1
|
Ehlers VL, Yousuf H, Smies CW, Natwora BR, Moyer JR. Fear conditioning modulates the intrinsic excitability of ventral hippocampal CA1 neurons in male rats. J Neurophysiol 2025; 133:853-867. [PMID: 39873632 DOI: 10.1152/jn.00300.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
The hippocampus has a known role in learning and memory, with the ventral subregion supporting many learning tasks involving affective responding, including fear conditioning. Altered neuronal intrinsic excitability reflects experience-dependent plasticity that supports learning-related behavioral changes. Such changes have previously been observed in the dorsal hippocampus following fear conditioning, but little work has examined the effect of fear conditioning on ventral hippocampal intrinsic plasticity. The present study tested the hypothesis that acquisition of trace and context fear conditioning alters intrinsic excitability of specific classes of ventral hippocampal CA1 neurons in male rats. We observed distinct changes in excitability that were specific to cell type and learning paradigm. Specifically, regular-spiking ventral hippocampal CA1 neurons demonstrated increased excitability following context fear conditioning, and these changes were correlated with context fear retrieval. In contrast, trace fear conditioning resulted in increased excitability of ventral hippocampal CA1 late-spiking neurons from good learners relative to poor learners. Together, these data demonstrate ventral hippocampal CA1 neuronal excitability is finely tuned to support fear memory in a learning- and firing type-specific manner.NEW & NOTEWORTHY This study is the first to characterize ventral hippocampal CA1 physiological firing types in associative fear learning. Distinct intrinsic excitability changes among these populations suggest they contribute uniquely to trace and context fear memory. These findings have important implications for anxiety disorders that depend on the ventral hippocampus and pave the way for future studies to examine how these populations might coordinate with the larger ventral hippocampal network in forming fear associations.
Collapse
Affiliation(s)
- Vanessa L Ehlers
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| | - Hanna Yousuf
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| | - Chad W Smies
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| | - Brendan R Natwora
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| | - James R Moyer
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| |
Collapse
|
2
|
McNaughton N, Bannerman D. The homogenous hippocampus: How hippocampal cells process available and potential goals. Prog Neurobiol 2024; 240:102653. [PMID: 38960002 DOI: 10.1016/j.pneurobio.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/25/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
We present here a view of the firing patterns of hippocampal cells that is contrary, both functionally and anatomically, to conventional wisdom. We argue that the hippocampus responds to efference copies of goals encoded elsewhere; and that it uses these to detect and resolve conflict or interference between goals in general. While goals can involve space, hippocampal cells do not encode spatial (or other special types of) memory, as such. We also argue that the transverse circuits of the hippocampus operate in an essentially homogeneous way along its length. The apparently different functions of different parts (e.g. memory retrieval versus anxiety) result from the different (situational/motivational) inputs on which those parts perform the same fundamental computational operations. On this view, the key role of the hippocampus is the iterative adjustment, via Papez-like circuits, of synaptic weights in cell assemblies elsewhere.
Collapse
Affiliation(s)
- Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, POB56, Dunedin 9054, New Zealand.
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, England, UK
| |
Collapse
|
3
|
Froula JM, Hastings SD, Krook-Magnuson E. The little brain and the seahorse: Cerebellar-hippocampal interactions. Front Syst Neurosci 2023; 17:1158492. [PMID: 37034014 PMCID: PMC10076554 DOI: 10.3389/fnsys.2023.1158492] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
There is a growing appreciation for the cerebellum beyond its role in motor function and accumulating evidence that the cerebellum and hippocampus interact across a range of brain states and behaviors. Acute and chronic manipulations, simultaneous recordings, and imaging studies together indicate coordinated coactivation and a bidirectional functional connectivity relevant for various physiological functions, including spatiotemporal processing. This bidirectional functional connectivity is likely supported by multiple circuit paths. It is also important in temporal lobe epilepsy: the cerebellum is impacted by seizures and epilepsy, and modulation of cerebellar circuitry can be an effective strategy to inhibit hippocampal seizures. This review highlights some of the recent key hippobellum literature.
Collapse
Affiliation(s)
- Jessica M. Froula
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | | |
Collapse
|
4
|
Miller LN, Weiss C, Disterhoft JF. Learning-related changes in cellular activity within mouse dentate gyrus during trace eyeblink conditioning. Hippocampus 2022; 32:776-794. [PMID: 36018285 PMCID: PMC9489639 DOI: 10.1002/hipo.23468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 01/09/2023]
Abstract
Because the dentate gyrus serves as the first site for information processing in the hippocampal trisynaptic circuit, it an important structure for the formation of associative memories. Previous findings in rabbit had recorded populations of cells within dentate gyrus that may bridge the temporal gap between stimuli to support memory formation during trace eyeblink conditioning, an associative learning task. However, this previous work was unable to identify the types of cells demonstrating this type of activity. To explore these changes further, we did in vivo single-neuron recording in conjunction with physiological determination of cell types to investigate the functional role of granule cells, mossy cells, and interneurons in dentate gyrus during learning. Tetrode recordings were performed in young-adult mice during training on trace eyeblink conditioning, a hippocampal-dependent temporal associative memory task. Conditioned mice were able to successfully learn the task, with male mice learning at a faster rate than female mice. In the conditioned group, granule cells tended to show an increase in firing rate during conditioned stimulus presentation while mossy cells showed a decrease in firing rate during the trace interval and the unconditioned stimulus. Interestingly, populations of interneurons demonstrated learning-related increases and decreases in activity that began at onset of the conditioned stimulus and persisted through the trace interval. The current study also found a significant increase in theta power during stimuli presentation in conditioned animals, and this change in theta decreased over time. Ultimately, these data suggest unique involvement of granule cells, mossy cells, and interneurons in dentate gyrus in the formation of a trace associative memory. This work expands our knowledge of dentate gyrus function, helping to discern how aging and disease might disrupt this process.
Collapse
Affiliation(s)
- Lisa N. Miller
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Craig Weiss
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - John F. Disterhoft
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
5
|
Lin RL, Frazier HN, Anderson KL, Case SL, Ghoweri AO, Thibault O. Sensitivity of the S1 neuronal calcium network to insulin and Bay-K 8644 in vivo: Relationship to gait, motivation, and aging processes. Aging Cell 2022; 21:e13661. [PMID: 35717599 PMCID: PMC9282843 DOI: 10.1111/acel.13661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/10/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023] Open
Abstract
Neuronal hippocampal Ca2+ dysregulation is a critical component of cognitive decline in brain aging and Alzheimer's disease and is suggested to impact communication and excitability through the activation of a larger after hyperpolarization. However, few studies have tested for the presence of Ca2+ dysregulation in vivo, how it manifests, and whether it impacts network function across hundreds of neurons. Here, we tested for neuronal Ca2+ network dysregulation in vivo in the primary somatosensory cortex (S1) of anesthetized young and aged male Fisher 344 rats using single‐cell resolution techniques. Because S1 is involved in sensory discrimination and proprioception, we tested for alterations in ambulatory performance in the aged animal and investigated two potential pathways underlying these central aging‐ and Ca2+‐dependent changes. Compared to young, aged animals displayed increased overall activity and connectivity of the network as well as decreased ambulatory speed. In aged animals, intranasal insulin (INI) increased network synchronicity and ambulatory speed. Importantly, in young animals, delivery of the L‐type voltage‐gated Ca2+ channel modifier Bay‐K 8644 altered network properties, replicating some of the changes seen in the older animal. These results suggest that hippocampal Ca2+ dysregulation may be generalizable to other areas, such as S1, and might engage modalities that are associated with locomotor stability and motivation to ambulate. Further, given the safety profile of INI in the clinic and the evidence presented here showing that this central dysregulation is sensitive to insulin, we suggest that these processes can be targeted to potentially increase motivation and coordination while also reducing fall frequency with age.
Collapse
Affiliation(s)
- Ruei-Lung Lin
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Hilaree N Frazier
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Katie L Anderson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Sami L Case
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Adam O Ghoweri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
6
|
Herbst MR, Twining RC, Gilmartin MR. Ventral hippocampal shock encoding modulates the expression of trace cued fear. Neurobiol Learn Mem 2022; 190:107610. [PMID: 35302040 DOI: 10.1016/j.nlm.2022.107610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/02/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022]
Abstract
The hippocampus is crucial for associative fear learning when the anticipation of threat requires temporal or contextual binding of predictive stimuli as in trace and contextual fear conditioning. Compared with the dorsal hippocampus, far less is known about the contribution of the ventral hippocampus to fear learning. The ventral hippocampus, which is highly interconnected with defensive and emotional networks, has a prominent role in both innate and learned affective behaviors including anxiety, fear, and reward. Lesions or temporary inactivation of the ventral hippocampus impair both cued and contextual fear learning, but whether the ventral hippocampal role in learning is driven by affective processing, associative encoding, or both is not clear. Here, we used trace fear conditioning in mixed sex cohorts to assess the contribution of shock-encoding to the acquisition of cued and contextual fear memories. Trace conditioning requires subjects to associate an auditory conditional stimulus (CS) with a shock unconditional stimulus (UCS) that are separated in time by a 20-s trace interval. We first recorded neuronal activity in the ventral hippocampus during trace fear conditioning and found that ventral CA1 predominantly encoded the shock reinforcer. Potentiated firing to the CS was evident at testing, but no encoding of the trace interval was observed. We then tested the necessity of shock encoding for conditional fear acquisition by optogenetically silencing ventral hippocampal activity during the UCS on each trial of training. Contrary to our predictions, preventing hippocampal shock-evoked firing did not impair associative fear. Instead, it led to a more prolonged expression of CS freezing across test trials, an effect observed in males, but not females. Contextual fear learning was largely intact, although a subset of animals in each sex were differentially affected by shock-silencing. Taken together, the results show that shock encoding in the ventral hippocampus modulates the expression of learned fear in a sex-specific manner.
Collapse
Affiliation(s)
- Matthew R Herbst
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Robert C Twining
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Marieke R Gilmartin
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA.
| |
Collapse
|
7
|
Li RR, Yan J, Chen H, Zhang WW, Hu YB, Zhang J, Hu ZA, Xiong Y, Yao ZX, Hu B. Sleep Deprivation Impairs Learning-Induced Increase in Hippocampal Sharp Wave Ripples and Associated Spike Dynamics during Recovery Sleep. Cereb Cortex 2021; 32:824-838. [PMID: 34383018 DOI: 10.1093/cercor/bhab247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/14/2022] Open
Abstract
Sleep deprivation (SD) causes deficits in off-line memory consolidation, but the underlying network oscillation mechanisms remain unclear. Hippocampal sharp wave ripple (SWR) oscillations play a critical role in off-line memory consolidation. Therefore, we trained mice to learn a hippocampus-dependent trace eyeblink conditioning (tEBC) task and explored the influence of 1.5-h postlearning SD on hippocampal SWRs and related spike dynamics during recovery sleep. We found an increase in hippocampal SWRs during postlearning sleep, which predicted the consolidation of tEBC in conditioned mice. In contrast, sleep-deprived mice showed a loss of tEBC learning-induced increase in hippocampal SWRs during recovery sleep. Moreover, the sleep-deprived mice exhibited weaker reactivation of tEBC learning-associated pyramidal cells in hippocampal SWRs during recovery sleep. In line with these findings, tEBC consolidation was impaired in sleep-deprived mice. Furthermore, sleep-deprived mice showed augmented fast excitation from pyramidal cells to interneurons and enhanced participation of interneurons in hippocampal SWRs during recovery sleep. Among various interneurons, parvalbumin-expressing interneurons specifically exhibited overexcitation during hippocampal SWRs. Our findings suggest that altered hippocampal SWRs and associated spike dynamics during recovery sleep may be candidate network oscillation mechanisms underlying SD-induced memory deficits.
Collapse
Affiliation(s)
- Rong-Rong Li
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Jie Yan
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Hao Chen
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Wei-Wei Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yu-Bo Hu
- Department of Orthopaedics, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jie Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Zhi-An Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yan Xiong
- Department of Orthopaedics, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhong-Xiang Yao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.,Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Army Medical University, Chongqing 400038, China
| |
Collapse
|
8
|
Tripathi S, Verma A, Jha SK. Training on an Appetitive Trace-Conditioning Task Increases Adult Hippocampal Neurogenesis and the Expression of Arc, Erk and CREB Proteins in the Dorsal Hippocampus. Front Cell Neurosci 2020; 14:89. [PMID: 32362814 PMCID: PMC7181388 DOI: 10.3389/fncel.2020.00089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) plays an essential role in hippocampal-dependent memory consolidation. Increased neurogenesis enhances learning, whereas its ablation causes memory impairment. In contrast, few reports suggest that neurogenesis reduces after learning. Although the interest in exploring the role of adult neurogenesis in learning has been growing, the evidence is still limited. The role of the trace- and delay-appetitive-conditioning on AHN and its underlying mechanism are not known. The consolidation of trace-conditioned memory requires the hippocampus, but delay-conditioning does not. Moreover, the dorsal hippocampus (DH) and ventral hippocampus (VH) may have a differential role in these two conditioning paradigms. Here, we have investigated the changes in: (A) hippocampal cell proliferation and their progression towards neuronal lineage; and (B) expression of Arc, Erk1, Erk2, and CREB proteins in the DH and VH after trace- and delay-conditioning in the rat. The number of newly generated cells significantly increased in the trace-conditioned but did not change in the delay-conditioned animals compared to the control group. Similarly, the expression of Arc protein significantly increased in the DH but not in the VH after trace-conditioning. Nonetheless, it remains unaltered in the delay-conditioned group. The expression of pErk1, pErk2, and pCREB also increased in the DH after trace-conditioning. Whereas, the expression of only pErk1 pErk2 and pCREB proteins increased in the VH after delay-conditioning. Our results suggest that appetitive trace-conditioning enhances AHN. The increased DH neuronal activation and pErk1, pErk2, and pCREB in the DH may be playing an essential role in learning-induced cell-proliferation after appetitive trace-conditioning.
Collapse
Affiliation(s)
- Shweta Tripathi
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Anita Verma
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Sushil K Jha
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
9
|
Twining RC, Lepak K, Kirry AJ, Gilmartin MR. Ventral Hippocampal Input to the Prelimbic Cortex Dissociates the Context from the Cue Association in Trace Fear Memory. J Neurosci 2020; 40:3217-3230. [PMID: 32188770 PMCID: PMC7159889 DOI: 10.1523/jneurosci.1453-19.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
The PFC, through its high degree of interconnectivity with cortical and subcortical brain areas, mediates cognitive and emotional processes in support of adaptive behaviors. This includes the formation of fear memories when the anticipation of threat demands learning about temporal or contextual cues, as in trace fear conditioning. In this variant of fear learning, the association of a cue and shock across an empty trace interval of several seconds requires sustained cue-elicited firing in the prelimbic cortex (PL). However, it is unknown how and when distinct PL afferents contribute to different associative components of memory. Among the prominent inputs to PL, the hippocampus shares with PL a role in both working memory and contextual processing. Here we tested the necessity of direct hippocampal input to the PL for the acquisition of trace-cued fear memory and the simultaneously acquired contextual fear association. Optogenetic silencing of ventral hippocampal (VH) terminals in the PL of adult male Long-Evans rats selectively during paired trials revealed that direct communication between the VH and PL during training is necessary for contextual fear memory, but not for trace-cued fear acquisition. The pattern of the contextual memory deficit and the disruption of local PL firing during optogenetic silencing of VH-PL suggest that the VH continuously updates the PL with the current contextual state of the animal, which, when disrupted during memory acquisition, is detrimental to the subsequent rapid retrieval of aversive contextual associations.SIGNIFICANCE STATEMENT Learning to anticipate threat from available contextual and discrete cues is crucial for survival. The prelimbic cortex is required for forming fear memories when temporal or contextual complexity is involved, as in trace fear conditioning. However, the respective contribution of distinct prelimbic afferents to the temporal and contextual components of memory is not known. We report that direct input from the ventral hippocampus enables the formation of the contextual, but not trace-cued, fear memory necessary for the subsequent rapid expression of a fear response. This finding dissociates the contextual and working-memory contributions of prelimbic cortex to the formation of a fear memory and demonstrates the crucial role for hippocampal input in contextual fear learning.
Collapse
Affiliation(s)
- Robert C Twining
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Katie Lepak
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Adam J Kirry
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Marieke R Gilmartin
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| |
Collapse
|
10
|
Lee ACH, Thavabalasingam S, Alushaj D, Çavdaroğlu B, Ito R. The hippocampus contributes to temporal duration memory in the context of event sequences: A cross-species perspective. Neuropsychologia 2019; 137:107300. [PMID: 31836410 DOI: 10.1016/j.neuropsychologia.2019.107300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023]
Abstract
Although a large body of research has implicated the hippocampus in the processing of memory for temporal duration, there is an exigent degree of inconsistency across studies that obfuscates the precise contributions of this structure. To shed light on this issue, the present review article surveys both historical and recent cross-species evidence emanating from a wide variety of experimental paradigms, identifying areas of convergence and divergence. We suggest that while factors such as time-scale (e.g. the length of durations involved) and the nature of memory processing (e.g. prospective vs. retrospective memory) are very helpful in the interpretation of existing data, an additional important consideration is the context in which the duration information is experienced and processed, with the hippocampus being preferentially involved in memory for durations that are embedded within a sequence of events. We consider the mechanisms that may underpin temporal duration memory and how the same mechanisms may contribute to memory for other aspects of event sequences such as temporal order.
Collapse
Affiliation(s)
- Andy C H Lee
- Department of Psychology (Scarborough), University of Toronto, Toronto, M1C 1A4, Canada; Rotman Research Institute, Baycrest Centre, Toronto, M6A 2E1, Canada.
| | | | - Denada Alushaj
- Department of Psychology (Scarborough), University of Toronto, Toronto, M1C 1A4, Canada
| | - Bilgehan Çavdaroğlu
- Department of Psychology (Scarborough), University of Toronto, Toronto, M1C 1A4, Canada
| | - Rutsuko Ito
- Department of Psychology (Scarborough), University of Toronto, Toronto, M1C 1A4, Canada; Department of Cell and Systems Biology, University of Toronto, M5S 3G5, Canada
| |
Collapse
|
11
|
Locomotor and Hippocampal Processing Converge in the Lateral Septum. Curr Biol 2019; 29:3177-3192.e3. [DOI: 10.1016/j.cub.2019.07.089] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/03/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023]
|
12
|
Suter EE, Weiss C, Disterhoft JF. Differential responsivity of neurons in perirhinal cortex, lateral entorhinal cortex, and dentate gyrus during time-bridging learning. Hippocampus 2019; 29:511-526. [PMID: 30311282 PMCID: PMC6615905 DOI: 10.1002/hipo.23041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 08/29/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
Many studies have focused on the function of hippocampal region CA1 as a critical site for associative memory, but much less is known about changes in the afferents to CA1. Here we report the activity of multiple single neurons from perirhinal and entorhinal cortex and from dentate gyrus during trace eyeblink conditioning as well as consolidated recall, and in pseudo-conditioned control rabbits. We also report an analysis of theta activity filtered from the local field potential (LFP). Our results show early associative changes in single-neuron firing rate as well as theta oscillations in lateral entorhinal cortex (EC) and dentate gyrus (DG), and increases in the number of responsive neurons in perirhinal cortex. In both EC and DG, a subset of neurons from conditioned animals exhibited an elevated baseline firing rate and large responses to the conditioned stimulus and trace period. A similar population of cells has been seen in DG and in medial, but not lateral, EC during spatial tasks, suggesting that lateral EC contains cells responsive to a temporal associative task. In contrast to recent studies in our laboratory that found significant CA1 contributions to long-term memory, the activity profiles of neurons within EC and DG were similar for conditioned and pseudoconditioned rabbits during post-consolidation sessions. Collectively these results demonstrate that individual subregions of medial temporal lobe differentially support new and remotely acquired memories. Neuron firing profiles were similar on training trials when conditioned responses were and were not exhibited, demonstrating that these temporal lobe regions represent the CS-US association and do not control the behavioral response. The analysis of theta activity revealed that theta power was modulated by the conditioning stimuli in both the conditioned and pseudoconditioned groups and that although both groups exhibited a resetting of phase to the corneal airpuff, only the conditioned group exhibited a resetting of phase to the whisker conditioned stimulus.
Collapse
Affiliation(s)
- Eugénie E Suter
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Craig Weiss
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - John F Disterhoft
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
13
|
Pezze MA, Marshall HJ, Cassaday HJ. Infusions of scopolamine in dorsal hippocampus reduce anticipatory responding in an appetitive trace conditioning procedure. Brain Behav 2018; 8:e01147. [PMID: 30378776 PMCID: PMC6305963 DOI: 10.1002/brb3.1147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/30/2018] [Accepted: 09/28/2018] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Trace conditioning is impaired by lesions to dorsal hippocampus, as well as by treatment with the muscarinic acetylcholine antagonist scopolamine. However, the role of muscarinic receptors within hippocampus has received little attention. METHODS The present study examined the effects of intra-hippocampal infusion of scopolamine (30 µg/side) in an appetitive (2 vs. 10 s) trace conditioning procedure using sucrose pellets as the unconditioned stimulus (US). Locomotor activity (LMA) was examined in a different apparatus. RESULTS Intra-hippocampal scopolamine reduced responding to the 2 s trace conditioned stimulus (CS). Intra-hippocampal scopolamine similarly depressed responding within the inter-stimulus interval (ISI) at both 2 and 10 s trace intervals, but there was no such effect in the inter-trial interval. There was also some overall reduction in responding when the US was delivered; significant at the 10 s but not at the 2 s trace interval. A similar pattern of results to that seen in response to the CS during acquisition was shown drug-free (in the 5 s post-CS) in the extinction tests of conditioned responding. LMA was increased under scopolamine. CONCLUSIONS The results suggest that nonspecific changes in activity or motivation to respond for the US cannot explain the reduction in trace conditioning as measured by reduced CS responding and in the ISI. Rather, the findings of the present study point to the importance of associative aspects of the task in determining its sensitivity to the effects of scopolamine, suggesting that muscarinic receptors in the hippocampus are important modulators of short-term working memory.
Collapse
Affiliation(s)
- Marie A. Pezze
- School of PsychologyUniversity of NottinghamNottinghamUK
| | | | | |
Collapse
|
14
|
Larra MF, Behrje A, Finke JB, Blumenthal TD, Schächinger H. Filling the gap: Evidence for a spatial differentiation in trace eyeblink conditioning. Neurosci Lett 2017; 654:33-37. [PMID: 28610951 DOI: 10.1016/j.neulet.2017.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 11/19/2022]
Abstract
Trace eyeblink conditioning is used as a translational model of declarative memory but restricted to the temporal domain. Potential spatial aspects have never been experimentally addressed. We employed a spatiotemporal trace eyeblink conditioning paradigm in which a spatial dimension (application side of the unconditioned stimulus) was differentially coded by tone frequency of the conditioned stimulus and recorded conditioned reactions from both eyes. We found more and stronger conditioned reactions at the side predicted by the conditioned stimulus but only in aware participants. Thus, spatial effects are present in trace eyeblink conditioning and may be differentially conditioned depending on the awareness about the spatial relation between conditioned and unconditioned stimulus.
Collapse
Affiliation(s)
- Mauro F Larra
- Department of Clinical Psychophysiology, Institute of Psychobiology, University of Trier, 54290 Trier, Germany.
| | - Andreas Behrje
- Department of Clinical Psychophysiology, Institute of Psychobiology, University of Trier, 54290 Trier, Germany
| | - Johannes B Finke
- Department of Clinical Psychophysiology, Institute of Psychobiology, University of Trier, 54290 Trier, Germany
| | - Terry D Blumenthal
- Department of Psychology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Hartmut Schächinger
- Department of Clinical Psychophysiology, Institute of Psychobiology, University of Trier, 54290 Trier, Germany
| |
Collapse
|
15
|
Connor DA, Gould TJ. The role of working memory and declarative memory in trace conditioning. Neurobiol Learn Mem 2016; 134 Pt B:193-209. [PMID: 27422017 PMCID: PMC5755400 DOI: 10.1016/j.nlm.2016.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 01/18/2023]
Abstract
Translational assays of cognition that are similarly implemented in both lower and higher-order species, such as rodents and primates, provide a means to reconcile preclinical modeling of psychiatric neuropathology and clinical research. To this end, Pavlovian conditioning has provided a useful tool for investigating cognitive processes in both lab animal models and humans. This review focuses on trace conditioning, a form of Pavlovian conditioning typified by the insertion of a temporal gap (i.e., trace interval) between presentations of a conditioned stimulus (CS) and an unconditioned stimulus (US). This review aims to discuss pre-clinical and clinical work investigating the mnemonic processes recruited for trace conditioning. Much work suggests that trace conditioning involves unique neurocognitive mechanisms to facilitate formation of trace memories in contrast to standard Pavlovian conditioning. For example, the hippocampus and prefrontal cortex (PFC) appear to play critical roles in trace conditioning. Moreover, cognitive mechanistic accounts in human studies suggest that working memory and declarative memory processes are engaged to facilitate formation of trace memories. The aim of this review is to integrate cognitive and neurobiological accounts of trace conditioning from preclinical and clinical studies to examine involvement of working and declarative memory.
Collapse
Affiliation(s)
- David A Connor
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Thomas J Gould
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
16
|
Shan KQ, Lubenov EV, Papadopoulou M, Siapas AG. Spatial tuning and brain state account for dorsal hippocampal CA1 activity in a non-spatial learning task. eLife 2016; 5. [PMID: 27487561 PMCID: PMC4972538 DOI: 10.7554/elife.14321] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 07/18/2016] [Indexed: 12/30/2022] Open
Abstract
The hippocampus is a brain area crucial for episodic memory in humans. In contrast, studies in rodents have highlighted its role in spatial learning, supported by the discovery of place cells. Efforts to reconcile these views have found neurons in the rodent hippocampus that respond to non-spatial events but have not unequivocally dissociated the spatial and non-spatial influences on these cells. To disentangle these influences, we trained freely moving rats in trace eyeblink conditioning, a hippocampally dependent task in which the animal learns to blink in response to a tone. We show that dorsal CA1 pyramidal neurons are all place cells, and do not respond to the tone when the animal is moving. When the animal is inactive, the apparent tone-evoked responses reflect an arousal-mediated resumption of place-specific firing. These results suggest that one of the main output stages of the hippocampus transmits only spatial information, even in this non-spatial task. DOI:http://dx.doi.org/10.7554/eLife.14321.001
Collapse
Affiliation(s)
- Kevin Q Shan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Evgueniy V Lubenov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Maria Papadopoulou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Athanassios G Siapas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
17
|
A Variable Oscillator Underlies the Measurement of Time Intervals in the Rostral Medial Prefrontal Cortex during Classical Eyeblink Conditioning in Rabbits. J Neurosci 2016; 35:14809-21. [PMID: 26538651 DOI: 10.1523/jneurosci.2285-15.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED We were interested in determining whether rostral medial prefrontal cortex (rmPFC) neurons participate in the measurement of conditioned stimulus-unconditioned stimulus (CS-US) time intervals during classical eyeblink conditioning. Rabbits were conditioned with a delay paradigm consisting of a tone as CS. The CS started 50, 250, 500, 1000, or 2000 ms before and coterminated with an air puff (100 ms) directed at the cornea as the US. Eyelid movements were recorded with the magnetic search coil technique and the EMG activity of the orbicularis oculi muscle. Firing activities of rmPFC neurons were recorded across conditioning sessions. Reflex and conditioned eyelid responses presented a dominant oscillatory frequency of ≈12 Hz. The firing rate of each recorded neuron presented a single peak of activity with a frequency dependent on the CS-US interval (i.e., ≈12 Hz for 250 ms, ≈6 Hz for 500 ms, and≈3 Hz for 1000 ms). Interestingly, rmPFC neurons presented their dominant firing peaks at three precise times evenly distributed with respect to CS start and also depending on the duration of the CS-US interval (only for intervals of 250, 500, and 1000 ms). No significant neural responses were recorded at very short (50 ms) or long (2000 ms) CS-US intervals. rmPFC neurons seem not to encode the oscillatory properties characterizing conditioned eyelid responses in rabbits, but are probably involved in the determination of CS-US intervals of an intermediate range (250-1000 ms). We propose that a variable oscillator underlies the generation of working memories in rabbits. SIGNIFICANCE STATEMENT The way in which brains generate working memories (those used for the transient processing and storage of newly acquired information) is still an intriguing question. Here, we report that the firing activities of neurons located in the rostromedial prefrontal cortex recorded in alert behaving rabbits are controlled by a dynamic oscillator. This oscillator generated firing frequencies in a variable band of 3-12 Hz depending on the conditioned stimulus-unconditioned stimulus intervals (1 s, 500 ms, 250 ms) selected for classical eyeblink conditioning of behaving rabbits. Shorter (50 ms) and longer (2 s) intervals failed to activate the oscillator and prevented the acquisition of conditioned eyelid responses. This is an unexpected mechanism to generate sustained firing activities in neural circuits generating working memories.
Collapse
|
18
|
Abstract
This chapter reviews the past research toward identifying the brain circuit and its computation underlying the associative memory in eyeblink classical conditioning. In the standard delay eyeblink conditioning paradigm, the conditioned stimulus (CS) and eyeblink-eliciting unconditioned stimulus (US) converge in the cerebellar cortex and interpositus nucleus (IPN) through the pontine nuclei and inferior olivary nucleus. Repeated pairings of CS and US modify synaptic weights in the cerebellar cortex and IPN, enabling IPN neurons to activate the red nucleus and generate the conditioned response (CR). In a variant of the standard paradigm, trace eyeblink conditioning, the CS and US are separated by a brief stimulus-free trace interval. Acquisition in trace eyeblink conditioning depends on several forebrain regions, including the hippocampus and medial prefrontal cortex as well as the cerebellar-brainstem circuit. Details of computations taking place in these regions remain unclear; however, recent evidence supports a view that the forebrain encodes a temporal sequence of the CS, trace interval, and US in a specific environmental context and signals the cerebellar-brainstem circuit to execute the CR when the US is likely to occur. Together, delay eyeblink conditioning represents one of the most successful cases of understanding the neural substrates of long-term memory in mammals, while trace eyeblink conditioning demonstrates its utility for uncovering detailed computations in the whole brain network underlying long-term memory.
Collapse
Affiliation(s)
- Kaori Takehara-Nishiuchi
- Department of Psychology, Cell and Systems Biology, Neuroscience Program, University of Toronto, Toronto, M5S 3G3, Canada.
| |
Collapse
|
19
|
Weiss C, Disterhoft JF. The impact of hippocampal lesions on trace-eyeblink conditioning and forebrain-cerebellar interactions. Behav Neurosci 2015; 129:512-22. [PMID: 26214216 PMCID: PMC4518454 DOI: 10.1037/bne0000061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Behavioral Neuroscience published a pivotal paper by Moyer, Deyo, and Disterhoft (1990) 25 years ago that described the impaired acquisition of trace-eyeblink conditioning in rabbits with complete removal of the hippocampus. As part of the Behavioral Neuroscience celebration commemorating the 30th anniversary of the journal, we reflect upon the impact of that study on understanding the role of the hippocampus, forebrain, and forebrain-cerebellar interactions that mediate acquisition and retention of trace-conditioned responses, and of declarative memory more globally. We discuss the expansion of the conditioning paradigm to species other than the rabbit, the heterogeneity of responses among hippocampal neurons during trace conditioning, the responsivity of hippocampal neurons following consolidation of conditioning, the role of awareness in conditioning, how blink conditioning can be used as a translational tool by assaying potential therapeutics for cognitive enhancement, how trace and delay classical conditioning may be used to investigate neurological disorders including Alzheimer's disease and schizophrenia, and how the 2 paradigms may be used to understand the relationship between declarative (explicit) and nondeclarative (implicit) memory systems.
Collapse
Affiliation(s)
- Craig Weiss
- Northwestern University Feinberg School of Medicine
| | | |
Collapse
|
20
|
Abstract
Behavioral analyses of the ontogeny of memory have shown that hippocampus-dependent learning emerges relatively late in postnatal development compared with simple associative learning. Maturation of hippocampal mnemonic mechanisms has been hypothesized to underlie the development of the later emerging learning processes. However, the role of hippocampal maturation in learning has not been examined directly. The goal of the present study was to examine developmental changes in hippocampal neuronal coding during acquisition of a hippocampus-dependent learning task. We recorded activity from CA1 pyramidal cells in rat pups while they were trained on trace eyeblink conditioning. Trace eyeblink conditioning is a Pavlovian conditioning task that involves the association of a conditioned stimulus (CS) with an unconditioned stimulus over a stimulus-free trace interval. The inclusion of the trace interval is what makes the task hippocampus dependent. In the present study, rats were trained at 21-23, 24-26, and 31-33 d of age. Previous research from our laboratory and others shows that trace conditioning begins to emerge during the third postnatal week. The results indicate that hippocampal neurons show a substantial increase in responsiveness to task-relevant events during development. Moreover, there is an age-related increase in the proportion of neurons that respond to a combination of trial events (e.g., CS and trace). Our findings indicate that the developmental emergence of hippocampally mediated learning is related to increases in the strength and complexity of CA1 associative coding.
Collapse
|
21
|
Weiss C, Disterhoft JF. Eyeblink Conditioning and Novel Object Recognition in the Rabbit: Behavioral Paradigms for Assaying Psychiatric Diseases. Front Psychiatry 2015; 6:142. [PMID: 26500564 PMCID: PMC4595794 DOI: 10.3389/fpsyt.2015.00142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
Analysis of data collected from behavioral paradigms has provided important information for understanding the etiology and progression of diseases that involve neural regions mediating abnormal behavior. The trace eyeblink conditioning (EBC) paradigm is particularly suited to examine cerebro-cerebellar interactions since the paradigm requires the cerebellum, forebrain, and awareness of the stimulus contingencies. Impairments in acquiring EBC have been noted in several neuropsychiatric conditions, including schizophrenia, Alzheimer's disease (AD), progressive supranuclear palsy, and post-traumatic stress disorder. Although several species have been used to examine EBC, the rabbit is unique in its tolerance for restraint, which facilitates imaging, its relatively large skull that facilitates chronic neuronal recordings, a genetic sequence for amyloid that is identical to humans which makes it a valuable model to study AD, and in contrast to rodents, it has a striatum that is differentiated into a caudate and a putamen that facilitates analysis of diseases involving the striatum. This review focuses on EBC during schizophrenia and AD since impairments in cerebro-cerebellar connections have been hypothesized to lead to a cognitive dysmetria. We also relate EBC to conditioned avoidance responses that are more often examined for effects of antipsychotic medications, and we propose that an analysis of novel object recognition (NOR) may add to our understanding of how the underlying neural circuitry has changed during disease states. We propose that the EBC and NOR paradigms will help to determine which therapeutics are effective for treating the cognitive aspects of schizophrenia and AD, and that neuroimaging may reveal biomarkers of the diseases and help to evaluate potential therapeutics. The rabbit, thus, provides an important translational system for studying neural mechanisms mediating maladaptive behaviors that underlie some psychiatric diseases, especially cognitive impairments associated with schizophrenia and AD, and object recognition provides a simple test of memory that can corroborate the results of EBC.
Collapse
Affiliation(s)
- Craig Weiss
- Department of Physiology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| | - John F Disterhoft
- Department of Physiology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| |
Collapse
|
22
|
Oh MM, Disterhoft JF. Increased Excitability of Both Principal Neurons and Interneurons during Associative Learning. Neuroscientist 2014; 21:372-84. [PMID: 24946769 DOI: 10.1177/1073858414537382] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, we highlight several studies indicating that the modulation of intrinsic neuronal excitability is key for successful memory formation. Specifically, we will focus our discussion on our hypothesis that the postburst afterhyperpolarization (a key regulator of intrinsic excitability) is an essential cellular mechanism used by both principal and inhibitory neurons to change their neuronal activity as memory is formed. In addition, we propose that these intrinsic excitability changes occur first in principal neurons, followed by changes in inhibitory neurons, thus maintaining the balance of network activity among neurons for successful encoding and readout of memory.
Collapse
Affiliation(s)
- M Matthew Oh
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - John F Disterhoft
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
23
|
Tanninen SE, Morrissey MD, Takehara-Nishiuchi K. Unilateral lateral entorhinal inactivation impairs memory expression in trace eyeblink conditioning. PLoS One 2013; 8:e84543. [PMID: 24367674 PMCID: PMC3868607 DOI: 10.1371/journal.pone.0084543] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/16/2013] [Indexed: 11/25/2022] Open
Abstract
Memory in trace eyeblink conditioning is mediated by an inter-connected network that involves the hippocampus (HPC), several neocortical regions, and the cerebellum. This network reorganizes after learning as the center of the network shifts from the HPC to the medial prefrontal cortex (mPFC). Despite the network reorganization, the lateral entorhinal cortex (LEC) plays a stable role in expressing recently acquired HPC-dependent memory as well as remotely acquired mPFC-dependent memory. Entorhinal involvement in recent memory expression may be attributed to its previously proposed interactions with the HPC. In contrast, it remains unknown how the LEC participates in memory expression after the network disengages from the HPC. The present study tested the possibility that the LEC and mPFC functionally interact during remote memory expression by examining the impact of pharmacological inactivation of the LEC in one hemisphere and the mPFC in the contralateral hemisphere on memory expression in rats. Memory expression one day and one month after learning was significantly impaired after LEC-mPFC inactivation; however, the degree of impairment was comparable to that after unilateral LEC inactivation. Unilateral mPFC inactivation had no effect on recent or remote memory expression. These results suggest that the integrity of the LEC in both hemispheres is necessary for memory expression. Functional interactions between the LEC and mPFC should therefore be tested with an alternative design.
Collapse
Affiliation(s)
- Stephanie E. Tanninen
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience, University of Toronto, Toronto, Ontario, Canada
| | - Mark D. Morrissey
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience, University of Toronto, Toronto, Ontario, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience, University of Toronto, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
24
|
Jurado-Parras MT, Sánchez-Campusano R, Castellanos NP, del-Pozo F, Gruart A, Delgado-García JM. Differential contribution of hippocampal circuits to appetitive and consummatory behaviors during operant conditioning of behaving mice. J Neurosci 2013; 33:2293-304. [PMID: 23392660 PMCID: PMC6619163 DOI: 10.1523/jneurosci.1013-12.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 11/02/2012] [Accepted: 11/11/2012] [Indexed: 12/21/2022] Open
Abstract
Operant conditioning is a type of associative learning involving different and complex sensorimotor and cognitive processes. Because the hippocampus has been related to some motor and cognitive functions involved in this type of learning (such as object recognition, spatial orientation, and associative learning tasks), we decided to study in behaving mice the putative changes in strength taking place at the hippocampal CA3-CA1 synapses during the acquisition and performance of an operant conditioning task. Mice were chronically implanted with stimulating electrodes in the Schaffer collaterals and with recording electrodes in the hippocampal CA1 area and trained to an operant task using a fixed-ratio (1:1) schedule. We recorded the field EPSPs (fEPSPs) evoked at the CA3-CA1 synapse during the performance of appetitive (going to the lever, lever press) and consummatory (going to the feeder, eating) behaviors. In addition, we recorded the local field potential activity of the CA1 area during similar behavioral displays. fEPSPs evoked at the CA3-CA1 synapse presented larger amplitudes for appetitive than for consummatory behaviors. This differential change in synaptic strength took place in relation to the learning process, depending mainly on the moment in which mice reached the selected criterion. Thus, selective changes in CA3-CA1 synaptic strength were dependent on both the behavior display and the learning stage. In addition, significant changes in theta band power peaks and their corresponding discrete frequencies were noticed during these behaviors across the sequence of events characterizing this type of associative learning but not during the acquisition process.
Collapse
Affiliation(s)
| | | | - Nazareth P. Castellanos
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Madrid Technical University, 28060 Madrid, Spain
| | - Francisco del-Pozo
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Madrid Technical University, 28060 Madrid, Spain
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013 Seville, Spain, and
| | | |
Collapse
|
25
|
Hippocampal-dependent Pavlovian conditioning in adult rats exposed to binge-like doses of ethanol as neonates. Behav Brain Res 2012; 242:191-9. [PMID: 23274841 DOI: 10.1016/j.bbr.2012.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 01/13/2023]
Abstract
Binge-like postnatal ethanol exposure produces significant damage throughout the brain in rats, including the cerebellum and hippocampus. In the current study, cue- and context-mediated Pavlovian conditioning were assessed in adult rats exposed to moderately low (3E; 3g/kg/day) or high (5E; 5g/kg/day) doses of ethanol across postnatal days 4-9. Ethanol-exposed and control groups were presented with 8 sessions of trace eyeblink conditioning followed by another 8 sessions of delay eyeblink conditioning, with an altered context presented over the last two sessions. Both forms of conditioning rely on the brainstem and cerebellum, while the more difficult trace conditioning also requires the hippocampus. The hippocampus is also needed to gate or modulate expression of the eyeblink conditioned response (CR) based on contextual cues. Results indicate that the ethanol-exposed rats were not significantly impaired in trace EBC relative to control subjects. In terms of CR topography, peak amplitude was significantly reduced by both doses of alcohol, whereas onset latency but not peak latency was significantly lengthened in the 5E rats across the latter half of delay EBC in the original training context. Neither dosage resulted in significant impairment in the contextual gating of the behavioral response, as revealed by similar decreases in CR production across all four treatment groups following introduction of the novel context. Results suggest ethanol-induced brainstem-cerebellar damage can account for the present results, independent of the putative disruption in hippocampal development and function proposed to occur following postnatal ethanol exposure.
Collapse
|
26
|
Coupling of prefrontal gamma amplitude and theta phase is strengthened in trace eyeblink conditioning. Neurobiol Learn Mem 2012; 100:117-26. [PMID: 23267870 DOI: 10.1016/j.nlm.2012.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/18/2012] [Accepted: 12/17/2012] [Indexed: 11/23/2022]
Abstract
Trace eyeblink conditioning requires animals to associate a neutral stimulus (CS) and an aversive periorbital shock (US) that occurred moment later. Acquisition in this conditioning depends on several forebrain regions including the hippocampus, medial prefrontal, and entorhinal cortices in addition to the cerebellum. Activities of single and population neurons in these regions show several patterns of change with the conditioning. For example, the power and synchronization of theta oscillations are correlated with the rate of acquisition. Yet, little is known about how neuronal oscillations at other frequency bands change with the conditioning. The present study examined changes in gamma oscillations, which are typically associated with spiking activity of individual cells. We found that after CS offset the power of gamma oscillations at 35-45 Hz fluctuated at about 7 Hz. This rhythmic fluctuation of gamma power was observed in all three regions and locked to local theta oscillations at 4-8 Hz. Furthermore, over the course of 10 days of acquisition sessions, the coupling of gamma power and theta phase became stronger in the medial prefrontal cortex while it did not change in the hippocampus or lateral entorhinal cortex. Neither theta nor gamma power in any of the regions significantly changed across sessions, rejecting a possibility that the observed increase in prefrontal theta-gamma coupling was secondary to an increase in theta or gamma power. The theta-gamma coupling between different regions did not significantly change across sessions. These results suggest that prefrontal gamma oscillations become more effectively coordinated with concurrent theta oscillations in trace eyeblink conditioning. This may result in a stronger impact of prefrontal neuronal firing responses to the CS on the processing in down-stream regions, such as the lateral entorhinal cortex and/or pontine nuclei.
Collapse
|
27
|
Moustafa AA, Wufong E, Servatius RJ, Pang KCH, Gluck MA, Myers CE. Why trace and delay conditioning are sometimes (but not always) hippocampal dependent: a computational model. Brain Res 2012. [PMID: 23178699 DOI: 10.1016/j.brainres.2012.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A recurrent-network model provides a unified account of the hippocampal region in mediating the representation of temporal information in classical eyeblink conditioning. Much empirical research is consistent with a general conclusion that delay conditioning (in which the conditioned stimulus CS and unconditioned stimulus US overlap and co-terminate) is independent of the hippocampal system, while trace conditioning (in which the CS terminates before US onset) depends on the hippocampus. However, recent studies show that, under some circumstances, delay conditioning can be hippocampal-dependent and trace conditioning can be spared following hippocampal lesion. Here, we present an extension of our prior trial-level models of hippocampal function and stimulus representation that can explain these findings within a unified framework. Specifically, the current model includes adaptive recurrent collateral connections that aid in the representation of intra-trial temporal information. With this model, as in our prior models, we argue that the hippocampus is not specialized for conditioned response timing, but rather is a general-purpose system that learns to predict the next state of all stimuli given the current state of variables encoded by activity in recurrent collaterals. As such, the model correctly predicts that hippocampal involvement in classical conditioning should be critical not only when there is an intervening trace interval, but also when there is a long delay between CS onset and US onset. Our model simulates empirical data from many variants of classical conditioning, including delay and trace paradigms in which the length of the CS, the inter-stimulus interval, or the trace interval is varied. Finally, we discuss model limitations, future directions, and several novel empirical predictions of this temporal processing model of hippocampal function and learning.
Collapse
Affiliation(s)
- Ahmed A Moustafa
- Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ, USA.
| | | | | | | | | | | |
Collapse
|
28
|
McKay BM, Oh MM, Galvez R, Burgdorf J, Kroes RA, Weiss C, Adelman JP, Moskal JR, Disterhoft JF. Increasing SK2 channel activity impairs associative learning. J Neurophysiol 2012; 108:863-70. [PMID: 22552186 PMCID: PMC3424087 DOI: 10.1152/jn.00025.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/29/2012] [Indexed: 11/22/2022] Open
Abstract
Enhanced intrinsic neuronal excitability of hippocampal pyramidal neurons via reductions in the postburst afterhyperpolarization (AHP) has been hypothesized to be a biomarker of successful learning. This is supported by considerable evidence that pharmacologic enhancement of neuronal excitability facilitates learning. However, it has yet to be demonstrated that pharmacologic reduction of neuronal excitability restricted to the hippocampus can retard acquisition of a hippocampus-dependent task. Thus, the present study was designed to address this latter point using a small conductance potassium (SK) channel activator NS309 focally applied to the dorsal hippocampus. SK channels are important contributors to intrinsic excitability, as measured by the medium postburst AHP. NS309 increased the medium AHP and reduced excitatory postsynaptic potential width of CA1 neurons in vitro. In vivo, NS309 reduced the spontaneous firing rate of CA1 pyramidal neurons and impaired trace eyeblink conditioning in rats. Conversely, trace eyeblink conditioning reduced levels of SK2 channel mRNA and protein in the hippocampus. Therefore, the present findings indicate that modulation of SK channels is an important cellular mechanism for associative learning and further support postburst AHP reductions in hippocampal pyramidal neurons as a biomarker of successful learning.
Collapse
Affiliation(s)
- Bridget M. McKay
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - M. Matthew Oh
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Roberto Galvez
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jeffrey Burgdorf
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Roger A. Kroes
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Craig Weiss
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - John P. Adelman
- Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - Joseph R. Moskal
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - John F. Disterhoft
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
29
|
Dorsal hippocampal lesions disrupt Pavlovian delay conditioning and conditioned-response timing. Behav Brain Res 2012; 230:259-67. [PMID: 22366272 DOI: 10.1016/j.bbr.2012.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/16/2012] [Accepted: 02/08/2012] [Indexed: 11/20/2022]
Abstract
The involvement of the rat dorsal hippocampus (dhpc) in Pavlovian conditioning and timing of conditioned responding was examined in an appetitive preparation in which presentation of a relatively long, 40-s auditory conditioned stimulus (CS) was followed immediately by food delivery. Dorsal hippocampal lesions impaired Pavlovian conditioning in this task. They also produced a deficit in interval timing, replicating previous findings with short CSs. The conditioning and timing deficits observed are consistent with the findings from single-unit recording studies in other species, and suggest that the involvement of the dhpc in Pavlovian processes could be more general than is assumed by many of the current theories of hippocampal function.
Collapse
|
30
|
Weiss C, Disterhoft JF. Exploring prefrontal cortical memory mechanisms with eyeblink conditioning. Behav Neurosci 2011; 125:318-26. [PMID: 21517143 DOI: 10.1037/a0023520] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several studies in nonhuman primates have shown that neurons in the dorsolateral prefrontal cortex have activity that persists throughout the delay period in delayed matching to sample tasks, and age-related changes in the microcolumnar organization of the prefrontal cortex are significantly correlated with age-related declines in cognition. Activity that persists beyond the presentation of a stimulus could mediate working memory processes, and disruption of those processes could account for memory deficits that often accompany the aging process. These potential memory and aging mechanisms are being systematically examined with eyeblink conditioning paradigms in nonprimate mammalian animal models including the rabbit. The trace version of the conditioning paradigm is a particularly good system to explore declarative memory since humans do not acquire trace conditioning if they are unable to become cognitively aware of the association between a conditioning tone and an airpuff to the eye. This conditioning paradigm has been used to show that the hippocampus and cerebellum interact functionally since both conditioned responses and conditioned hippocampal pyramidal neuron activity are abolished following lesions of the cerebellar nuclei and since hippocampal lesions prevent or abolish trace conditioned blinks. However, because there are no direct connections between the hippocampal formation and the cerebellum, and because the hippocampus is not necessary for trace conditioning after a period of consolidation has elapsed, we and others have been examining the prefrontal cortex for its role in forebrain-dependent trace eyeblink conditioning. This review examines some of the literature which suggests that the prefrontal cortex serves to orchestrate a neuronal network that interacts with the cerebellum to mediate adaptively timed conditioned responses.
Collapse
Affiliation(s)
- Craig Weiss
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611-3008, USA.
| | | |
Collapse
|
31
|
Siegel JJ, Kalmbach B, Chitwood RA, Mauk MD. Persistent activity in a cortical-to-subcortical circuit: bridging the temporal gap in trace eyelid conditioning. J Neurophysiol 2011; 107:50-64. [PMID: 21957220 DOI: 10.1152/jn.00689.2011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have addressed the source and nature of the persistent neural activity that bridges the stimulus-free gap between the conditioned stimulus (CS) and unconditioned stimulus (US) during trace eyelid conditioning. Previous work has demonstrated that this persistent activity is necessary for trace eyelid conditioning: CS-elicited activity in mossy fiber inputs to the cerebellum does not extend into the stimulus-free trace interval, which precludes the cerebellar learning that mediates conditioned response expression. In behaving rabbits we used in vivo recordings from a region of medial prefrontal cortex (mPFC) that is necessary for trace eyelid conditioning to test the hypothesis that neurons there generate activity that persists beyond CS offset. These recordings revealed two patterns of activity during the trace interval that would enable cerebellar learning. Activity in some cells began during the tone CS and persisted to overlap with the US, whereas in other cells, activity began during the stimulus-free trace interval. Injection of anterograde tracers into this same region of mPFC revealed dense labeling in the pontine nuclei, where recordings also revealed tone-evoked persistent activity during trace conditioning. These data suggest a corticopontine pathway that provides an input to the cerebellum during trace conditioning trials that bridges the temporal gap between the CS and US to engage cerebellar learning. As such, trace eyelid conditioning represents a well-characterized and experimentally tractable system that can facilitate mechanistic analyses of cortical persistent activity and how it is used by downstream brain structures to influence behavior.
Collapse
Affiliation(s)
- Jennifer J Siegel
- Center for Learning and Memory, The Univ. of Texas at Austin, 1 Univ. Station Stop C7000, Austin, TX 78712-0805, USA.
| | | | | | | |
Collapse
|
32
|
Galvez R, Nicholson DA, Disterhoft JF. Physiological and anatomical studies of associative learning: Convergence with learning studies of W.T. Greenough. Dev Psychobiol 2011; 53:489-504. [PMID: 21678397 PMCID: PMC3632307 DOI: 10.1002/dev.20554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The quest to understand how the brain is able to store information for later retrieval has been pursued by many scientists through the years. Although many have made very significant contributions to the field and our current understanding of the process, few have played as pivotal a role in advancing our understanding as William T. Greenough. The current report will utilize associative learning, a training paradigm that has greatly assisted in our understanding of memory consolidation, to demonstrate how findings emerging from the Greenough laboratory helped to not only shape our current understanding of learning induced anatomical plasticity, but to also launch future analyses into the molecular players involved in this process, especially the Fragile X Mental Retardation Protein.
Collapse
Affiliation(s)
- Roberto Galvez
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
| | | | | |
Collapse
|
33
|
Chronic stress prior to hippocampal stroke enhances post-stroke spatial deficits in the ziggurat task. Neurobiol Learn Mem 2011; 95:335-45. [DOI: 10.1016/j.nlm.2011.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/01/2010] [Accepted: 01/12/2011] [Indexed: 01/09/2023]
|
34
|
Liu X, Qin S, Rijpkema M, Luo J, Fernández G. Intermediate levels of hippocampal activity appear optimal for associative memory formation. PLoS One 2010; 5. [PMID: 20957209 PMCID: PMC2948522 DOI: 10.1371/journal.pone.0013147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 09/07/2010] [Indexed: 11/18/2022] Open
Abstract
Background It is well established that hippocampal activity is positively related to effective associative memory formation. However, in biological systems often optimal levels of activity are contrasted by both sub- and supra-optimal levels. Sub-optimal levels of hippocampal activity are commonly attributed to unsuccessful memory formation, whereas the supra-optimal levels of hippocampal activity related to unsuccessful memory formation have been rarely studied. It is still unclear under what circumstances such supra-optimal levels of hippocampal activity occur. To clarify this issue, we aimed at creating a condition, in which supra-optimal hippocampal activity is associated with encoding failure. We assumed that such supra-optimal activity occurs when task-relevant information is embedded in task-irrelevant, distracting information, which can be considered as noise. Methodology/Principal Findings In the present fMRI study, we probed neural correlates of associative memory formation in a full-factorial design with associative memory (subsequently remembered versus forgotten) and noise (induced by high versus low distraction) as factors. Results showed that encoding failure was associated with supra-optimal activity in the high-distraction condition and with sub-optimal activity in the low distraction condition. Thus, we revealed evidence for a bell-shape function relating hippocampal activity with associative encoding success. Conclusions/Significance Our findings indicate that intermediate levels of hippocampal activity are optimal while both too low and too high levels appear detrimental for associative memory formation. Supra-optimal levels of hippocampal activity seem to occur when task-irrelevant information is added to task-relevant signal. If such task-irrelevant noise is reduced adequately, hippocampal activity is lower and thus optimal for associative memory formation.
Collapse
Affiliation(s)
- Xiao Liu
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
- Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China
- Graduate School, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shaozheng Qin
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Mark Rijpkema
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Jing Luo
- Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China
- * E-mail: (GF); (JL)
| | - Guillén Fernández
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail: (GF); (JL)
| |
Collapse
|
35
|
Mpari B, Sreng L, Manrique C, Mourre C. KCa2 channels transiently downregulated during spatial learning and memory in rats. Hippocampus 2010; 20:352-63. [PMID: 19437421 DOI: 10.1002/hipo.20622] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small-conductance calcium-activated potassium channels (K(Ca)2) are essential components involved in the modulation of neuronal excitability, underlying learning and memory. Recent evidence suggests that K(Ca)2 channel activity reduces synaptic transmission in a postsynaptic NMDA receptor-dependent manner and is modulated by long-term potentiation. We used radioactive in situ hybridization and apamin binding to investigate the amount of K(Ca)2 subunit mRNA and K(Ca)2 proteins in brain structures involved in learning and memory at different stages of a radial-arm maze task in naive, pseudoconditioned, and conditioned rats. We observed significant differences in K(Ca)2.2 and K(Ca)2.3, but not K(Ca)2.1 mRNA levels, between conditioned and pseudoconditioned rats. K(Ca)2.2 levels were transiently reduced in the dorsal CA fields of the hippocampus, whereas K(Ca)2.3 mRNA levels were reduced in the dorsal and ventral CA fields of the hippocampus, entorhinal cortex, and basolateral amygdaloid nucleus in conditioned rats, during early stages of learning. Levels of apamin-binding sites displayed a similar pattern to K(Ca)2 mRNA levels during learning. Spatial learning performance was positively correlated with levels of apamin-binding sites and K(Ca)2.3 mRNA in the dorsal CA1 field and negatively correlated in the dorsal CA3 field. These findings suggest that K(Ca)2 channels are transiently downregulated in the early stages of learning and that regulation of K(Ca)2 channel levels is involved in the modification of neuronal substrates underlying new information acquisition.
Collapse
Affiliation(s)
- Bedel Mpari
- Laboratoire de Neurobiologie Intégrative et Adaptative, Neurobiologie des Processus Mnésiques, UMR 6149, Aix-Marseille Université, CNRS, Centre St Charles, 3 Place Victor Hugo, 13331 Marseille Cedex 03, France
| | | | | | | |
Collapse
|
36
|
Koh MT, Wheeler DS, Gallagher M. Hippocampal lesions interfere with long-trace taste aversion conditioning. Physiol Behav 2009; 98:103-7. [PMID: 19394353 DOI: 10.1016/j.physbeh.2009.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/23/2009] [Accepted: 04/20/2009] [Indexed: 11/20/2022]
Abstract
This series of experiments investigated the effects of dorsal and ventral hippocampal lesions on taste aversion learning. Although damage to the hippocampus did not affect the acquisition of a taste aversion when the conditioning procedure used a relatively standard interval between taste and illness, both types of lesions produced a deficit in taste aversion when a long interval (3 h) was interposed between taste exposure and induction of illness. In the same subjects, trace fear conditioning was selectively impaired by ventral lesions, whereas water maze performance was selectively impaired by dorsal lesions. The results replicate past dissociations of dorsal and ventral hippocampal function, and also suggest that the hippocampus has a less differentiated role in long-trace taste aversion learning.
Collapse
Affiliation(s)
- Ming Teng Koh
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, United States.
| | | | | |
Collapse
|
37
|
Plakke B, Freeman JH, Poremba A. Metabolic mapping of rat forebrain and midbrain during delay and trace eyeblink conditioning. Neurobiol Learn Mem 2009; 92:335-44. [PMID: 19376256 DOI: 10.1016/j.nlm.2009.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 04/03/2009] [Accepted: 04/07/2009] [Indexed: 11/28/2022]
Abstract
While the essential neural circuitry for delay eyeblink conditioning has been largely identified, much of the neural circuitry for trace conditioning has yet to be determined. The major difference between delay and trace conditioning is a time gap between the presentation of the conditioned stimulus (CS) and the unconditioned stimulus (US) during trace conditioning. It is this time gap, which accounts for the additional memory component and may require extra neural structures, including hippocampus and prefrontal cortex. A metabolic marker of energy use, radioactively labeled glucose analog, was used to compare differences in glucose analog uptake between delay, trace, and unpaired experimental groups (rats, Long-Evans), to identify possible new areas of involvement within forebrain and midbrain. Here, we identify increased 2-DG uptake for the delay group compared to the unpaired group in various areas including: the medial geniculate nuclei (MGN), the amygdala, cingulate cortex, auditory cortex, medial dorsal thalamus, and frontal cortices. For the trace group, compared to the unpaired group, there was an increase in 2-DG uptake for the medial orbital frontal cortex and the medial MGN. The trace group also exhibited more increases lateralized to the right hemisphere, opposite to the side of US delivery, in various areas including: CA1, subiculum, presubiculum, perirhinal cortex, ventral and dorsal MGN, and the basolateral and central amygdala. While some of these areas have been identified as important for delay or trace conditioning, some new structures have been identified such as the orbital frontal cortex for both delay and trace groups.
Collapse
Affiliation(s)
- Bethany Plakke
- University of Iowa, Department of Psychology, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
38
|
Mauldin KN, Griffin AL, Oliver CG, Berry SD. Hippocampal response patterns during discriminative eyeblink/jaw movement conditioning in the rabbit. Behav Neurosci 2009; 122:1087-99. [PMID: 18823166 DOI: 10.1037/a0012892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rabbits were given concurrent training in eyeblink (EB) and jaw movement (JM) conditioning in which 1 tone predicted an airpuff and another tone predicted water. After 10 days of discrimination training, the animals were given 10 days of reversal training. In the discrimination phase, acquisition of the 2 conditioned responses was not significantly different; however JM discrimination errors were much more frequent than were EB errors. In the reversal phase, correct performance on EB trials increased gradually, as was expected, whereas there was immediate behavioral reversal on JM trials. Differences in size and topography of dorsal CA1 multiple-unit responses reflected the ability of the hippocampus to discriminate between stimuli in trained animals, corresponding to the performance of the behavioral discrimination. During JM trials, the rhythmicity of the neural response was further modulated by the type of the prior trial, suggesting the coding of sequential events by the hippocampus. Thus, hippocampal conditioned activity can rapidly change its magnitude and pattern depending on the specific trial type during a concurrent EB/JM discrimination task and its reversal. (PsycINFO Database Record (c) 2008 APA, all rights reserved).
Collapse
|
39
|
Female rats learn trace memories better than male rats and consequently retain a greater proportion of new neurons in their hippocampi. Proc Natl Acad Sci U S A 2009; 106:2927-32. [PMID: 19188598 DOI: 10.1073/pnas.0809650106] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Learning increases the survival of new cells that are generated in the hippocampal formation before the training experience, especially if the animal learns to associate stimuli across time [Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ (1999) Nat Neurosci 2:260-265]. All relevant studies have been conducted on male rats, despite evidence for sex differences in this type of learning. In the present study, we asked whether sex differences in learning influence the survival of neurons generated in the adult hippocampus. Male and female adult rats were injected with one dose of bromodeoxyuridine (BrdU; 200 mg/kg), to label one population of dividing cells. One week later, half of the animals were trained with a temporal learning task of trace eyeblink conditioning, while the other half were not trained. Animals were killed 1 day after training (12 days after the BrdU injection). Hippocampal tissue was stained for BrdU and a marker of immature neurons, doublecortin. Both sexes learned to emit the conditioned eyeblink response during the trace interval. As a consequence, more new neurons remained in their hippocampi than in sex-matched controls. In individual animals, the number of surviving cells correlated positively with asymptotic performance; those that expressed more learned responses retained more new neurons. However, animals that learned very well retained even more new cells if they required many trials to do so. Because females emitted more learned responses than males did, they retained nearly twice as many new cells per unit volume of tissue. This effect was most evident in the ventral region of the hippocampal formation. Thus, sex differences in learning alter the anatomical structure of the hippocampus. As a result, male and female brains continue to differentiate in adulthood.
Collapse
|
40
|
Neural substrates underlying human delay and trace eyeblink conditioning. Proc Natl Acad Sci U S A 2008; 105:8108-13. [PMID: 18523017 DOI: 10.1073/pnas.0800374105] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Classical conditioning paradigms, such as trace conditioning, in which a silent period elapses between the offset of the conditioned stimulus (CS) and the delivery of the unconditioned stimulus (US), and delay conditioning, in which the CS and US coterminate, are widely used to study the neural substrates of associative learning. However, there are significant gaps in our knowledge of the neural systems underlying conditioning in humans. For example, evidence from animal and human patient research suggests that the hippocampus plays a critical role during trace eyeblink conditioning, but there is no evidence to date in humans that the hippocampus is active during trace eyeblink conditioning or is differentially responsive to delay and trace paradigms. The present work provides a direct comparison of the neural correlates of human delay and trace eyeblink conditioning by using functional MRI. Behavioral results showed that humans can learn both delay and trace conditioning in parallel. Comparable delay and trace activation was measured in the cerebellum, whereas greater hippocampal activity was detected during trace compared with delay conditioning. These findings further support the position that the cerebellum is involved in both delay and trace eyeblink conditioning whereas the hippocampus is critical for trace eyeblink conditioning. These results also suggest that the neural circuitry supporting delay and trace eyeblink classical conditioning in humans and laboratory animals may be functionally similar.
Collapse
|
41
|
Miller MJ, Weiss C, Song X, Iordanescu G, Disterhoft JF, Wyrwicz AM. Functional magnetic resonance imaging of delay and trace eyeblink conditioning in the primary visual cortex of the rabbit. J Neurosci 2008; 28:4974-81. [PMID: 18463251 PMCID: PMC2682544 DOI: 10.1523/jneurosci.5622-07.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/04/2008] [Accepted: 03/28/2008] [Indexed: 11/21/2022] Open
Abstract
The primary sensory cortices have been shown in recent years to undergo experience- and learning-related plasticity under a variety of experimental circumstances. In this study, we used functional magnetic resonance imaging (fMRI) in parallel with both delay and trace eyeblink conditioning to image the learning-related functional activation within the primary visual cortex (V1) of awake, behaving rabbits. We expected that the differing level of forebrain dependence between these two conditioning paradigms should produce a differential blood oxygenation level-dependent (BOLD) functional response in V1. Our results showed a significant expansion of activated volume within V1, particularly early in learning, after training with the more cognitively demanding trace paradigm. In contrast, the simpler delay paradigm produced an increase in the magnitude of the BOLD response in activated voxels, but no significant change in activated volume. No accompanying learning-related changes were observed in the primary somatosensory cortex, which mediates the unconditioned stimulus. These results suggest that the recruitment of additional neurons within V1 is necessary to support the more demanding memory imposed by the trace interval. To our knowledge, this work is the first functional imaging study to compare directly trace and delay eyeblink conditioning in an animal model.
Collapse
Affiliation(s)
- Michael J. Miller
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois 60201
- Center for Basic Magnetic Resonance Research, Evanston Northwest Healthcare Research Institute, Evanston, Illinois 60201, and
| | - Craig Weiss
- Physiology, Feinberg Medical School, Northwestern University, Chicago, Illinois 60611
| | - Xiaomu Song
- Center for Basic Magnetic Resonance Research, Evanston Northwest Healthcare Research Institute, Evanston, Illinois 60201, and
- Departments of Radiology and
| | - Gheorghe Iordanescu
- Center for Basic Magnetic Resonance Research, Evanston Northwest Healthcare Research Institute, Evanston, Illinois 60201, and
- Departments of Radiology and
| | - John F. Disterhoft
- Physiology, Feinberg Medical School, Northwestern University, Chicago, Illinois 60611
| | - Alice M. Wyrwicz
- Center for Basic Magnetic Resonance Research, Evanston Northwest Healthcare Research Institute, Evanston, Illinois 60201, and
- Departments of Radiology and
| |
Collapse
|
42
|
Woodruff-Pak DS, Disterhoft JF. Where is the trace in trace conditioning? Trends Neurosci 2008; 31:105-12. [PMID: 18199490 DOI: 10.1016/j.tins.2007.11.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 11/19/2022]
Abstract
Intensive mapping of the essential cerebellar brain circuits for Pavlovian eyeblink conditioning appeared relatively complete by 2000, but new data indicate the need for additional differentiation of cerebellar regions and mechanisms coding delay and trace conditioning. This is especially important, as trace conditioning is an experimentally tractable model of declarative learning. The temporal gap in trace eyeblink conditioning may be bridged by forebrain regions through pontine-cerebellar nuclear connections that can bypass cerebellar cortex, whereas a cerebellar cortical long-term-depression-like process appears to be required to support normal delay conditioning. Experiments focusing on the role of cerebellar cortex and deep nuclei in delay versus trace conditioning add perspective on brain substrates of these seemingly similar paradigms, which differ only by a brief stimulus-free time gap between conditioned and unconditioned stimuli. This temporal gap appears to impose forebrain dependencies and differentially engage different cerebellar circuitry during acquisition of conditioned responses.
Collapse
|
43
|
Hunsaker MR, Kesner RP. Dissociations across the dorsal-ventral axis of CA3 and CA1 for encoding and retrieval of contextual and auditory-cued fear. Neurobiol Learn Mem 2007; 89:61-9. [PMID: 17931914 DOI: 10.1016/j.nlm.2007.08.016] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/17/2007] [Accepted: 08/31/2007] [Indexed: 11/18/2022]
Abstract
The present study was designed to dissociate the roles of dorsal CA3, dorsal CA1, ventral CA3, and ventral CA1 in contextual and auditory-cued classical fear conditioning. Rats received excitotoxic lesions of dorsal CA3, dorsal CA1, ventral CA3, or ventral CA3 prior to acquisition of classical fear conditioning. Dorsal CA3 and dorsal CA1, but not ventral CA3 or ventral CA1, lesions caused a deficit for the acquisition of contextual fear. Dorsal CA1, ventral CA3, and ventral CA1, but not dorsal CA3, lesions caused deficits for the retrieval/expression of contextual fear when tested either 24 or 48h after encoding. Ventral CA3, but not dorsal CA3, dorsal CA1, or ventral CA1, lesions caused a deficit for retrieval of auditory-cued fear when tested either 24 or 48h after encoding. The data suggest that dorsal CA3 mediates encoding of contextual fear, whereas ventral CA3 mediates retrieval of contextual fear. The data also suggest that dorsal CA1 mediates encoding and retrieval of contextual fear, whereas ventral CA1 mediates only the retrieval of contextual fear.
Collapse
Affiliation(s)
- Michael R Hunsaker
- Department of Psychology, University of Utah, 380 South 1530 East, Room 502, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
44
|
Abstract
Normal aging subjects, including humans, have difficulty learning hippocampus-dependent tasks. For example, at least 50% of normal aging rabbits and rats fail to meet a learning criterion in trace eyeblink conditioning. Many factors may contribute to this age-related learning impairment. An important cause is the reduced intrinsic excitability observed in hippocampal pyramidal neurons from normal aging subjects, as reflected by an enlarged postburst afterhyperpolarization (AHP) and an increased spike-frequency adaptation (accommodation). In this review, we will focus on the alterations in the AHP and accommodation during learning and normal aging. We propose that age-related increases in the postburst AHP and accommodation in hippocampal pyramidal neurons play an integral role in the learning impairment observed in normal aging subjects.
Collapse
Affiliation(s)
- John F Disterhoft
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA.
| | | |
Collapse
|
45
|
Galvez R, Weible AP, Disterhoft JF. Cortical barrel lesions impair whisker-CS trace eyeblink conditioning. Learn Mem 2007; 14:94-100. [PMID: 17272654 PMCID: PMC1838550 DOI: 10.1101/lm.418407] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Whisker deflection is an effective conditioned stimulus (CS) for trace eyeblink conditioning that has been shown to induce a learning-specific expansion of whisker-related cortical barrels, suggesting that memory storage for an aspect of the trace association resides in barrel cortex. To examine the role of the barrel cortex in acquisition and retrieval of trace eyeblink associations, the barrel cortex was lesioned either prior to (acquisition group) or following (retention group) trace conditioning. The acquisition lesion group was unable to acquire the trace conditioned response, suggesting that the whisker barrel cortex is vital for learning trace eyeblink conditioning with whisker deflection as the CS. The retention lesion group exhibited a significant reduction in expression of the previously acquired conditioned response, suggesting that an aspect of the trace association may reside in barrel cortex. These results demonstrate that the barrel cortex is important for both acquisition and retention of whisker trace eyeblink conditioning. Furthermore, these results, along with prior anatomical whisker barrel analyses suggest that the barrel cortex is a site for long-term storage of whisker trace eyeblink associations.
Collapse
Affiliation(s)
- Roberto Galvez
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Corresponding author.E-mail ; fax (312) 503-5101
| | - Aldis P. Weible
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - John F. Disterhoft
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
46
|
Disterhoft JF, Oh MM. Learning, aging and intrinsic neuronal plasticity. Trends Neurosci 2006; 29:587-99. [PMID: 16942805 DOI: 10.1016/j.tins.2006.08.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 06/14/2006] [Accepted: 08/17/2006] [Indexed: 11/28/2022]
Abstract
In vitro experiments indicate that intrinsic neuronal excitability, as evidenced by changes in the post-burst afterhyperpolarization (AHP) and spike-frequency accommodation, is altered during learning and normal aging in the brain. Here we review these studies, highlighting two consistent findings: (i) that AHP and accommodation are reduced in pyramidal neurons from animals that have learned a task; and (ii) that AHP and accommodation are enhanced in pyramidal neurons from aging subjects, a cellular change that might contribute to age-related learning impairments. Findings from in vivo single-neuron recording studies complement the in vitro data. From these consistently reproduced findings, we propose that the intrinsic AHP level might determine the degree of synaptic plasticity and learning. Furthermore, it seems that reductions in the AHP must occur before learning if young and aging subjects are to learn a task successfully.
Collapse
Affiliation(s)
- John F Disterhoft
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA.
| | | |
Collapse
|