits of exercise in retinal health and disease. Here, we review the latest work on the effects of exercise on the retina and discuss its effects on the wider CNS, with a focus on demonstrating the potential applicability and comparative molecular mechanisms that may be occurring in the retina. This review covers the key molecular pathways where exercise exerts its effects: oxidative stress and mitochondrial health; inflammation; protein aggregation; neuronal health; and tissue crosstalk via extracellular vesicles. Further research on the benefits of exercise to the retina and its molecular messages within extracellular vesicles is highly topical in this field.
Collapse
Affiliation(s)
- Joshua A Chu-Tan
- The John Curtin School of Medical Research, The Australian National University, Acton, Australia.,The Australian National University Medical School, The Australian National University, Acton, Australia
| | - Max Kirkby
- The John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Acton, Australia.,The Australian National University Medical School, The Australian National University, Acton, Australia
| |
Collapse
|
7
|
He YY, Wang L, Zhang T, Weng SJ, Lu J, Zhong YM. Aerobic exercise delays retinal ganglion cell death after optic nerve injury. Exp Eye Res 2020; 200:108240. [PMID: 32919994 DOI: 10.1016/j.exer.2020.108240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/21/2020] [Accepted: 09/08/2020] [Indexed: 11/25/2022]
Abstract
Aerobic exercise has been shown to play a crucial role in preventing neurological diseases and improving cognitive function. In the present study, we investigated the effect of treadmill training on retinal ganglion cells (RGCs) following optic nerve transection in adult rats. We exercised the rats on a treadmill for 5 d/week (30 min/d at a rate of 9 m/min) or placed control rats on static treadmills. After 3 weeks of exercise, the left optic nerve of each rat was transected. After the surgery, the rat was exercised for another week. The percentages of surviving RGCs in the axotomized eyes of inactive rats were 67% and 39% at 5 and 7 days postaxotomy, respectively. However, exercised rats had significant more RGCs at 5 (74% survival) and 7 days (48% survival) after axotomy. Moreover, retinal brain-derived neurotrophic factor (BDNF) protein levels were significantly upregulated in response to exercise compared with those in the axotomized eyes of inactive rats. Blocking BNDF signaling during exercise by intraperitoneal injections of ANA-12, a BDNF tropomyosin receptor kinase (TrkB) receptor antagonist, reduced the number of RGCs in exercised rats to the level of RGCs in the inactive rats, effectively abolishing the protection of RGCs afforded by exercise. The results suggest that treadmill training effectively rescues RGCs from neurodegeneration following optic nerve transection by upregulating the expression of BDNF.
Collapse
Affiliation(s)
- Yuan-Yuan He
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu Wang
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tao Zhang
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shi-Jun Weng
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Lu
- College of Physical & Health, East China Normal University, Shanghai, 200241, China.
| | - Yong-Mei Zhong
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Luke MPS, Brown RE, Clarke DB. Polysialylated - neural cell adhesion molecule (PSA-NCAM) promotes recovery of vision after the critical period. Mol Cell Neurosci 2020; 107:103527. [PMID: 32634575 DOI: 10.1016/j.mcn.2020.103527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 06/05/2020] [Accepted: 06/29/2020] [Indexed: 01/19/2023] Open
Abstract
Vision loss has long since been considered irreversible after a critical period; however, there is potential to restore limited vision, even in adulthood. This phenomenon is particularly pronounced following complete loss of vision in the dominant eye. Adult neural cell adhesion molecule (NCAM) knockout mice have an age-related impairment of visual acuity. The underlying cause of early deterioration in visual function remains unknown. Polysialylated (PSA) NCAM is involved in different forms of neural plasticity in the adult brain, raising the possibility that NCAM plays a role in the plasticity of the visual cortex, and therefore, in visual ability. Here, we examined whether PSA-NCAM is required for visual cortical plasticity in adult C57Bl/6J mice following deafferentation and long-term monocular deprivation. Our results show that elevated PSA in the contralateral visual cortex of the reopened eye is accompanied by changes in other markers of neural plasticity: increased brain-derived neurotrophic factor (BDNF) levels and degradation of perineuronal nets (PNNs). The removal of PSA-NCAM in the visual cortex of these mice reduced BDNF expression, decreased PNN degradation, and resulted in impaired recovery of visual acuity after optic nerve transection and chronic monocular deprivation. Collectively, our results demonstrate that PSA-NCAM is necessary for the reactivation of visual cortical plasticity and recovery of visual function in adult mice. It also offers a potential molecular target for the therapeutic treatment of cortically based visual impairments.
Collapse
Affiliation(s)
- Margaret Po-Shan Luke
- Department of Medical Neuroscience, Dalhousie University, Life Science Research Institute, 1348 Summer Street, Halifax B3H 4R2, NS, Canada.
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Life Science Centre, 1355 Oxford Street, PO Box 15000, Halifax B3H 4R2, NS, Canada.
| | - David B Clarke
- Departments of Surgery (Neurosurgery), Medical Neuroscience, and Ophthalmology & Visual Sciences, Dalhousie University, Life Science Research Institute, 1348 Summer Street, Halifax B3H 4R2, NS, Canada.
| |
Collapse
|
9
|
Bhandari A, Smith JC, Zhang Y, Jensen AA, Reid L, Goeser T, Fan S, Ghate D, Van Hook MJ. Early-Stage Ocular Hypertension Alters Retinal Ganglion Cell Synaptic Transmission in the Visual Thalamus. Front Cell Neurosci 2019; 13:426. [PMID: 31607867 PMCID: PMC6761307 DOI: 10.3389/fncel.2019.00426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022] Open
Abstract
Axonopathy is a hallmark of many neurodegenerative diseases including glaucoma, where elevated intraocular pressure (ocular hypertension, OHT) stresses retinal ganglion cell (RGC) axons as they exit the eye and form the optic nerve. OHT causes early changes in the optic nerve such as axon atrophy, transport inhibition, and gliosis. Importantly, many of these changes appear to occur prior to irreversible neuronal loss, making them promising points for early diagnosis of glaucoma. It is unknown whether OHT has similarly early effects on the function of RGC output to the brain. To test this possibility, we elevated eye pressure in mice by anterior chamber injection of polystyrene microbeads. Five weeks post-injection, bead-injected eyes showed a modest RGC loss in the peripheral retina, as evidenced by RBPMS antibody staining. Additionally, we observed reduced dendritic complexity and lower spontaneous spike rate of On-αRGCs, targeted for patch clamp recording and dye filling using a Opn4-Cre reporter mouse line. To determine the influence of OHT on retinal projections to the brain, we expressed Channelrhodopsin-2 (ChR2) in melanopsin-expressing RGCs by crossing the Opn4-Cre mouse line with a ChR2-reporter mouse line and recorded post-synaptic responses in thalamocortical relay neurons in the dorsal lateral geniculate nucleus (dLGN) of the thalamus evoked by stimulation with 460 nm light. The use of a Opn4-Cre reporter system allowed for expression of ChR2 in a narrow subset of RGCs responsible for image-forming vision in mice. Five weeks following OHT induction, paired pulse and high-frequency stimulus train experiments revealed that presynaptic vesicle release probability at retinogeniculate synapses was elevated. Additionally, miniature synaptic current frequency was slightly reduced in brain slices from OHT mice and proximal dendrites of post-synaptic dLGN relay neurons, assessed using a Sholl analysis, showed a reduced complexity. Strikingly, these changes occurred prior to major loss of RGCs labeled with the Opn4-Cre mouse, as indicated by immunofluorescence staining of ChR2-expressing retinal neurons. Thus, OHT leads to pre- and post-synaptic functional and structural changes at retinogeniculate synapses. Along with RGC dendritic remodeling and optic nerve transport changes, these retinogeniculate synaptic changes are among the earliest signs of glaucoma.
Collapse
Affiliation(s)
- Ashish Bhandari
- Department of Ophthalmology and Visual Sciences, Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jennie C Smith
- Department of Ophthalmology and Visual Sciences, Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yang Zhang
- Department of Ophthalmology and Visual Sciences, Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States.,Creighton University School of Medicine, Omaha, NE, United States.,Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Aaron A Jensen
- Department of Ophthalmology and Visual Sciences, Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Lisa Reid
- Department of Ophthalmology and Visual Sciences, Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Toni Goeser
- Department of Ophthalmology and Visual Sciences, Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shan Fan
- Department of Ophthalmology and Visual Sciences, Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Deepta Ghate
- Department of Ophthalmology and Visual Sciences, Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Matthew J Van Hook
- Department of Ophthalmology and Visual Sciences, Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
10
|
Developmental Remodeling of Thalamic Interneurons Requires Retinal Signaling. J Neurosci 2019; 39:3856-3866. [PMID: 30842249 DOI: 10.1523/jneurosci.2224-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/04/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023] Open
Abstract
The dorsal lateral geniculate nucleus (dLGN) of the mouse is a model system to study the development of thalamic circuitry. Most studies focus on relay neurons of dLGN, yet little is known about the development of the other principal cell type, intrinsic interneurons. Here we examined whether the structure and function of interneurons relies on retinal signaling. We took a loss-of-function approach and crossed GAD67-GFP mice, which express GFP in dLGN interneurons, with math5 nulls (math5-/-), mutants that lack retinal ganglion cells and retinofugal projections. In vitro recordings and 3-D reconstructions of biocytin-filled interneurons at different postnatal ages showed their development is a multistaged process involving migration, arbor remodeling, and synapse formation. Arbor remodeling begins during the second postnatal week, after migration to and dispersion within dLGN is complete. This phase includes a period of exuberant branching where arbors grow in number, complexity, and field size. Such growth is followed by branch pruning and stabilization, as interneurons adopt a bipolar architecture. The absence of retinal signaling disrupts this process. The math5-/- interneurons fail to branch and prune, and instead maintain a simple, sparse architecture. To test how such defects influence connectivity with dLGN relay neurons, we used DHPG [(RS)-3,5-dihydroxyphenylglycine], the mGluR1,5 agonist that targets F2 terminals. This led to substantial increases in IPSC activity among WT relay neurons but had little impact in math5-/- mice. Together, these data suggest that retinal signaling is needed to support the arbor elaboration and synaptic connectivity of dLGN interneurons.SIGNIFICANCE STATEMENT Presently, our understanding about the development of the dorsal lateral geniculate nucleus is limited to circuits involving excitatory thalamocortical relay neurons. Here we show that the other principal cell type, intrinsic interneurons, has a multistaged developmental plan that relies on retinal innervation. These findings indicate that signaling from the periphery guides the maturation of interneurons and the establishment of inhibitory thalamic circuits.
Collapse
|
11
|
Pardue MT, Allen RS. Neuroprotective strategies for retinal disease. Prog Retin Eye Res 2018; 65:50-76. [PMID: 29481975 PMCID: PMC6081194 DOI: 10.1016/j.preteyeres.2018.02.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
Abstract
Diseases that affect the eye, including photoreceptor degeneration, diabetic retinopathy, and glaucoma, affect 11.8 million people in the US, resulting in vision loss and blindness. Loss of sight affects patient quality of life and puts an economic burden both on individuals and the greater healthcare system. Despite the urgent need for treatments, few effective options currently exist in the clinic. Here, we review research on promising neuroprotective strategies that promote neuronal survival with the potential to protect against vision loss and retinal cell death. Due to the large number of neuroprotective strategies, we restricted our review to approaches that we had direct experience with in the laboratory. We focus on drugs that target survival pathways, including bile acids like UDCA and TUDCA, steroid hormones like progesterone, therapies that target retinal dopamine, and neurotrophic factors. In addition, we review rehabilitative methods that increase endogenous repair mechanisms, including exercise and electrical stimulation therapies. For each approach, we provide background on the neuroprotective strategy, including history of use in other diseases; describe potential mechanisms of action; review the body of research performed in the retina thus far, both in animals and in humans; and discuss considerations when translating each treatment to the clinic and to the retina, including which therapies show the most promise for each retinal disease. Despite the high incidence of retinal diseases and the complexity of mechanisms involved, several promising neuroprotective treatments provide hope to prevent blindness. We discuss attractive candidates here with the goal of furthering retinal research in critical areas to rapidly translate neuroprotective strategies into the clinic.
Collapse
Affiliation(s)
- Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332, USA.
| | - Rachael S Allen
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA
| |
Collapse
|
12
|
Mysona BA, Zhao J, Smith S, Bollinger KE. Relationship between Sigma-1 receptor and BDNF in the visual system. Exp Eye Res 2018; 167:25-30. [PMID: 29031856 PMCID: PMC5757370 DOI: 10.1016/j.exer.2017.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022]
Abstract
Glaucoma is an incurable optic neuropathy characterized by dysfunction and death of retinal ganglion cells (RGCs). Brain derived neurotrophic factor (BDNF) is an essential neurotrophin that supports RGC function and survival. Despite BDNF's importance, our knowledge of molecular mechanisms that modulate BDNF processing and secretion is incomplete. Sigma-1 receptor (S1R) is associated with increased BDNF in hippocampus and with BDNF secretion by brain-derived astrocytes and neuronal cell lines. Much less is known about the relationship between S1R and BDNF in the visual system. Here, we examine how S1R activation and deletion alter expression of mature BDNF (mBDNF) and proBDNF in retina and cultured optic nerve head (ONH) astrocytes. For S1R activation, the S1R agonist (+)-pentazocine (PTZ, 0.5 mg/kg) was administered by intraperitoneal injection to C57BL/6J mice, 3 times per week, for 5 weeks. Expression of proBDNF and mBDNF was also examined in S1R knockout and age-matched C57BL/6J mice. In vitro, cultured ONH astrocytes were treated with 3 μM PTZ for 24 h followed by collection of media and ONH astrocyte lysates. Results showed that treatment with (+)-PTZ increased mBDNF protein in both retina and hippocampus. In contrast, S1R deletion was associated with retinal mBDNF deficits. In ONH astrocytes S1R agonist (+)-PTZ significantly increased levels of secreted BDNF and proBDNF in cell lysates. These findings support a role for S1R in the modulation of BDNF levels within the retina and optic nerve head. Treatment with S1R agonists might provide benefit in diseases such as glaucoma by increasing BDNF levels from endogenous sources.
Collapse
Affiliation(s)
- Barbara A Mysona
- James and Jean Culver Vision Discovery Institute, Augusta, GA, 30912, United States; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Jing Zhao
- James and Jean Culver Vision Discovery Institute, Augusta, GA, 30912, United States; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Sylvia Smith
- James and Jean Culver Vision Discovery Institute, Augusta, GA, 30912, United States; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Kathryn E Bollinger
- James and Jean Culver Vision Discovery Institute, Augusta, GA, 30912, United States; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States.
| |
Collapse
|
13
|
Releasing Mechanism of Neurotrophic Factors via Polysialic Acid. VITAMINS AND HORMONES 2017; 104:89-112. [DOI: 10.1016/bs.vh.2016.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Mysona BA, Zhao J, Bollinger KE. Role of BDNF/TrkB pathway in the visual system: Therapeutic implications for glaucoma. EXPERT REVIEW OF OPHTHALMOLOGY 2016; 12:69-81. [PMID: 28751923 DOI: 10.1080/17469899.2017.1259566] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Neuroprotective therapeutics are needed to treat glaucoma, an optic neuropathy that results in death of retinal ganglion cells (RGCs). AREAS COVERED The BDNF/TrkB pathway is important for RGC survival. Temporal and spatial alterations in the BDNF/TrkB pathway occur in development and in response to acute optic nerve injury and to glaucoma. In animal models, BDNF supplementation is successful at slowing RGC death after acute optic nerve injury and in glaucoma, however, the BDNF/TrkB signaling is not the only pathway supporting long term RGC survival. EXPERT COMMENTARY Much remains to be discovered about the interaction between retrograde, anterograde, and retinal BDNF/TrkB signaling pathways in both neurons and glia. An ideal therapeutic agent for glaucoma likely has several modes of action that target multiple mechanisms of neurodegeneration including the BDNF/TrkB pathway.
Collapse
Affiliation(s)
- B A Mysona
- Augusta University Department of Cellular Biology and Anatomy, James and Jean Culver Vision Discovery Institute. Address: Augusta University Department of Cellular Biology and Anatomy, Health Sciences Campus, 1120 15th Street, Augusta, GA 30912, USA,
| | - J Zhao
- Medical College of Georgia, Department of Ophthalmology at Augusta University, James and Jean Culver Vision Discovery Institute. Address: Medical College of Georgia, Department of Ophthalmology at Augusta University, 1120 15th Street, Augusta, GA 30912, USA,
| | - K E Bollinger
- Medical College of Georgia, Department of Ophthalmology at Augusta University, Augusta University Department of Cellular Biology and Anatomy, James and Jean Culver Vision Discovery Institute. Address: Medical College of Georgia, Department of Ophthalmology at Augusta University, 1120 15th Street, Augusta, GA 30912, USA,
| |
Collapse
|
15
|
Hanif AM, Lawson EC, Prunty M, Gogniat M, Aung MH, Chakraborty R, Boatright JH, Pardue MT. Neuroprotective Effects of Voluntary Exercise in an Inherited Retinal Degeneration Mouse Model. Invest Ophthalmol Vis Sci 2016; 56:6839-46. [PMID: 26567796 DOI: 10.1167/iovs.15-16792] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Our previous investigations showed that involuntary treadmill exercise is neuroprotective in a light-induced retinal degeneration mouse model, and it may act through activation of tropomyosin-related kinase B (TrkB) receptors. This study investigated whether voluntary running wheel exercise can be neuroprotective in an inheritable model of the retinal degenerative disease retinitis pigmentosa (RP), rd10 mice. METHODS Breeding pairs of rd10 and C57BL/6J mice were given free-spinning (active) or locked (inactive) running wheels. Pups were weaned into separate cages with their parents' respective wheel types, and visual function was tested with ERG and a virtual optokinetic system at 4, 5, and 6 weeks of age. Offspring were killed at 6 weeks of age and retinal cross-sections were prepared for photoreceptor nuclei counting. Additionally, separate cohorts of active and inactive rd10 pups were injected daily for 14 days after eye opening with a selective TrkB receptor antagonist (ANA-12) or vehicle solution and assessed as described above. RESULTS Mice in the rd10 active group exhibited significant preservation of visual acuity, cone nuclei, and total photoreceptor nuclei number. Injection with ANA-12 precluded the preservation of visual acuity and photoreceptor nuclei number in rd10 mice. CONCLUSIONS Voluntary running partially protected against the retinal degeneration and vision loss that otherwise occurs in the rd10 mouse model of RP. This protection was prevented by injection of ANA-12, suggesting that TrkB activation mediates exercise's preservation of the retina. Exercise may serve as an effective, clinically translational intervention against retinal degeneration.
Collapse
Affiliation(s)
- Adam M Hanif
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, United States
| | - Eric C Lawson
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, United States
| | - Megan Prunty
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, United States
| | - Marissa Gogniat
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, United States
| | - Moe H Aung
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Ranjay Chakraborty
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jeffrey H Boatright
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, United States 2Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, United States 2Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
16
|
El-Danaf RN, Krahe TE, Dilger EK, Bickford ME, Fox MA, Guido W. Developmental remodeling of relay cells in the dorsal lateral geniculate nucleus in the absence of retinal input. Neural Dev 2015; 10:19. [PMID: 26174426 PMCID: PMC4502538 DOI: 10.1186/s13064-015-0046-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/01/2015] [Indexed: 12/01/2022] Open
Abstract
Background The dorsal lateral geniculate nucleus (dLGN) of the mouse has been an important experimental model for understanding thalamic circuit development. The developmental remodeling of retinal projections has been the primary focus, however much less is known about the maturation of their synaptic targets, the relay cells of the dLGN. Here we examined the growth and maturation of relay cells during the first few weeks of life and addressed whether early retinal innervation affects their development. To accomplish this we utilized the math5 null (math5−/−) mouse, a mutant lacking retinal ganglion cells and central projections. Results The absence of retinogeniculate axon innervation led to an overall shrinkage of dLGN and disrupted the pattern of dendritic growth among developing relay cells. 3-D reconstructions of biocytin filled neurons from math5−/− mice showed that in the absence of retinal input relay cells undergo a period of exuberant dendritic growth and branching, followed by branch elimination and an overall attenuation in dendritic field size. However, math5−/− relay cells retained a sufficient degree of complexity and class specificity, as well as their basic membrane properties and spike firing characteristics. Conclusions Retinal innervation plays an important trophic role in dLGN development. Additional support perhaps arising from non-retinal innervation and signaling is likely to contribute to the stabilization of their dendritic form and function.
Collapse
Affiliation(s)
- Rana N El-Danaf
- Departments of Neuroscience, Neurobiology Section in the Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Thomas E Krahe
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, VA, 23298, USA.
| | | | - Martha E Bickford
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| | - Michael A Fox
- Virginia Tech Carilion Research Institute, Roanoke, VA, 24016, USA. .,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
17
|
Nys J, Scheyltjens I, Arckens L. Visual system plasticity in mammals: the story of monocular enucleation-induced vision loss. Front Syst Neurosci 2015; 9:60. [PMID: 25972788 PMCID: PMC4412011 DOI: 10.3389/fnsys.2015.00060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/30/2015] [Indexed: 11/30/2022] Open
Abstract
The groundbreaking work of Hubel and Wiesel in the 1960’s on ocular dominance plasticity instigated many studies of the visual system of mammals, enriching our understanding of how the development of its structure and function depends on high quality visual input through both eyes. These studies have mainly employed lid suturing, dark rearing and eye patching applied to different species to reduce or impair visual input, and have created extensive knowledge on binocular vision. However, not all aspects and types of plasticity in the visual cortex have been covered in full detail. In that regard, a more drastic deprivation method like enucleation, leading to complete vision loss appears useful as it has more widespread effects on the afferent visual pathway and even on non-visual brain regions. One-eyed vision due to monocular enucleation (ME) profoundly affects the contralateral retinorecipient subcortical and cortical structures thereby creating a powerful means to investigate cortical plasticity phenomena in which binocular competition has no vote.In this review, we will present current knowledge about the specific application of ME as an experimental tool to study visual and cross-modal brain plasticity and compare early postnatal stages up into adulthood. The structural and physiological consequences of this type of extensive sensory loss as documented and studied in several animal species and human patients will be discussed. We will summarize how ME studies have been instrumental to our current understanding of the differentiation of sensory systems and how the structure and function of cortical circuits in mammals are shaped in response to such an extensive alteration in experience. In conclusion, we will highlight future perspectives and the clinical relevance of adding ME to the list of more longstanding deprivation models in visual system research.
Collapse
Affiliation(s)
- Julie Nys
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven Leuven, Belgium
| | | | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven Leuven, Belgium
| |
Collapse
|
18
|
Abstract
The endogenous cannabinoid (endocannabinoid) system is an important regulator of synaptic function. Endocannabinoids acutely modulate inhibitory and excitatory transmission, and also mediate long-term depression at GABAergic and glutamatergic synapses. Typically, endocannabinoid synthesis and release is stimulated by depolarization-induced calcium influx and/or activation of phospholipase-C (PLC) signaling triggered by mGluR activation. Recently it has been shown that brain-derived neurotrophic factor (BDNF) can also induce endocannabinoid release. Although there is growing evidence for cross-talk between BDNF and endocannabinoid signaling, little is known about the functional relevance of these interactions. In the present studies, we examined BDNF - endocannabinoid interactions in regulating activity-dependent long-term depression at inhibitory synapses (iLTD). We found that theta burst stimulation (TBS) in layer 2/3 of mouse somatosensory cortical slices can induce a form of endocannabinoid-mediated iLTD that is independent of metabotropic glutamate receptor (mGluR) activation. This endocannabinoid-dependent iLTD, however, requires endogenous BDNF-trkB signaling, as it is blocked by a trk tyrosine kinase inhibitor and by a trkB receptor antagonist, and also requires activation of diacylglycerol lipase (DAG-lipase, DGL). In addition, endocannabinoid-mediated iLTD can be induced by combining a subthreshold concentration of exogenous BDNF with weak TBS stimulation that by itself is insufficient to induce iLTD. Taken together, our results suggest that TBS can induce the release of endogenous BDNF, which triggers DGL-dependent endocannabinoid mobilization and cannabinoid receptor-dependent iLTD at layer 2/3 cortical synapses.
Collapse
|
19
|
|
20
|
Aerts J, Nys J, Arckens L. A highly reproducible and straightforward method to perform in vivo ocular enucleation in the mouse after eye opening. J Vis Exp 2014:e51936. [PMID: 25350746 PMCID: PMC4841293 DOI: 10.3791/51936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Enucleation or the surgical removal of an eye can generally be considered as a model for nerve deafferentation. It provides a valuable tool to study the different aspects of visual, cross-modal and developmental plasticity along the mammalian visual system1-4. Here, we demonstrate an elegant and straightforward technique for the removal of one or both eyes in the mouse, which is validated in mice of 20 days old up to adults. Briefly, a disinfected curved forceps is used to clamp the optic nerve behind the eye. Subsequently, circular movements are performed to constrict the optic nerve and remove the eyeball. The advantages of this technique are high reproducibility, minimal to no bleeding, rapid post-operative recovery and a very low learning threshold for the experimenter. Hence, a large amount of animals can be manipulated and processed with minimal amount of effort. The nature of the technique may induce slight damage to the retina during the procedure. This side effect makes this method less suitable as compared to Mahajan et al. (2011)5 if the goal is to collect and analyze retinal tissue. Also, our method is limited to post-eye opening ages (mouse: P10 - 13 onwards) since the eyeball needs to be displaced from the socket without removing the eyelids. The in vivo enucleation technique described in this manuscript has recently been successfully applied with minor modifications in rats and appears useful to study the afferent visual pathway of rodents in general.
Collapse
Affiliation(s)
- Jeroen Aerts
- Department of Biology, KU Leuven - University of Leuven
| | - Julie Nys
- Department of Biology, KU Leuven - University of Leuven
| | | |
Collapse
|
21
|
Gatta C, Castaldo L, Cellerino A, de Girolamo P, Lucini C, D'Angelo L. Brain derived neurotrophic factor in the retina of the teleost N. furzeri. Ann Anat 2014; 196:192-6. [PMID: 24629406 DOI: 10.1016/j.aanat.2014.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/02/2014] [Accepted: 01/08/2014] [Indexed: 12/27/2022]
Abstract
BDNF plays an important role in the development and maintenance of visual circuitries in the retina and brain visual centers. In adulthood, BDNF signaling is involved in neural protection and regeneration of retina. In this survey, we investigated the expression of BDNF in the retina of adult Nothobranchius furzeri, a teleost fish employed for age research. After describing the retina of N. furzeri and confirming that the structure is organized in layers as in all vertebrates, we have studied the localization of BDNF mRNA and protein throughout the retinal layers. BDNF mRNA is detectable in all layers, whereas the protein is lacking in the photoreceptors. The occurrence of BDNF provides new insights on its role in the retina, particularly in view of age-related disease of retina.
Collapse
Affiliation(s)
- Claudia Gatta
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via Veterinaria, 1, I-80137 Napoli, Italy
| | - Luciana Castaldo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via Veterinaria, 1, I-80137 Napoli, Italy
| | - Alessandro Cellerino
- Scuola Normale Superiore of Pisa, Laboratory of Biology, c/o Institute of Biophysics of CNR, via Moruzzi, 1, I-56100 Pisa, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via Veterinaria, 1, I-80137 Napoli, Italy
| | - Carla Lucini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via Veterinaria, 1, I-80137 Napoli, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via Veterinaria, 1, I-80137 Napoli, Italy.
| |
Collapse
|
22
|
Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology 2013; 76 Pt C:610-27. [PMID: 23791959 DOI: 10.1016/j.neuropharm.2013.05.043] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 12/30/2022]
Abstract
Overwhelming evidence collected since the early 1990's strongly supports the notion that BDNF is among the key regulators of synaptic plasticity in many areas of the mammalian central nervous system. Still, due to the extremely low expression levels of endogenous BDNF in most brain areas, surprisingly little data i) pinpointing pre- and postsynaptic release sites, ii) unraveling the time course of release, and iii) elucidating the physiological levels of synaptic activity driving this secretion are available. Likewise, our knowledge regarding pre- and postsynaptic effects of endogenous BDNF at the single cell level in mediating long-term potentiation still is sparse. Thus, our review will discuss the data currently available regarding synaptic BDNF secretion in response to physiologically relevant levels of activity, and will discuss how endogenously secreted BDNF affects synaptic plasticity, giving a special focus on spike timing-dependent types of LTP and on mossy fiber LTP. We will attempt to open up perspectives how the remaining challenging questions regarding synaptic BDNF release and action might be addressed by future experiments. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
|
23
|
Laudes T, Meis S, Munsch T, Lessmann V. Impaired transmission at corticothalamic excitatory inputs and intrathalamic GABAergic synapses in the ventrobasal thalamus of heterozygous BDNF knockout mice. Neuroscience 2012; 222:215-27. [DOI: 10.1016/j.neuroscience.2012.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/27/2012] [Accepted: 07/02/2012] [Indexed: 01/08/2023]
|
24
|
Dieni S, Matsumoto T, Dekkers M, Rauskolb S, Ionescu MS, Deogracias R, Gundelfinger ED, Kojima M, Nestel S, Frotscher M, Barde YA. BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons. ACTA ACUST UNITED AC 2012; 196:775-88. [PMID: 22412021 PMCID: PMC3308691 DOI: 10.1083/jcb.201201038] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Contrasting with the long-established retrograde model for neurotrophin function, specific immunohistochemical localization of brain-derived neurotrophic factor in the central nervous system supports the alternative model of presynaptic localization and anterograde function. Although brain-derived neurotrophic factor (BDNF) regulates numerous and complex biological processes including memory retention, its extremely low levels in the mature central nervous system have greatly complicated attempts to reliably localize it. Using rigorous specificity controls, we found that antibodies reacting either with BDNF or its pro-peptide both stained large dense core vesicles in excitatory presynaptic terminals of the adult mouse hippocampus. Both moieties were ∼10-fold more abundant than pro-BDNF. The lack of postsynaptic localization was confirmed in Bassoon mutants, a seizure-prone mouse line exhibiting markedly elevated levels of BDNF. These findings challenge previous conclusions based on work with cultured neurons, which suggested activity-dependent dendritic synthesis and release of BDNF. They instead provide an ultrastructural basis for an anterograde mode of action of BDNF, contrasting with the long-established retrograde model derived from experiments with nerve growth factor in the peripheral nervous system.
Collapse
Affiliation(s)
- Sandra Dieni
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
D'Angelo L, de Girolamo P, Cellerino A, Tozzini ET, Castaldo L, Lucini C. Neurotrophin Trk receptors in the brain of a teleost fish, Nothobranchius furzeri. Microsc Res Tech 2012; 75:81-8. [DOI: 10.1002/jemt.21028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/06/2011] [Indexed: 01/05/2023]
|
26
|
Santos E, Romero-Alemán M, Monzón-Mayor M, Lang D, Rodger J, Yanes C. Expression of BDNF and NT-3 during the ontogeny and regeneration of the lacertidian (Gallotia galloti) visual system. Dev Neurobiol 2011; 71:836-53. [DOI: 10.1002/dneu.20939] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, Osborne NN, Reichenbach A. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 2009; 28:423-51. [PMID: 19660572 DOI: 10.1016/j.preteyeres.2009.07.001] [Citation(s) in RCA: 559] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Müller cells are active players in normal retinal function and in virtually all forms of retinal injury and disease. Reactive Müller cells protect the tissue from further damage and preserve tissue function by the release of antioxidants and neurotrophic factors, and may contribute to retinal regeneration by the generation of neural progenitor/stem cells. However, Müller cell gliosis can also contribute to neurodegeneration and impedes regenerative processes in the retinal tissue by the formation of glial scars. This article provides an overview of the neuroprotective and detrimental effects of Müller cell gliosis, with accounts on the cellular signal transduction mechanisms and factors which are implicated in Müller cell-mediated neuroprotection, immunomodulation, regulation of Müller cell proliferation, upregulation of intermediate filaments, glial scar formation, and the generation of neural progenitor/stem cells. A proper understanding of the signaling mechanisms implicated in gliotic alterations of Müller cells is essential for the development of efficient therapeutic strategies that increase the supportive/protective and decrease the destructive roles of gliosis.
Collapse
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Liebigstrasse 10-14, D-04103 Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ito Y, Nakamura S, Tanaka H, Shimazawa M, Araie M, Hara H. Memantine protects against secondary neuronal degeneration in lateral geniculate nucleus and superior colliculus after retinal damage in mice. CNS Neurosci Ther 2008; 14:192-202. [PMID: 18801112 DOI: 10.1111/j.1755-5949.2008.00050.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study, on mice, was to determine whether memantine, a glutamate-receptor antagonist of the N-methyl-(d)-aspartate (NMDA) subtype, protects against neuronal degeneration in the dorsal lateral geniculate nucleus (dLGN) and superior colliculus (SC) after the induction of retinal damage by intravitreal injection of NMDA. NMDA (20 mM/2 microl) was injected into the vitreous body of the left eye in mice (day 0). To evaluate the neuroprotective effect of memantine, mice were assigned to one of two memantine-treated groups: receiving a daily administration of memantine at 30 mg/kg/day, p.o. either from day 0 (administered at 1 h before NMDA injection) to day 90 (pretreated group) or from day 7 to day 90 (post-treated group). The pretreated group exhibited significant suppression of the retinal damage induced by intravitreal injection of NMDA and significant prevention of transsynaptic neuronal degeneration in the dLGN and SC on the contralateral side. Although the mice of the post-treated group displayed no reversion of such retinal damage, they did exhibit protection against neuronal degeneration in the LGN and SC on the contralateral side. These data indicate that memantine can protect against transsynaptic neuronal degeneration in the murine brain (LGN and SC) even if treatment is begun after retinal ganglion cell (RGC) death has started. Memantine protects against the secondary neuronal degeneration in brain regions in the visual pathway that occurs after retinal damage in mice.
Collapse
Affiliation(s)
- Yasushi Ito
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, 5-6-1 Mitahora-Higashi, Gifu 502-8585, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Ghazi-Nouri SMS, Ellis JS, Moss S, Limb GA, Charteris DG. Expression and localisation of BDNF, NT4 and TrkB in proliferative vitreoretinopathy. Exp Eye Res 2008; 86:819-27. [PMID: 18405896 DOI: 10.1016/j.exer.2008.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 01/12/2008] [Accepted: 02/26/2008] [Indexed: 01/14/2023]
Abstract
Exogenous brain derived neurotrophic factor (BDNF) is known to rescue ganglion cell death after optic nerve injury. Its mechanism of action is believed to be indirect via glial cells in the retina. In this study we investigated the changes in expression and localisation of BDNF, neurotrophin-4 (NT4) and their common receptor (TrkB) in retinectomy sections of patients with proliferative vitreoretinopathy (PVR). Nine full-thickness retinectomy specimens obtained at retinal reattachment surgery for PVR were fixed in 4% paraformaldehyde immediately after excision and compared to similarly processed normal donor retinas (4 eyes). Agarose-embedded sections (100 microm thick) were double labelled for immunohistochemistry by confocal microscopy, with antibodies against BDNF, NT4, TrkB, rod opsin, glial fibrillary acidic protein (GFAP), cellular retinaldehyde binding protein (CRALBP) and Brn3. This study demonstrates expression of NT4 by ganglion cells and shows expression of BDNF and NT4 in the outer photoreceptor segments is downregulated during PVR, whilst NT4 is markedly upregulated throughout the retina during this condition. The findings here suggest that NT4 may play a neural protective role during the development of PVR. It also shows that upregulation of NT4 in PVR is localised to Müller glial cells, indicating either over-expression of this factor by Müller cells or that Müller cells internalise NT4 for trafficking across the retina. TrkB expression was not observed in PVR retina. The observations that Müller glia demonstrate upregulation of NT4 suggests that retinal injury may lead to activation of this neurotrophin by Müller cells as part of their neuroprotective functions.
Collapse
|
30
|
Degenerative alterations in the visual pathway after NMDA-induced retinal damage in mice. Brain Res 2008; 1212:89-101. [PMID: 18440495 DOI: 10.1016/j.brainres.2008.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/05/2008] [Accepted: 03/05/2008] [Indexed: 11/22/2022]
Abstract
In the present study, intravitreal injection of N-methyl-d-aspartate (NMDA) into the left eye induced retinal damage (decreases in the number of retinal ganglion cells) at 1 day after the injection. At 7 days after the injection, atrophy of the optic tract was observed on the contralateral side, but not on the ipsilateral side. Number of neuronal nuclear specific protein (NeuN)-immunostained neurons were decreased in the contralateral dorsal LGN (dLGN) and contralateral ventral LGN-lateral (vLGN-l) at 90 and 180 days, respectively, after the injection. Furthermore, expressions of glial fibrillary acid protein (GFAP) were increased in the contralateral dLGN and contralateral vLGN-l at 7 and 30 days, respectively, and those of brain-derived neurotrophic factor (BDNF) were increased in the contralateral dLGN at 30 and 90 days and in the contralateral vLGN-l at 7 and 30 days. All NeuN-positive neuronal cells exhibited BDNF, whereas only some GFAP-positive astroglial cells exhibited BDNF. However, the contralateral ventral LGN-medial (vLGN-m) and ipsilateral LGN displayed no significant differences related to NeuN, GFAP, or BDNF immunohistochemistry. Taken together, these results indicate that time-dependent alterations occurred after the NMDA injection along the retinogeniculate pathway (from retina to LGN), and that the degree of damage in the LGN was region-dependent. In addition, the increased activated astroglial cells and expressions of BDNF in the damaged regions may play some roles in the cell-survival process of the LGN.
Collapse
|