1
|
Aaltio J, Etula A, Ojanen S, Brilhante V, Lönnqvist T, Isohanni P, Suomalainen A. Genetic etiology of progressive pediatric neurological disorders. Pediatr Res 2024; 95:102-111. [PMID: 37563452 PMCID: PMC10798881 DOI: 10.1038/s41390-023-02767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/15/2023] [Accepted: 07/16/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND The aim of the study was to characterize molecular diagnoses in patients with childhood-onset progressive neurological disorders of suspected genetic etiology. METHODS We studied 48 probands (age range from newborn to 17 years old) with progressive neurological disorders of unknown etiology from the largest pediatric neurology clinic in Finland. Phenotypes included encephalopathy (54%), neuromuscular disorders (33%), movement disorders (11%), and one patient (2%) with hemiplegic migraine. All patients underwent whole-exome sequencing and disease-causing genes were analyzed. RESULTS We found 20 (42%) of the patients to have variants in genes previously associated with disease. Of these, 12 were previously reported disease-causing variants, whereas eight patients had a novel variant on a disease-causing gene: ATP7A, CHD2, PURA, PYCR2, SLC1A4, SPAST, TRIT1, and UPF3B. Genetics also enabled us to define atypical clinical presentations of Rett syndrome (MECP2) and Menkes disease (ATP7A). Except for one deletion, all findings were single-nucleotide variants (missense 72%, truncating 22%, splice-site 6%). Nearly half of the variants were de novo. CONCLUSIONS The most common cause of childhood encephalopathies are de novo variants. Whole-exome sequencing, even singleton, proved to be an efficient tool to gain specific diagnoses and in finding de novo variants in a clinically heterogeneous group of childhood encephalopathies. IMPACT Whole-exome sequencing is useful in heterogeneous pediatric neurology cohorts. Our article provides further evidence for and novel variants in several genes. De novo variants are an important cause of childhood encephalopathies.
Collapse
Affiliation(s)
- Juho Aaltio
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland.
| | - Anna Etula
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland
| | - Simo Ojanen
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Virginia Brilhante
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland
| | - Tuula Lönnqvist
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pirjo Isohanni
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anu Suomalainen
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland.
- HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland.
- HiLife, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Adadey SM, Wonkam-Tingang E, Aboagye ET, Quaye O, Awandare GA, Wonkam A. Hearing loss in Africa: current genetic profile. Hum Genet 2021; 141:505-517. [PMID: 34609590 PMCID: PMC9034983 DOI: 10.1007/s00439-021-02376-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 01/03/2023]
Abstract
Hearing impairment (HI) is highly heterogeneous with over 123 associated genes reported to date, mostly from studies among Europeans and Asians. Here, we performed a systematic review of literature on the genetic profile of HI in Africa. The study protocol was registered on PROSPERO, International Prospective Register of Systematic Reviews with the registration number “CRD42021240852”. Literature search was conducted on PubMed, Scopus, Africa-Wide Information, and Web of Science databases. A total of 89 full-text records was selected and retrieved for data extraction and analyses. We found reports from only 17/54 (31.5%) African countries. The majority (61/89; 68.5%) of articles were from North Africa, with few reports found from sub-Saharan Africa. The most common method used in these publications was targeted gene sequencing (n = 66/111; 59.5%), and only 13.5% (n = 15/111) used whole-exome sequencing. More than half of the studies were performed in families segregating HI (n = 51/89). GJB2 was the most investigated gene, with GJB2: p.(R143W) founder variant only reported in Ghana, while GJB2: c.35delG was common in North African countries. Variants in MYO15A were the second frequently reported in both North and Central Africa, followed by ATP6V1B1 only reported from North Africa. Usher syndrome was the main syndromic HI molecularly investigated, with variants in five genes reported: USH2A, USH1G, USH1C, MYO7A, and PCDH15. MYO7A: p.(P1780S) founder variant was reported as the common Usher syndrome variant among Black South Africans. This review provides the most comprehensive data on HI gene variants in the largely under-investigated African populations. Future exomes studies particularly in multiplex families will likely provide opportunities for the discovery of the next sets of novel HI genes, and well as unreported variants in known genes to further our understanding of HI pathobiology, globally.
Collapse
Affiliation(s)
- Samuel Mawuli Adadey
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P.O. Box LG 54, Legon, Accra, Ghana.,Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Edmond Wonkam-Tingang
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Elvis Twumasi Aboagye
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P.O. Box LG 54, Legon, Accra, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P.O. Box LG 54, Legon, Accra, Ghana
| | - Gordon A Awandare
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P.O. Box LG 54, Legon, Accra, Ghana
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
3
|
Abstract
BACKGROUND Hearing loss (HL) is a heterogeneous condition that causes partial or complete hearing impairment. Hundreds of variants in more than 60 genes have been reported to be associated with Hereditary HL (HHL). The HHL prevalence is thought to be high in the Arab population; however, the genetic epidemiology of HHL among Arab populations is understudied. This study aimed to systematically analyze the genetic epidemiology of HHL in Arab countries. METHODS We searched four literature databases (PubMed, Scopus, Science Direct, and Web of Science) from the time of inception until January 2019 using broad search terms to capture all the reported epidemiological and genetic data related to Arab patients with HHL. FINDINGS A total of 2,600 citations were obtained; 96 studies met our inclusion criteria. Our search strategy yielded 121,276 individuals who were tested for HL over 52 years (1966-2018), of whom 8,099 were clinically diagnosed with HL and belonged to 16 Arab countries. A total of 5,394 patients and 61 families with HHL were genotyped, of whom 336 patients and 6 families carried 104 variants in 44 genes and were from 17/22 Arab countries. Of these variants, 72 (in 41 genes) were distinctive to Arab patients. Arab patients manifested distinctive clinical phenotypes. The incidence of HHL in the captured studies ranged from 1.20 to 18 per 1,000 births per year, and the prevalence was the highest in Iraq (76.3%) and the lowest in Jordan (1.5%). INTERPRETATION This is the first systematic review to capture the prevalence and spectrum of variants associated with HHL in an Arab population. There appears to be a distinctive clinical picture for Arab patients with HHL, and the range and distribution of variants among Arab patients differ from those noted in other affected ethnic groups.
Collapse
|
4
|
Molecular spectrum of excision repair cross-complementation group 8 gene defects in Chinese patients with Cockayne syndrome type A. Sci Rep 2017; 7:13686. [PMID: 29057985 PMCID: PMC5651726 DOI: 10.1038/s41598-017-14034-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/05/2017] [Indexed: 01/09/2023] Open
Abstract
There are two genetics complementary groups Cockayne syndrome type A and B (CS-A and CS-B OMIM 216400, 133540), which is a rare autosomal recessive segmental progeroid syndrome. Homozygous or compound heterozygous mutations in the excision repair cross-complementation group 8 gene (ERCC8) result in CS-A, and mutations in ERCC6 result in CS-B. Homozygous ERCC6/ERCC8 mutations also result in UV-sensitive syndrome. In this study, twenty-one Han Chinese patients with CS were investigated to identify mutations in ERCC8/ERCC6, of which thirteen cases with CS-A were identified with the mutations of ERCC8. There are five types mutations of ERCC8 in our study, such as exon 4 rearrangement, c.394_398delTTACA, c.299insA, c.843 + 2 T > C, and c.2 T > A. An estimated frequency of exon 4 rearrangement accounts for 69.23% and c.394_398delTTACA accounts for 11.53% in our cohort. Haplotype analysis revealed that the exon 4 rearrangement and c.394_398delTTACA mutations originated from a common founder in the Chinese population respectively. With the identification of three novel ERCC8 mutations, this study expanded the molecular spectrum of known ERCC8 defects, and furthermore, suggests that the exon 4 rearrangement and c.394_398delTTACA mutations may be a common underlying cause of CS-A in the Chinese population, which is different from that in other populations.
Collapse
|
5
|
Two Novel Heterozygous Mutations in ERCC8 Cause Cockayne Syndrome in a Chinese Patient. Pediatr Neurol 2015; 53:262-5. [PMID: 26173784 DOI: 10.1016/j.pediatrneurol.2015.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/15/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cockayne syndrome (MIM #133540, Cockayne syndrome B; 216400, Cockayne syndrome A) is a rare autosomal recessive inherited disease in which the characteristic symptoms are premature aging, cachectic dwarfism, lack of subcutaneous fat, neurological alterations, light sensitivity, and failure to thrive. The mutated gene responsible for this syndrome has been identified as usually either CSA (CKN1, ERCC8) or CSB (ERCC6). In this study, we describe the case of a 7-year-old Chinese boy with characteristic symptoms of Cockayne syndrome A and the conduction of mutation screening of the CSA gene. METHODS The patient was diagnosed with Cockayne syndrome in the pediatrics clinic for growth failure and developmental delay. We collected peripheral blood samples of the patient and his parents and then extracted the genomic DNA. DNA samples from control subjects and the patient were subjected to polymerase chain reaction amplification. All exons and the flanking intron-exon boundaries of CSA were amplified; then, the polymerase chain reaction products were directly sequenced for mutation screening. RESULTS Two novel heterozygous CSA mutations, c.551-2A>C and c.394_398delTTACA, were identified in the patient. The c.551-2A>C mutation originates from his father and changed the splice acceptor site AG to CG, thus possibly causing alternative splicing. The c.394_398delTTACA from his mother caused a frameshift after the amino acid at position 132, thus introducing a premature stop codon in the gene sequence. CONCLUSIONS These mutations extend the mutation spectrum of Cockayne syndrome in the context of Chinese race and provide possibilities of prenatal diagnosis for future offsprings in this family.
Collapse
|
6
|
Shen W, Han D, Zhang J, Zhao H, Feng H. Two novel heterozygous mutations of EVC2 cause a mild phenotype of Ellis-van Creveld syndrome in a Chinese family. Am J Med Genet A 2011; 155A:2131-6. [PMID: 21815252 DOI: 10.1002/ajmg.a.34125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 04/20/2011] [Indexed: 11/10/2022]
Abstract
Ellis-van Creveld syndrome (EvC, chondroectodermal dysplasia; OMIM 225500) is an autosomal recessive skeletal dysplasia with associated multisystem involvement. The syndrome is characterized by short limbs, short ribs, postaxial polydactyly, dysplastic nails, and abnormal teeth. Congenital heart defects occur in 50-60% of cases. In this study, we report EvC in a 6-year-old Chinese girl with hypodontia and polydactyly, mild short stature, and abnormalities of the knee joints. No signs of short ribs, narrow thorax, or congenital heart defects were found in this patient. The EvC phenotype shares some similarity with Weyers acrofacial dysostosis (Weyer; OMIM 193530), an autosomal dominant disorder clinically characterized by mild short stature, postaxial polydactyly, nail dystrophy, and dysplastic teeth. Mutations in EVC or EVC2 are associated with both EvC syndrome and Weyers acrodental dysostosis, but the two conditions differ in the severity of the phenotype and their pattern of inheritance. In this study, two novel heterozygous EVC2 mutations, IVS5-2A > G and c.2653C > T (Arg885X), were identified in the patient. The IVS5-2A > G mutation was inherited from the patient's mother and the c.2653C > T from her father. Her parents have no phenotypic symptoms similar to those of the patient. These findings extend the mutation spectrum of this malformation syndrome and provide the possibility of prenatal diagnosis for future offspring in this family.
Collapse
Affiliation(s)
- Wenjing Shen
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | | | | | | | | |
Collapse
|
7
|
Laugel V, Dalloz C, Durand M, Sauvanaud F, Kristensen U, Vincent MC, Pasquier L, Odent S, Cormier-Daire V, Gener B, Tobias ES, Tolmie JL, Martin-Coignard D, Drouin-Garraud V, Heron D, Journel H, Raffo E, Vigneron J, Lyonnet S, Murday V, Gubser-Mercati D, Funalot B, Brueton L, Sanchez Del Pozo J, Muñoz E, Gennery AR, Salih M, Noruzinia M, Prescott K, Ramos L, Stark Z, Fieggen K, Chabrol B, Sarda P, Edery P, Bloch-Zupan A, Fawcett H, Pham D, Egly JM, Lehmann AR, Sarasin A, Dollfus H. Mutation update for the CSB/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome. Hum Mutat 2010; 31:113-26. [PMID: 19894250 DOI: 10.1002/humu.21154] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cockayne syndrome is an autosomal recessive multisystem disorder characterized principally by neurological and sensory impairment, cachectic dwarfism, and photosensitivity. This rare disease is linked to mutations in the CSB/ERCC6 and CSA/ERCC8 genes encoding proteins involved in the transcription-coupled DNA repair pathway. The clinical spectrum of Cockayne syndrome encompasses a wide range of severity from severe prenatal forms to mild and late-onset presentations. We have reviewed the 45 published mutations in CSA and CSB to date and we report 43 new mutations in these genes together with the corresponding clinical data. Among the 84 reported kindreds, 52 (62%) have mutations in the CSB gene. Many types of mutations are scattered along the whole coding sequence of both genes, but clusters of missense mutations can be recognized and highlight the role of particular motifs in the proteins. Genotype-phenotype correlation hypotheses are considered with regard to these new molecular and clinical data. Additional cases of molecular prenatal diagnosis are reported and the strategy for prenatal testing is discussed. Two web-based locus-specific databases have been created to list all identified variants and to allow the inclusion of future reports (www.umd.be/CSA/ and www.umd.be/CSB/).
Collapse
Affiliation(s)
- V Laugel
- Laboratory of Medical Genetics, University of Strasbourg, Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Maddukuri L, Speina E, Christiansen M, Dudzińska D, Zaim J, Obtułowicz T, Kabaczyk S, Komisarski M, Bukowy Z, Szczegielniak J, Wójcik A, Kuśmierek JT, Stevnsner T, Bohr VA, Tudek B. Cockayne syndrome group B protein is engaged in processing of DNA adducts of lipid peroxidation product trans-4-hydroxy-2-nonenal. Mutat Res 2009; 666:23-31. [PMID: 19481676 PMCID: PMC4586250 DOI: 10.1016/j.mrfmmm.2009.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 03/09/2009] [Accepted: 03/19/2009] [Indexed: 05/27/2023]
Abstract
Cockayne syndrome complementation group B (CSB) protein is engaged in transcription-coupled repair (TCR) of UV induced DNA damage and its deficiency leads to progressive multisystem degeneration and premature aging. Here, we show that human CSB-deficient cells are hypersensitive to physiological concentrations (1-10 microM) of a lipid peroxidation product, trans-4-hydroxy-2-nonenal (HNE), and in response to HNE they develop a higher level of sister chromatid exchanges (SCEs) in comparison to the wild-type cells. HNE-DNA adducts block in vitro transcription by T7 RNA polymerase, as well as by HeLa cell-free extracts. Treatment of wild-type cells with 1-20 microM HNE causes dephosphorylation of the CSB protein, which stimulates its ATPase activity necessary for TCR. However, high HNE concentrations (100-200 microM) inhibit in vitro CSB ATPase activity as well as the transcription machinery in HeLa cell-free extracts. Cell lines expressing CSB protein mutated in different ATPase domains exhibit different sensitivities to HNE. The motif II mutant, which binds ATP, but is defective in ATP hydrolysis was as sensitive to HNE as CSB-null cells. In contrast, motif V mutant cells were as sensitive to HNE as were the cells bearing wild-type protein, while motif VI mutant cells showed intermediate sensitivity to HNE. These mutants exhibit decreased ATP binding, but retain residual ATPase activity. Homology modeling suggested that amino acids mutated in motifs II and VI are localized closer to the ATP binding site than amino acids mutated in ATPase motif V. These results suggest that HNE-DNA adducts are extremely toxic endogenous DNA lesion, and that their processing involves CSB. When these lesions are not removed from the transcribed DNA strand due to CSB gene mutation or CSB protein inactivation by high, pathological HNE concentrations, they may contribute to accelerated aging.
Collapse
Affiliation(s)
- Leena Maddukuri
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
- Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Elżbieta Speina
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Mette Christiansen
- Danish Center for Molecular Gerontology, Aarhus University and Danish Aging Research Center, Aarhus, Denmark
| | - Dominika Dudzińska
- Institute of Genetics and Biotechnology, Warsaw University, Warsaw, Poland
| | - Jolanta Zaim
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Tomasz Obtułowicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
- Institute of Genetics and Biotechnology, Warsaw University, Warsaw, Poland
| | - Sylwia Kabaczyk
- Institute of Genetics and Biotechnology, Warsaw University, Warsaw, Poland
| | - Marek Komisarski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Zuzanna Bukowy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Jadwiga Szczegielniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Wójcik
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Jaroslaw T. Kuśmierek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology, Aarhus University and Danish Aging Research Center, Aarhus, Denmark
| | - Vilhelm A. Bohr
- Danish Center for Molecular Gerontology, Aarhus University and Danish Aging Research Center, Aarhus, Denmark
- Laboratory of Molecular Gerontology, National Institute of Aging, NIH, Baltimore, MD, USA
| | - Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
- Institute of Genetics and Biotechnology, Warsaw University, Warsaw, Poland
| |
Collapse
|
9
|
Conte C, D'Apice MR, Botta A, Sangiuolo F, Novelli G. Prenatal diagnosis of Cockayne syndrome type A based on the identification of two novel mutations in the ERCC8 gene. Genet Test Mol Biomarkers 2009; 13:127-31. [PMID: 19309286 DOI: 10.1089/gtmb.2008.0092] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Back Cockayne syndrome (CS; MIM 133540-216400) is a rare autosomal recessive neurodegenerative disorder characterized by progressive growth failure, microcephaly, mental retardation, retinal pigmentary degeneration, deafness, photosensitivity, accelerated systemic degeneration of somatic tissue, and premature death. Complementation assays have defined Cockayne syndrome group A (CSA) and Cockayne syndrome group B (CSB), caused by mutations in ERCC8 and ERCC6. The aim of this work was to perform a molecular analysis in a family with an affected son, who died at the age of 12, presenting clinical features typical of CSA. Molecular analysis of ERCC8 allowed us to characterize two novel mutations: a maternally inherited deletion encompassing exons 5 and 6, and a nonsense mutation located in exon 4, segregating from the father. Based on this molecular characterization, we successively performed a prenatal diagnosis on chorionic villus sampling, at 11th week of pregnancy. Molecular prenatal analysis of the ERCC8 was done by analyzing fetal DNA and RNA, looking for both mutations identified in the proband. A linkage analysis was performed using microsatellite markers located on chromosome 5q11 with the purpose to follow the segregation of the mutated alleles within the family. The fetal genotype at CSA locus resulted wild type and was confirmed at birth on biological material isolated from placenta. This study documents for the first time a molecular prenatal diagnosis of CSA, which results in the preferred approach if the mutation within the family is identified in a timely manner.
Collapse
Affiliation(s)
- Chiara Conte
- Fondazione Policlinico Tor Vergata, Rome, Italy.
| | | | | | | | | |
Collapse
|
10
|
A UV-sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage. Proc Natl Acad Sci U S A 2009; 106:6209-14. [PMID: 19329487 DOI: 10.1073/pnas.0902113106] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
UV-sensitive syndrome (UV(S)S) is a recently-identified autosomal recessive disorder characterized by mild cutaneous symptoms and defective transcription-coupled repair (TC-NER), the subpathway of nucleotide excision repair (NER) that rapidly removes damage that can block progression of the transcription machinery in actively-transcribed regions of DNA. Cockayne syndrome (CS) is another genetic disorder with sun sensitivity and defective TC-NER, caused by mutations in the CSA or CSB genes. The clinical hallmarks of CS include neurological/developmental abnormalities and premature aging. UV(S)S is genetically heterogeneous, in that it appears in individuals with mutations in CSB or in a still-unidentified gene. We report the identification of a UV(S)S patient (UV(S)S1VI) with a novel mutation in the CSA gene (p.trp361cys) that confers hypersensitivity to UV light, but not to inducers of oxidative damage that are notably cytotoxic in cells from CS patients. The defect in UV(S)S1VI cells is corrected by expression of the WT CSA gene. Expression of the p.trp361cys-mutated CSA cDNA increases the resistance of cells from a CS-A patient to oxidative stress, but does not correct their UV hypersensitivity. These findings imply that some mutations in the CSA gene may interfere with the TC-NER-dependent removal of UV-induced damage without affecting its role in the oxidative stress response. The differential sensitivity toward oxidative stress might explain the difference between the range and severity of symptoms in CS and the mild manifestations in UV(s)S patients that are limited to skin photosensitivity without precocious aging or neurodegeneration.
Collapse
|
11
|
Frosina G. The current evidence for defective repair of oxidatively damaged DNA in Cockayne syndrome. Free Radic Biol Med 2007; 43:165-77. [PMID: 17603927 DOI: 10.1016/j.freeradbiomed.2007.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 03/31/2007] [Accepted: 04/02/2007] [Indexed: 12/21/2022]
Abstract
Cockayne syndrome (CS) is a rare recessive disorder characterized by a number of developmental abnormalities and premature aging. Two complementation groups (A and B) have been identified so far in CS cases. Defective transcription-coupled nucleotide excision repair is the hallmark of these patients, but in recent years evidence has been presented for a possible defect in the base excision repair pathway that removes oxidized bases. Recent results indicate that both A and B complementation groups are involved but the phenotypical consequences of this flaw remain undetermined.
Collapse
Affiliation(s)
- Guido Frosina
- Department of Translational Oncology, Experimental Oncology "B" Laboratory, Istituto Nazionale Ricerca Cancro, Largo Rosanna Benzi n. 10, 16132 Genova, Italy.
| |
Collapse
|
12
|
Stromme P, Kanavin OJ, Abdelnoor M, Woldseth B, Rootwelt T, Diderichsen J, Bjurulf B, Sommer F, Magnus P. Incidence rates of progressive childhood encephalopathy in Oslo, Norway: a population based study. BMC Pediatr 2007; 7:25. [PMID: 17597517 PMCID: PMC1914055 DOI: 10.1186/1471-2431-7-25] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Accepted: 06/27/2007] [Indexed: 11/29/2022] Open
Abstract
Background Progressive encephalopathy (PE) in children is a heterogeneous group of diseases mainly composed of metabolic diseases, but it consists also of neurodegenerative disorders where neither metabolic nor other causes are found. We wanted to estimate the incidence rate and aetiology of PE, as well as the age of onset of the disease. Methods We included PE cases born between 1985 and 2003, living in Oslo, and registered the number presenting annually between 1985 and 2004. Person-years at risk between 0 and 15 years were based on the number of live births during the observation period which was divided into four 5-year intervals. We calculated incidence rates according to age at onset which was classified as neonatal (0–4 weeks), infantile (1–12 months), late infantile (1–5 years), and juvenile (6–12 years). Results We found 84 PE cases representing 28 diagnoses among 1,305,997 person years, giving an incidence rate of 6.43 per 100,000 person years. The age-specific incidence rates per 100,000 were: 79.89 (<1 year), 8.64 (1–2 years), 1.90 (2–5 years), and 0.65 (>5 years). 66% (55/84) of the cases were metabolic, 32% (27/54) were neurodegenerative, and 2% (2/84) had HIV encephalopathy. 71% (60/84) of the cases presented at < 1 year, 24% (20/84) were late infantile presentations, and 5% (4/84) were juvenile presentations. Neonatal onset was more common in the metabolic (46%) (25/55) compared to the neurodegenerative group (7%) (2/27). 20% (17/84) of all cases were classified as unspecified neurodegenerative disease. Conclusion The overall incidence rate of PE was 6.43 per 100,000 person years. There was a strong reduction in incidence rates with increasing age. Two-thirds of the cases were metabolic, of which almost half presented in the neonatal period.
Collapse
Affiliation(s)
- Petter Stromme
- Department of Pediatrics, Ullevål University Hospital and Faculty of Medicine, University of Oslo, Norway
| | - Oivind Juris Kanavin
- Department of Pediatrics, Ullevål University Hospital and Faculty of Medicine, University of Oslo, Norway
| | - Michael Abdelnoor
- Centre for Clinical Research, Ullevål University Hospital and Faculty of Medicine, University of Oslo, Norway
| | - Berit Woldseth
- Department of Medical Biochemistry, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Terje Rootwelt
- Department of Pediatrics, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | | | - Bjorn Bjurulf
- Department of Pediatrics, Ullevål University Hospital and Faculty of Medicine, University of Oslo, Norway
| | - Finn Sommer
- Department of Pediatrics, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Per Magnus
- Norwgian Institute of Public Health, Oslo, Norway
| |
Collapse
|