1
|
Farah CA, Hastings MH, Dunn TW, Gong K, Baker-Andresen D, Sossin WS. A PKM generated by calpain cleavage of a classical PKC is required for activity-dependent intermediate-term facilitation in the presynaptic sensory neuron of Aplysia. ACTA ACUST UNITED AC 2016; 24:1-13. [PMID: 27980071 PMCID: PMC5159657 DOI: 10.1101/lm.043745.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/12/2016] [Indexed: 01/24/2023]
Abstract
Atypical PKM, a persistently active form of atypical PKC, is proposed to be a molecular memory trace, but there have been few examinations of the role of PKMs generated from other PKCs. We demonstrate that inhibitors used to inhibit PKMs generated from atypical PKCs are also effective inhibitors of other PKMs. In contrast, we demonstrate that dominant-negative PKMs show isoform-specificity. A dominant-negative PKM from the classical PKC Apl I blocks activity-dependent intermediate-term facilitation (a-ITF) when expressed in the sensory neuron, while a dominant-negative PKM from the atypical PKC Apl III does not. Consistent with a specific role for PKM Apl I in activity-dependent facilitation, live imaging FRET-based cleavage assays reveal that activity leads to cleavage of the classical PKC Apl I, but not the atypical PKC Apl III in the sensory neuron varicosities of Aplysia. In contrast, massed intermediate facilitation (m-ITF) induced by 10 min of 5HT is sufficient for cleavage of the atypical PKC Apl III in the motor neuron. Interestingly, both cleavage of PKC Apl I in the sensory neuron during a-ITF and cleavage of PKC Apl III in the motor neuron during m-ITF are inhibited by a dominant-negative form of a penta-EF hand containing classical calpain cloned from Aplysia. Consistent with a role for PKMs in plasticity, this dominant-negative calpain also blocks both a-ITF when expressed in the sensory neuron and m-ITF when expressed in the motor neuron. This study broadens the role of PKMs in synaptic plasticity in two significant ways: (i) PKMs generated from multiple isoforms of PKC, including classical isoforms, maintain memory traces; (ii) PKMs play roles in the presynaptic neuron.
Collapse
Affiliation(s)
- Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Margaret H Hastings
- Department of Psychology, McGill University, Montreal Neurological Institute, Montreal, Quebec H3A 1B1, Canada
| | - Tyler W Dunn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Katrina Gong
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Danay Baker-Andresen
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada .,Department of Psychology, McGill University, Montreal Neurological Institute, Montreal, Quebec H3A 1B1, Canada
| |
Collapse
|
2
|
Graber TE, McCamphill PK, Sossin WS. A recollection of mTOR signaling in learning and memory. Learn Mem 2013; 20:518-30. [PMID: 24042848 DOI: 10.1101/lm.027664.112] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mechanistic target of rapamcyin (mTOR) is a central player in cell growth throughout the organism. However, mTOR takes on an additional, more specialized role in the developed neuron, where it regulates the protein synthesis-dependent, plastic changes underlying learning and memory. mTOR is sequestered in two multiprotein complexes (mTORC1 and mTORC2) that have different substrate specificities, thus allowing for distinct functions at synapses. We will examine how learning activates the mTOR complexes, survey the critical effectors of this pathway in the context of synaptic plasticity, and assess whether mTOR plays an instructive or permissive role in generating molecular memory traces.
Collapse
Affiliation(s)
- Tyson E Graber
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A-2B4, Canada
| | | | | |
Collapse
|
3
|
Abstract
A constitutively active kinase, known as protein kinase Mζ (PKMζ), is proposed to act as a long-lasting molecular memory trace. While PKMζ is formed in rodents through translation of a transcript initiating in an intron of the protein kinase Cζ (PKCζ) gene, this transcript does not exist in Aplysia californica despite the fact that inhibitors of PKMζ erase memory in Aplysia in a fashion similar to rodents. We have previously shown that, in Aplysia, the ortholog of PKCζ, PKC Apl III, is cleaved by calpain to form a PKM after overexpression of PKC Apl III. We now show that kinase activity is required for this cleavage. We further use a FRET reporter to measure cleavage of PKC Apl III into PKM Apl III in live neurons using a stimulus that induces plasticity. Our results show that a 10 min application of serotonin induces cleavage of PKC Apl III in motor neuron processes in a calpain- and protein synthesis-dependent manner, but does not induce cleavage of PKC Apl III in sensory neuron processes. Furthermore, a dominant-negative PKM Apl III expressed in the motor neuron blocked the late phase of intermediate-term facilitation in sensory-motor neuron cocultures induced by 10 min of serotonin. In summary, we provide evidence that PKC Apl III is cleaved into PKM Apl III during memory formation, that the requirements for cleavage are the same as the requirements for the plasticity, and that PKM in the motor neuron is required for intermediate-term facilitation.
Collapse
|
4
|
Farah CA, Lindeman AA, Siu V, Gupta MD, Sossin WS. Autophosphorylation of the C2 domain inhibits translocation of the novel protein kinase C (nPKC) Apl II. J Neurochem 2012; 123:360-72. [PMID: 22913526 DOI: 10.1111/j.1471-4159.2012.07930.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 11/29/2022]
Abstract
Protein kinase Cs (PKCs) are critical signaling molecules controlled by complex regulatory pathways. Herein, we describe an important regulatory role for C2 domain phosphorylation. Novel PKCs (nPKCs) contain an N-terminal C2 domain that cannot bind to calcium. Previously, we described an autophosphorylation site in the Aplysia novel PKC Apl II that increased the binding of the C2 domain to lipids. In this study, we show that the function of this phosphorylation is to inhibit PKC translocation. Indeed, a phosphomimetic serine-glutamic acid mutation reduced translocation of PKC Apl II while blocking phosphorylation with a serine-alanine mutation enhanced translocation and led to the persistence of the kinase at the membrane longer after the end of the stimulation. Consistent with a role for autophosphorylation in regulating kinase translocation, inhibiting PKC activity using bisindolymaleimide 1 increased physiological translocation of PKC Apl II, whereas inhibiting phosphatase activity using calyculin A inhibited physiological translocation of PKC Apl II in neurons. Our results suggest a major role for autophosphorylation-dependent regulation of translocation.
Collapse
Affiliation(s)
- Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
5
|
Labban M, Dyer JR, Sossin WS. Rictor regulates phosphorylation of the novel protein kinase C Apl II in Aplysia sensory neurons. J Neurochem 2012; 122:1108-17. [DOI: 10.1111/j.1471-4159.2012.07865.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Michel M, Green CL, Lyons LC. PKA and PKC are required for long-term but not short-term in vivo operant memory in Aplysia. Learn Mem 2010; 18:19-23. [PMID: 21169419 DOI: 10.1101/lm.2026311] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the involvement of PKA and PKC signaling in a negatively reinforced operant learning paradigm in Aplysia, learning that food is inedible (LFI). In vivo injection of PKA or PKC inhibitors blocked long-term LFI memory formation. Moreover, a persistent phase of PKA activity, although not PKC activity, was necessary for long-term memory. Surprisingly, neither PKA nor PKC activity was required for associative short-term LFI memory. Additionally, PKA and PKC were not required for the retrieval of short- or long-term memory (STM and LTM, respectively). These studies have identified key differences between the mechanisms underlying nonassociative sensitization, operant reward learning, and LFI memory in Aplysia.
Collapse
Affiliation(s)
- Maximilian Michel
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
| | | | | |
Collapse
|
7
|
Bougie JK, Lim T, Farah CA, Manjunath V, Nagakura I, Ferraro GB, Sossin WS. The atypical protein kinase C in Aplysia can form a protein kinase M by cleavage. J Neurochem 2009; 109:1129-43. [PMID: 19302474 PMCID: PMC5154740 DOI: 10.1111/j.1471-4159.2009.06045.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In vertebrates, a brain-specific transcript from the atypical protein kinase C (PKC) zeta gene encodes protein kinase M (PKM) zeta, a constitutively active kinase implicated in the maintenance of synaptic plasticity and memory. We have cloned the atypical PKC from Aplysia, PKC Apl III. We did not find a transcript in Aplysia encoding PKMzeta, and evolutionary analysis of atypical PKCs suggests formation of this transcript is restricted to vertebrates. Instead, over-expression of PKC Apl III in Aplysia sensory neurons leads to production of a PKM fragment of PKC Apl III. This cleavage was induced by calcium and blocked by calpain inhibitors. Moreover, nervous system enriched spliced forms of PKC Apl III show enhanced cleavage. PKC Apl III could also be activated through phosphorylation downstream of phosphoinositide 3-kinase. We suggest that PKM forms of atypical PKCs play a conserved role in memory formation, but the mechanism of formation of these kinases has changed over evolution.
Collapse
Affiliation(s)
- Joanna K. Bougie
- Department of Psychology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Travis Lim
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Carole Abi Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Varsha Manjunath
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Ikue Nagakura
- Department of Psychology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Gino B. Ferraro
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Wayne S. Sossin
- Department of Psychology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Villareal G, Li Q, Cai D, Fink AE, Lim T, Bougie JK, Sossin WS, Glanzman DL. Role of protein kinase C in the induction and maintenance of serotonin-dependent enhancement of the glutamate response in isolated siphon motor neurons of Aplysia californica. J Neurosci 2009; 29:5100-7. [PMID: 19386905 PMCID: PMC2755541 DOI: 10.1523/jneurosci.4149-08.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 03/09/2009] [Accepted: 03/09/2009] [Indexed: 01/23/2023] Open
Abstract
Serotonin (5-HT) mediates learning-related facilitation of sensorimotor synapses in Aplysia californica. Under some circumstances 5-HT-dependent facilitation requires the activity of protein kinase C (PKC). One critical site of PKC's contribution to 5-HT-dependent synaptic facilitation is the presynaptic sensory neuron. Here, we provide evidence that postsynaptic PKC also contributes to synaptic facilitation. We investigated the contribution of PKC to enhancement of the glutamate-evoked potential (Glu-EP) in isolated siphon motor neurons in cell culture. A 10 min application of either 5-HT or phorbol ester, which activates PKC, produced persistent (> 50 min) enhancement of the Glu-EP. Chelerythrine and bisindolylmaleimide-1 (Bis), two inhibitors of PKC, both blocked the induction of 5-HT-dependent enhancement. An inhibitor of calpain, a calcium-dependent protease, also blocked 5-HT's effect. Interestingly, whereas chelerythrine blocked maintenance of the enhancement, Bis did not. Because Bis has greater selectivity for conventional and novel isoforms of PKC than for atypical isoforms, this result implicates an atypical isoform in the maintenance of 5-HT's effect. Although induction of enhancement of the Glu-EP requires protein synthesis (Villareal et al., 2007), we found that maintenance of the enhancement does not. Maintenance of 5-HT-dependent enhancement appears to be mediated by a PKM-type fragment generated by calpain-dependent proteolysis of atypical PKC. Together, our results suggest that 5-HT treatment triggers two phases of PKC activity within the motor neuron, an early phase that may involve conventional, novel or atypical isoforms of PKC, and a later phase that selectively involves an atypical isoform.
Collapse
Affiliation(s)
| | - Quan Li
- Department of Physiological Science, UCLA College of Letters and Science, University of California, Los Angeles, Los Angeles, California 90095-1606, and
| | - Diancai Cai
- Department of Physiological Science, UCLA College of Letters and Science, University of California, Los Angeles, Los Angeles, California 90095-1606, and
| | - Ann E. Fink
- Interdepartmental Graduate Program in Neuroscience, and
| | - Travis Lim
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Joanna K. Bougie
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Wayne S. Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - David L. Glanzman
- Department of Neurobiology
- Brain Research Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California 90095-1761
- Department of Physiological Science, UCLA College of Letters and Science, University of California, Los Angeles, Los Angeles, California 90095-1606, and
| |
Collapse
|
9
|
Shobe JL, Zhao Y, Stough S, Ye X, Hsuan V, Martin KC, Carew TJ. Temporal phases of activity-dependent plasticity and memory are mediated by compartmentalized routing of MAPK signaling in aplysia sensory neurons. Neuron 2009; 61:113-25. [PMID: 19146817 DOI: 10.1016/j.neuron.2008.10.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 09/12/2008] [Accepted: 10/29/2008] [Indexed: 11/25/2022]
Abstract
An activity-dependent form of intermediate memory (AD-ITM) for sensitization is induced in Aplysia by a single tail shock that gives rise to plastic changes (AD-ITF) in tail sensory neurons (SNs) via the interaction of action potential firing in the SN coupled with the release of serotonin in the CNS. Activity-dependent long-term facilitation (AD-LTF, lasting >24hr) requires protein synthesis dependent persistent mitogen-activated protein kinase (MAPK) activation and translocation to the SN nucleus. We now show that the induction of the earlier temporal phase (AD-ITM and AD-ITF), which is translation and transcription independent, requires the activation of a compartmentally distinct novel signaling cascade that links second messengers, MAPK and PKC into a unified pathway within tail SNs. Since both AD-ITM and AD-LTM require MAPK activity, these collective findings suggest that presynaptic SNs route the flow of molecular information to distinct subcellular compartments during the induction of activity-dependent long-lasting memories.
Collapse
Affiliation(s)
- Justin L Shobe
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used Aplysia as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented physiological roles for PKC in synaptic plasticity in this system. In particular, we have shown that distinct isoforms mediate distinct types of synaptic plasticity induced by the same neurotransmitter: The novel calcium-independent PKC Apl II is required for actions mediated by serotonin (5-HT) alone, while the classical calcium-dependent PKC Apl I is required for actions mediated when 5-HT is coupled to activity. We will discuss the reasons for PKC isoform specificity, assess the tools used to uncover isoform specificity, and discuss the implications of isoform specificity for understanding the roles of PKC in regulating synaptic plasticity.
Collapse
Affiliation(s)
- Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|