1
|
Yu X, Wei P, Chen Z, Li X, Zhang W, Yang Y, Liu C, Zhao S, Li X, Liu X. Comparative analysis of the organelle genomes of three Rhodiola species provide insights into their structural dynamics and sequence divergences. BMC PLANT BIOLOGY 2023; 23:156. [PMID: 36944988 PMCID: PMC10031898 DOI: 10.1186/s12870-023-04159-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Plant organelle genomes are a valuable resource for evolutionary biology research, yet their genome architectures, evolutionary patterns and environmental adaptations are poorly understood in many lineages. Rhodiola species is a type of flora mainly distributed in highland habitats, with high medicinal value. Here, we assembled the organelle genomes of three Rhodiola species (R. wallichiana, R. crenulata and R. sacra) collected from the Qinghai-Tibet plateau (QTP), and compared their genome structure, gene content, structural rearrangements, sequence transfer and sequence evolution rates. RESULTS The results demonstrated the contrasting evolutionary pattern between plastomes and mitogenomes in three Rhodiola species, with the former possessing more conserved genome structure but faster evolutionary rates of sequence, while the latter exhibiting structural diversity but slower rates of sequence evolution. Some lineage-specific features were observed in Rhodiola mitogenomes, including chromosome fission, gene loss and structural rearrangement. Repeat element analysis shows that the repeats occurring between the two chromosomes may mediate the formation of multichromosomal structure in the mitogenomes of Rhodiola, and this multichromosomal structure may have recently formed. The identification of homologous sequences between plastomes and mitogenomes reveals several unidirectional protein-coding gene transfer events from chloroplasts to mitochondria. Moreover, we found that their organelle genomes contained multiple fragments of nuclear transposable elements (TEs) and exhibited different preferences for TEs insertion type. Genome-wide scans of positive selection identified one gene matR from the mitogenome. Since the matR is crucial for plant growth and development, as well as for respiration and stress responses, our findings suggest that matR may participate in the adaptive response of Rhodiola species to environmental stress of QTP. CONCLUSION The study analyzed the organelle genomes of three Rhodiola species and demonstrated the contrasting evolutionary pattern between plastomes and mitogenomes. Signals of positive selection were detected in the matR gene of Rhodiola mitogenomes, suggesting the potential role of this gene in Rhodiola adaptation to QTP. Together, the study is expected to enrich the genomic resources and provide valuable insights into the structural dynamics and sequence divergences of Rhodiola species.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Zhuyifu Chen
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xinzhong Li
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, Tibet, 850000, China
| | - Wencai Zhang
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, Tibet, 850000, China
| | - Yujiao Yang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Chenlai Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Shuqi Zhao
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xiaoyan Li
- Biology Experimental Teaching Center, School of Life Science, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Xing Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, Tibet, 850000, China.
| |
Collapse
|
2
|
Guerbette T, Boudry G, Lan A. Mitochondrial function in intestinal epithelium homeostasis and modulation in diet-induced obesity. Mol Metab 2022; 63:101546. [PMID: 35817394 PMCID: PMC9305624 DOI: 10.1016/j.molmet.2022.101546] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Systemic low-grade inflammation observed in diet-induced obesity has been associated with dysbiosis and disturbance of intestinal homeostasis. This latter relies on an efficient epithelial barrier and coordinated intestinal epithelial cell (IEC) renewal that are supported by their mitochondrial function. However, IEC mitochondrial function might be impaired by high fat diet (HFD) consumption, notably through gut-derived metabolite production and fatty acids, that may act as metabolic perturbators of IEC. Scope of review This review presents the current general knowledge on mitochondria, before focusing on IEC mitochondrial function and its role in the control of intestinal homeostasis, and featuring the known effects of nutrients and metabolites, originating from the diet or gut bacterial metabolism, on IEC mitochondrial function. It then summarizes the impact of HFD on mitochondrial function in IEC of both small intestine and colon and discusses the possible link between mitochondrial dysfunction and altered intestinal homeostasis in diet-induced obesity. Major conclusions HFD consumption provokes a metabolic shift toward fatty acid β-oxidation in the small intestine epithelial cells and impairs colonocyte mitochondrial function, possibly through downstream consequences of excessive fatty acid β-oxidation and/or the presence of deleterious metabolites produced by the gut microbiota. Decreased levels of ATP and concomitant O2 leaks into the intestinal lumen could explain the alterations of intestinal epithelium dynamics, barrier disruption and dysbiosis that contribute to the loss of epithelial homeostasis in diet-induced obesity. However, the effect of HFD on IEC mitochondrial function in the small intestine remains unknown and the precise mechanisms by which HFD induces mitochondrial dysfunction in the colon have not been elucidated so far.
Collapse
Affiliation(s)
| | - Gaëlle Boudry
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France.
| | - Annaïg Lan
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France; Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| |
Collapse
|
3
|
Abstract
Sirtuin 3 (SIRT3), the main family member of mitochondrial deacetylase, targets the majority of substrates controlling mitochondrial biogenesis via lysine deacetylation and modulates important cellular functions such as energy metabolism, reactive oxygen species production and clearance, oxidative stress, and aging. Deletion of SIRT3 has a deleterious effect on mitochondrial biogenesis, thus leading to the defect in mitochondrial function and insufficient ATP production. Imbalance of mitochondrial dynamics leads to excessive mitochondrial biogenesis, dampening mitochondrial function. Mitochondrial dysfunction plays an important role in several diseases related to aging, such as cardiovascular disease, cancer and neurodegenerative diseases. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) launches mitochondrial biogenesis through activating nuclear respiratory factors. These factors act on genes, transcribing and translating mitochondrial DNA to generate new mitochondria. PGC1α builds a bridge between SIRT3 and mitochondrial biogenesis. This review described the involvement of SIRT3 and mitochondrial dynamics, particularly mitochondrial biogenesis in aging-related diseases, and further illustrated the role of the signaling events between SIRT3 and mitochondrial biogenesis in the pathological process of aging-related diseases.
Collapse
Affiliation(s)
- Hong-Yan Li
- Department of Neurology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.,Department of Neurology, Chongqing General Hospital, Chongqing 401147, China
| | - Zhi-You Cai
- Department of Neurology, Chongqing General Hospital, Chongqing 401147, China
| |
Collapse
|
4
|
Shaito A, Hasan H, Habashy KJ, Fakih W, Abdelhady S, Ahmad F, Zibara K, Eid AH, El-Yazbi AF, Kobeissy FH. Western diet aggravates neuronal insult in post-traumatic brain injury: Proposed pathways for interplay. EBioMedicine 2020; 57:102829. [PMID: 32574954 PMCID: PMC7317220 DOI: 10.1016/j.ebiom.2020.102829] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) is a global health burden and a major cause of disability and mortality. An early cascade of physical and structural damaging events starts immediately post-TBI. This primary injury event initiates a series of neuropathological molecular and biochemical secondary injury sequelae, that last much longer and involve disruption of cerebral metabolism, mitochondrial dysfunction, oxidative stress, neuroinflammation, and can lead to neuronal damage and death. Coupled to these events, recent studies have shown that lifestyle factors, including diet, constitute additional risk affecting TBI consequences and neuropathophysiological outcomes. There exists molecular cross-talk among the pathways involved in neuronal survival, neuroinflammation, and behavioral outcomes, that are shared among western diet (WD) intake and TBI pathophysiology. As such, poor dietary intake would be expected to exacerbate the secondary damage in TBI. Hence, the aim of this review is to discuss the pathophysiological consequences of WD that can lead to the exacerbation of TBI outcomes. We dissect the role of mitochondrial dysfunction, oxidative stress, neuroinflammation, and neuronal injury in this context. We show that currently available data conclude that intake of a diet saturated in fats, pre- or post-TBI, aggravates TBI, precludes recovery from brain trauma, and reduces the response to treatment.
Collapse
Affiliation(s)
- Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, Beirut, Lebanon and Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Hiba Hasan
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | | | - Walaa Fakih
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Fatima Ahmad
- Neuroscience Research Center, Faculty of Medicine, Lebanese University
| | - Kazem Zibara
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Biomedical Sciences, College of Health Sciences, Doha, Qatar
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
5
|
Hou X, Xu H, Chen W, Zhang N, Zhao Z, Fang X, Zhang X, Chen H, Xu Y. Neuroprotective effect of dimethyl fumarate on cognitive impairment induced by ischemic stroke. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:375. [PMID: 32355819 PMCID: PMC7186746 DOI: 10.21037/atm.2020.02.10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Oxidative damage may contribute to post-stroke cognitive impairment (PSCI), but the underlying mechanisms are not fully elucidated. Dimethyl fumarate (DMF) has been used as an antioxidant in multiple sclerosis and psoriasis patients. We hypothesized that redox state was associated with PSCI, and DMF might exert neuroprotective effect against PSCI via anti-oxidative actions. Methods To confirm this hypothesis, we first conducted a clinical study (NCT03519828) that enrolled patients diagnosed with acute ischemic stroke within 48 hours. Data were analyzed based on demographic characteristics, disease history, clinical data and redox state. Logistic regression was used to identify the factors associated with PSCI. Next, a middle cerebral artery occlusion (MCAO) rat model was used to explore the antioxidant capacity and neuroprotective effect of DMF. Furthermore, behavioural experiments, histology and immunostaining, and transmission electron microscopy were also performed. Results Higher baseline NIHSS score, lower GSH/GSSG and T-AOC levels were found in the PSCI patients. Better performance in Morris water maze and shuttle box testing, more regular arranged neurons and Nissl bodies, less TUNEL-positive cells and autophagosomes, lower expression of 4-HNE, and higher expression of GCLM and NQO1 were found in the (DMF + MCAO) rats compared with the MCAO rats. Conclusions These findings suggest that DMF may alleviate PSCI via neuroprotective actions, providing a new therapeutic strategy for PSCI.
Collapse
Affiliation(s)
- Xiaowen Hou
- School of Public Health, China Medical University, Shenyang 110122, China.,Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Haibin Xu
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Wanli Chen
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Nannan Zhang
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Ziai Zhao
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Xin Fang
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Xing Zhang
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Huisheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Yuanyuan Xu
- School of Public Health, China Medical University, Shenyang 110122, China
| |
Collapse
|
6
|
Yang YQ, Zheng YH, Zhang CT, Liang WW, Wang SY, Wang XD, Wang Y, Wang TH, Jiang HQ, Feng HL. Wild-type p53-induced phosphatase 1 down-regulation promotes apoptosis by activating the DNA damage-response pathway in amyotrophic lateral sclerosis. Neurobiol Dis 2019; 134:104648. [PMID: 31676238 DOI: 10.1016/j.nbd.2019.104648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/23/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Accumulation of DNA damage has been detected in the spinal cord of patients as well as in the G93A mouse model of amyotrophic lateral sclerosis (ALS). Wild-type p53-induced phosphatase 1 (Wip1) is a p53-inducible serine/threonine phosphatase that terminates DNA-damage responses via dephosphorylation of DNA-damage response proteins, namely ataxia-telangiectasia mutated (ATM) kinase, checkpoint kinase 2, and p53, thus enhancing cell proliferation. However, the role of Wip1, DNA-damage responses, and their interaction in ALS development remains to be elucidated. Here, we showed that Wip1 expression levels were substantially decreased in ALS motor neurons compared with wild-type controls both in vivo and in vitro. The DNA-damage response was activated in superoxide dismutase 1 (SOD1) G93A-transfected cells. However, increased expression of Wip1 improved cell viability and inhibited the DNA-damage response in mutated SOD1G93A cells. Further studies demonstrated that decreased Wip1 expression reduced cell viability and further activated the DNA-damage response in chronic H2O2-treated NSC34 cells. In contrast, Wip1 promoted cell survival and suppressed DNA damage-induced apoptosis during persistent DNA damage conditions. Over-expression of Wip1 in the central nervous system (CNS) can delay the onset of disease symptoms, extended the survival, decreased MN loss improved motor function and inhibit the DNA-damage response in SOD1 G93A mice. Furthermore, homeodomain-interacting protein kinase 2 (HIPK2) promoted the degradation of Wip1 via the ubiquitin-proteasome system during chronic stress. These findings indicate that persistent accumulation of DNA damage and subsequent chronic activation of the downstream DNA damage-response ATM and p53 pro-apoptotic signaling pathways may trigger neuronal dysfunction and neuronal death in ALS. Wip1 may play a protective role by targeting the DNA-damage response in ALS motor neurons. Importantly, these findings provide a novel direction for therapeutic options for patients with ALS.
Collapse
Affiliation(s)
- Yue-Qing Yang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Yong-Hui Zheng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Chun-Ting Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Wei-Wei Liang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Shu-Yu Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Xu-Dong Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Tian-Hang Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Hong-Quan Jiang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Hong-Lin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China.
| |
Collapse
|
7
|
Bargiela D, Chinnery PF. Mitochondria in neuroinflammation – Multiple sclerosis (MS), leber hereditary optic neuropathy (LHON) and LHON-MS. Neurosci Lett 2019; 710:132932. [DOI: 10.1016/j.neulet.2017.06.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/27/2017] [Indexed: 01/12/2023]
|
8
|
Zhou F, Wang M, Ju J, Wang Y, Liu Z, Zhao X, Yan Y, Yan S, Luo X, Fang Y. Schizandrin A protects against cerebral ischemia-reperfusion injury by suppressing inflammation and oxidative stress and regulating the AMPK/Nrf2 pathway regulation. Am J Transl Res 2019; 11:199-209. [PMID: 30787979 PMCID: PMC6357305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Inflammation and oxidative stress are considered major factors in the pathogenesis of ischemic stroke. Increasing evidence has demonstrated that Schizandrin A (Sch A), a lignin compound isolated from Schisandra chinesnesis, exhibits prominent anti-inflammatory and antioxidant activities. In this study, we investigated the anti-inflammatory and antioxidant effects of Sch A against cerebral ischemia/reperfusion (I/R) injury as well as the underlying molecular mechanisms. Sch A treatment significantly improved the neurological score and reduced infarct volume 24 h after reperfusion. It dose-dependently inhibited the expression of cyclooxygenase-2 and inducible nitric oxide synthase, reduced the release of pro-inflammatory cytokines (tumor necrosis factor-α interleukin [IL]-1β and IL-6), and increased anti-inflammatory cytokines (transforming growth factor-β and interleukin-10). Furthermore, it increased the activity of superoxide dismutase and catalase, decreased reactive oxygen species production and 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine levels. Transcription of nuclear factor erythroid 2-related factor 2 (Nrf2) and downstream genes (heme oxygenase-1 and NAD[P]H: quinone oxidoreductase 1) increased. Knockdown of Nrf2 by siRNA inhibited the neuroprotective effects of Sch A. In addition, Sch A increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) both in vivo and in vitro. Activation of the Nrf2 pathway as well as the protective effects of Sch A in an oxygen and glucose deprivation-induced injury model was abolished by AMPK knockdown. Our study indicates that Sch A protects against cerebral I/R injury by suppressing inflammation and oxidative stress, and that this effect is regulated by the AMPK/Nrf2 pathway.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Neurosurgery, First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
- Department of Neurosurgery, The Affiliated Hospital of Shaanxi University of Chinese MedicineXianyang 712020, Shaanxi, China
| | - Maode Wang
- Department of Neurosurgery, First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Jing Ju
- Operation Room, Xianyang IRICO HospitalXianyang 712000, Shaanxi, China
| | - Yuan Wang
- Combination of Acupuncture and Medicine Innovation Research Center, Shaanxi University of Chinese MedicineXianyang 712046, Shaanxi, China
| | - Zhibin Liu
- Combination of Acupuncture and Medicine Innovation Research Center, Shaanxi University of Chinese MedicineXianyang 712046, Shaanxi, China
| | - Xiaoping Zhao
- Department of Neurosurgery, The Affiliated Hospital of Shaanxi University of Chinese MedicineXianyang 712020, Shaanxi, China
| | - Yongmei Yan
- Department of Cerebropathy, The Affiliated Hospital of Shaanxi University of Chinese MedicineXianyang 712020, Shaanxi, China
| | - Shuguang Yan
- College of Basic Medicine, The Shaanxi University of Chinese MedicineXianyang 712046, Shaanxi, China
| | - Xiaozhong Luo
- Department of Administration, Xianyang IRICO HospitalXianyang 712000, Shaanxi, China
| | - Yongjun Fang
- Department of Neurosurgery, The Affiliated Hospital of Shaanxi University of Chinese MedicineXianyang 712020, Shaanxi, China
| |
Collapse
|
9
|
Abstract
SIGNIFICANCE Oxidative stress increases in the brain with aging and neurodegenerative diseases. Previous work emphasized irreversible oxidative damage in relation to cognitive impairment. This research has evolved to consider a continuum of alterations, from redox signaling to oxidative damage, which provides a basis for understanding the onset and progression of cognitive impairment. This review provides an update on research linking redox signaling to altered function of neural circuits involved in information processing and memory. Recent Advances: Starting in middle age, redox signaling triggers changes in nervous system physiology described as senescent physiology. Hippocampal senescent physiology involves decreased cell excitability, altered synaptic plasticity, and decreased synaptic transmission. Recent studies indicate N-methyl-d-aspartate and ryanodine receptors and Ca2+ signaling molecules as molecular substrates of redox-mediated senescent physiology. CRITICAL ISSUES We review redox homeostasis mechanisms and consider the chemical character of reactive oxygen and nitrogen species and their role in regulating different transmitter systems. In this regard, senescent physiology may represent the co-opting of pathways normally responsible for feedback regulation of synaptic transmission. Furthermore, differences across transmitter systems may underlie differential vulnerability of brain regions and neuronal circuits to aging and disease. FUTURE DIRECTIONS It will be important to identify the intrinsic mechanisms for the shift in oxidative/reductive processes. Intrinsic mechanism will depend on the transmitter system, oxidative stressors, and expression/activity of antioxidant enzymes. In addition, it will be important to identify how intrinsic processes interact with other aging factors, including changes in inflammatory or hormonal signals. Antioxid. Redox Signal. 28, 1724-1745.
Collapse
Affiliation(s)
- Ashok Kumar
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Brittney Yegla
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Thomas C Foster
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida.,2 Genetics and Genomics Program, Genetics Institute, University of Florida , Gainesville, Florida
| |
Collapse
|
10
|
Bylicky MA, Mueller GP, Day RM. Mechanisms of Endogenous Neuroprotective Effects of Astrocytes in Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6501031. [PMID: 29805731 PMCID: PMC5901819 DOI: 10.1155/2018/6501031] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/19/2018] [Indexed: 12/11/2022]
Abstract
Astrocytes, once believed to serve only as "glue" for the structural support of neurons, have been demonstrated to serve critical functions for the maintenance and protection of neurons, especially under conditions of acute or chronic injury. There are at least seven distinct mechanisms by which astrocytes protect neurons from damage; these are (1) protection against glutamate toxicity, (2) protection against redox stress, (3) mediation of mitochondrial repair mechanisms, (4) protection against glucose-induced metabolic stress, (5) protection against iron toxicity, (6) modulation of the immune response in the brain, and (7) maintenance of tissue homeostasis in the presence of DNA damage. Astrocytes support these critical functions through specialized responses to stress or toxic conditions. The detoxifying activities of astrocytes are essential for maintenance of the microenvironment surrounding neurons and in whole tissue homeostasis. Improved understanding of the mechanisms by which astrocytes protect the brain could lead to the development of novel targets for the development of neuroprotective strategies.
Collapse
Affiliation(s)
- Michelle A. Bylicky
- Department of Anatomy, Physiology, and Genetics, The Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Gregory P. Mueller
- Department of Anatomy, Physiology, and Genetics, The Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, The Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
11
|
Pharmacologic Protection of Mitochondrial DNA Integrity May Afford a New Strategy for Suppressing Lung Ischemia-Reperfusion Injury. Ann Am Thorac Soc 2018; 14:S210-S215. [PMID: 28945469 DOI: 10.1513/annalsats.201706-438mg] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lung ischemia-reperfusion (IR) injury contributes to post-transplant complications, including primary graft dysfunction. Decades of reports show that reactive oxygen species generated during lung IR contribute to pulmonary vascular endothelial barrier disruption and edema formation, but the specific target molecule(s) that "sense" injury-inducing oxidant stress to activate signaling pathways culminating in pathophysiologic changes have not been established. This review discusses evidence that mitochondrial DNA (mtDNA) may serve as a molecular sentinel wherein oxidative mtDNA damage functions as an upstream trigger for lung IR injury. First, the mitochondrial genome is considerably more sensitive than nuclear DNA to oxidant stress. Multiple studies suggest that oxidative mtDNA damage could be transduced to physiologic dysfunction by pathways that are either a direct consequence of mtDNA damage per se or involve formation of proinflammatory mtDNA damage-associated molecular patterns. Second, transgenic animals or cells overexpressing components of the base excision DNA repair pathway in mitochondria are resistant to oxidant stress-mediated pathophysiologic effects. Finally, published and preliminary studies show that pharmacologic enhancement of mtDNA repair or mtDNA damage-associated molecular pattern degradation suppresses reactive oxygen species-induced or IR injury in multiple organs, including preclinical models of lung procurement for transplant. Collectively, these findings point to the interesting prospect that pharmacologic enhancement of DNA repair during procurement or ex vivo lung perfusion may increase the availability of lungs for transplant and reduce the IR injury contributing to primary graft dysfunction.
Collapse
|
12
|
Errichiello E, Venesio T. Mitochondrial DNA variants in colorectal carcinogenesis: Drivers or passengers? J Cancer Res Clin Oncol 2017; 143:1905-1914. [PMID: 28393270 DOI: 10.1007/s00432-017-2418-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/03/2017] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Mitochondrial DNA alterations have widely been reported in many age-related degenerative diseases and tumors, including colorectal cancer. In the past few years, the discovery of inter-genomic crosstalk between nucleus and mitochondria has reinforced the role of mitochondrial DNA variants in perturbing this essential signaling pathway and thus indirectly targeting nuclear genes involved in tumorigenic and invasive phenotype. FINDINGS Mitochondrial dysfunction is currently considered a crucial hallmark of carcinogenesis as well as a promising target for anticancer therapy. Mitochondrial DNA alterations include point mutations, deletions, inversions, and copy number variations, but numerous studies investigating their pathogenic role in cancer have provided inconsistent evidence. Furthermore, the biological impact of mitochondrial DNA variants may vary tremendously, depending on the proportion of mutant DNA molecules carried by the neoplastic cells (heteroplasmy). CONCLUSIONS In this review, we discuss the role of different type of mitochondrial DNA alterations in colorectal carcinogenesis and, in particular, we revisit the issue of whether they may be considered as causative driver or simply genuine passenger events. The advent of high-throughput techniques as well as the development of genetic and pharmaceutical interventions for the treatment of mitochondrial dysfunction in colorectal cancer are also explored.
Collapse
Affiliation(s)
- Edoardo Errichiello
- Department of Molecular Medicine, University of Pavia, Via Forlanini 14, 27100, Pavia, Italy.
- Molecular Pathology Laboratory, Unit of Pathology, Candiolo Cancer Institute, FPO-IRCCS, Starda Provinciale 142, Candiolo, 10060, Turin, Italy.
| | - Tiziana Venesio
- Molecular Pathology Laboratory, Unit of Pathology, Candiolo Cancer Institute, FPO-IRCCS, Starda Provinciale 142, Candiolo, 10060, Turin, Italy
| |
Collapse
|
13
|
Wang H, Dharmalingam P, Vasquez V, Mitra J, Boldogh I, Rao KS, Kent TA, Mitra S, Hegde ML. Chronic oxidative damage together with genome repair deficiency in the neurons is a double whammy for neurodegeneration: Is damage response signaling a potential therapeutic target? Mech Ageing Dev 2016; 161:163-176. [PMID: 27663141 DOI: 10.1016/j.mad.2016.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
Abstract
A foremost challenge for the neurons, which are among the most oxygenated cells, is the genome damage caused by chronic exposure to endogenous reactive oxygen species (ROS), formed as cellular respiratory byproducts. Strong metabolic activity associated with high transcriptional levels in these long lived post-mitotic cells render them vulnerable to oxidative genome damage, including DNA strand breaks and mutagenic base lesions. There is growing evidence for the accumulation of unrepaired DNA lesions in the central nervous system (CNS) during accelerated aging and progressive neurodegeneration. Several germ line mutations in DNA repair or DNA damage response (DDR) signaling genes are uniquely manifested in the phenotype of neuronal dysfunction and are etiologically linked to many neurodegenerative disorders. Studies in our lab and elsewhere revealed that pro-oxidant metals, ROS and misfolded amyloidogenic proteins not only contribute to genome damage in CNS, but also impede their repair/DDR signaling leading to persistent damage accumulation, a common feature in sporadic neurodegeneration. Here, we have reviewed recent advances in our understanding of the etiological implications of DNA damage vs. repair imbalance, abnormal DDR signaling in triggering neurodegeneration and potential of DDR as a target for the amelioration of neurodegenerative diseases.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Prakash Dharmalingam
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Velmarini Vasquez
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, Panama; Department of Biotechnology, Acharya Nagarjuna University, Guntur, AP, India; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - K S Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, Panama
| | - Thomas A Kent
- Department of Neurology, Baylor College of Medicine and Center for Translational Research on Inflammatory Diseases Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Medical College of Cornell University, New York, USA
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA; Weill Medical College of Cornell University, New York, USA.
| |
Collapse
|
14
|
Baez E, Echeverria V, Cabezas R, Ávila-Rodriguez M, Garcia-Segura LM, Barreto GE. Protection by Neuroglobin Expression in Brain Pathologies. Front Neurol 2016; 7:146. [PMID: 27672379 PMCID: PMC5018480 DOI: 10.3389/fneur.2016.00146] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/29/2016] [Indexed: 11/21/2022] Open
Abstract
Astrocytes play an important role in physiological, metabolic, and structural functions, and when impaired, they can be involved in various pathologies including Alzheimer, focal ischemic stroke, and traumatic brain injury. These disorders involve an imbalance in the blood flow and nutrients such as glucose and lactate, leading to biochemical and molecular changes that cause neuronal damage, which is followed by loss of cognitive and motor functions. Previous studies have shown that astrocytes are more resilient than neurons during brain insults as a consequence of their more effective antioxidant systems, transporters, and enzymes, which made them less susceptible to excitotoxicity. In addition, astrocytes synthesize and release different protective molecules for neurons, including neuroglobin, a member of the globin family of proteins. After brain injury, neuroglobin expression is induced in astrocytes. Since neuroglobin promotes neuronal survival, its increased expression in astrocytes after brain injury may represent an endogenous neuroprotective mechanism. Here, we review the role of neuroglobin in the central nervous system, its relationship with different pathologies, and the role of different factors that regulate its expression in astrocytes.
Collapse
Affiliation(s)
- Eliana Baez
- Departamento de Nutrición y Bioquimica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | | | - Ricardo Cabezas
- Departamento de Nutrición y Bioquimica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Marco Ávila-Rodriguez
- Departamento de Nutrición y Bioquimica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | | | - George E. Barreto
- Departamento de Nutrición y Bioquimica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
15
|
Wisnovsky S, Jean SR, Liyanage S, Schimmer A, Kelley SO. Mitochondrial DNA repair and replication proteins revealed by targeted chemical probes. Nat Chem Biol 2016; 12:567-73. [DOI: 10.1038/nchembio.2102] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/24/2016] [Indexed: 01/16/2023]
|
16
|
Besson MT, Alegría K, Garrido-Gerter P, Barros LF, Liévens JC. Enhanced neuronal glucose transporter expression reveals metabolic choice in a HD Drosophila model. PLoS One 2015; 10:e0118765. [PMID: 25761110 PMCID: PMC4356621 DOI: 10.1371/journal.pone.0118765] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022] Open
Abstract
Huntington’s disease is a neurodegenerative disorder caused by toxic insertions of polyglutamine residues in the Huntingtin protein and characterized by progressive deterioration of cognitive and motor functions. Altered brain glucose metabolism has long been suggested and a possible link has been proposed in HD. However, the precise function of glucose transporters was not yet determined. Here, we report the effects of the specifically-neuronal human glucose transporter expression in neurons of a Drosophila model carrying the exon 1 of the human huntingtin gene with 93 glutamine repeats (HQ93). We demonstrated that overexpression of the human glucose transporter in neurons ameliorated significantly the status of HD flies by increasing their lifespan, reducing their locomotor deficits and rescuing eye neurodegeneration. Then, we investigated whether increasing the major pathways of glucose catabolism, glycolysis and pentose-phosphate pathway (PPP) impacts HD. To mimic increased glycolytic flux, we overexpressed phosphofructokinase (PFK) which catalyzes an irreversible step in glycolysis. Overexpression of PFK did not affect HQ93 fly survival, but protected from photoreceptor loss. Overexpression of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the PPP, extended significantly the lifespan of HD flies and rescued eye neurodegeneration. Since G6PD is able to synthesize NADPH involved in cell survival by maintenance of the redox state, we showed that tolerance to experimental oxidative stress was enhanced in flies co-expressing HQ93 and G6PD. Additionally overexpressions of hGluT3, G6PD or PFK were able to circumvent mitochondrial deficits induced by specific silencing of genes necessary for mitochondrial homeostasis. Our study confirms the involvement of bioenergetic deficits in HD course; they can be rescued by specific expression of a glucose transporter in neurons. Finally, the PPP and, to a lesser extent, the glycolysis seem to mediate the hGluT3 protective effects, whereas, in addition, the PPP provides increased protection to oxidative stress.
Collapse
Affiliation(s)
- Marie Thérèse Besson
- Aix-Marseille Université, CNRS, CRN2M-UMR7286, 13344 Marseille cedex 15, Marseille, France
| | - Karin Alegría
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, Chile
| | - Pamela Garrido-Gerter
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - Jean-Charles Liévens
- Aix-Marseille Université, CNRS, CRN2M-UMR7286, 13344 Marseille cedex 15, Marseille, France
| |
Collapse
|
17
|
Chu TH, Guo A, Wu W. Down-regulation of apurinic/apyrimidinic endonuclease 1 (APE1) in spinal motor neurones under oxidative stress. Neuropathol Appl Neurobiol 2015; 40:435-51. [PMID: 23808792 DOI: 10.1111/nan.12071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 06/25/2013] [Indexed: 12/24/2022]
Abstract
AIM Apurinic/apyrimidinic endonuclease 1 (APE1) is an intermediate enzyme in base excision repair which is important for removing damaged nucleotides under normal and pathological conditions. Accumulation of damaged bases causes genome instability and jeopardizes cell survival. Our study is to examine APE1 regulation under oxidative stress in spinal motor neurones which are vulnerable to oxidative insult. METHODS We challenged the motor neurone-like cell line NSC-34 with hydrogen peroxide and delineated APE1 function by applying various inhibitors. We also examined the expression of APE1 in spinal motor neurones after spinal root avulsion in adult rats. RESULTS We showed that hydrogen peroxide induced APE1 down-regulation and cell death in a differentiated motor neurone-like cell line. Inhibiting the two functional domains of APE1, namely, DNA repair and redox domains potentiated hydrogen peroxide induced cell death. We further showed that p53 phosphorylation early after hydrogen peroxide treatment might contribute to the down-regulation of APE1. Our in vivo results similarly showed that APE1 was down-regulated after root avulsion injury in spinal motor neurones. Delay of motor neurone death suggested that APE1 might not cause immediate cell death but render motor neurones vulnerable to further oxidative insults. CONCLUSION We conclude that spinal motor neurones down-regulate APE1 upon oxidative stress. This property renders motor neurones susceptible to continuous challenge of oxidative stress in pathological conditions.
Collapse
Affiliation(s)
- Tak-Ho Chu
- Department of Anatomy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong, China; Research Center of Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | |
Collapse
|
18
|
Gao R, Liu Y, Silva-Fernandes A, Fang X, Paulucci-Holthauzen A, Chatterjee A, Zhang HL, Matsuura T, Choudhary S, Ashizawa T, Koeppen AH, Maciel P, Hazra TK, Sarkar PS. Inactivation of PNKP by mutant ATXN3 triggers apoptosis by activating the DNA damage-response pathway in SCA3. PLoS Genet 2015; 11:e1004834. [PMID: 25590633 PMCID: PMC4295939 DOI: 10.1371/journal.pgen.1004834] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 10/16/2014] [Indexed: 12/30/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an untreatable autosomal dominant neurodegenerative disease, and the most common such inherited ataxia worldwide. The mutation in SCA3 is the expansion of a polymorphic CAG tri-nucleotide repeat sequence in the C-terminal coding region of the ATXN3 gene at chromosomal locus 14q32.1. The mutant ATXN3 protein encoding expanded glutamine (polyQ) sequences interacts with multiple proteins in vivo, and is deposited as aggregates in the SCA3 brain. A large body of literature suggests that the loss of function of the native ATNX3-interacting proteins that are deposited in the polyQ aggregates contributes to cellular toxicity, systemic neurodegeneration and the pathogenic mechanism in SCA3. Nonetheless, a significant understanding of the disease etiology of SCA3, the molecular mechanism by which the polyQ expansions in the mutant ATXN3 induce neurodegeneration in SCA3 has remained elusive. In the present study, we show that the essential DNA strand break repair enzyme PNKP (polynucleotide kinase 3'-phosphatase) interacts with, and is inactivated by, the mutant ATXN3, resulting in inefficient DNA repair, persistent accumulation of DNA damage/strand breaks, and subsequent chronic activation of the DNA damage-response ataxia telangiectasia-mutated (ATM) signaling pathway in SCA3. We report that persistent accumulation of DNA damage/strand breaks and chronic activation of the serine/threonine kinase ATM and the downstream p53 and protein kinase C-δ pro-apoptotic pathways trigger neuronal dysfunction and eventually neuronal death in SCA3. Either PNKP overexpression or pharmacological inhibition of ATM dramatically blocked mutant ATXN3-mediated cell death. Discovery of the mechanism by which mutant ATXN3 induces DNA damage and amplifies the pro-death signaling pathways provides a molecular basis for neurodegeneration due to PNKP inactivation in SCA3, and for the first time offers a possible approach to treatment.
Collapse
Affiliation(s)
- Rui Gao
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yongping Liu
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Anabela Silva-Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s PT Government Associate Laboratory, Braga/Guimarặes, Portugal
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Adriana Paulucci-Holthauzen
- Department of Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Arpita Chatterjee
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hang L. Zhang
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tohru Matsuura
- Department of Neurology, Jichi Medical School, Shimotsuke, Japan
| | - Sanjeev Choudhary
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tetsuo Ashizawa
- Department of Neurology and McNight Brain Research Institute, University of Florida, Gainesville, Florida, United States of America
| | - Arnulf H. Koeppen
- Department of Neurology, Albany Stratton VA Medical Center, Albany, New York, United States of America
| | - Patricia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s PT Government Associate Laboratory, Braga/Guimarặes, Portugal
| | - Tapas K. Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Partha S. Sarkar
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
19
|
Salminen LE, Paul RH. Oxidative stress and genetic markers of suboptimal antioxidant defense in the aging brain: a theoretical review. Rev Neurosci 2014; 25:805-19. [PMID: 25153586 PMCID: PMC6378111 DOI: 10.1515/revneuro-2014-0046] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022]
Abstract
Normal aging involves a gradual breakdown of physiological processes that leads to a decline in cognitive functions and brain integrity, yet the onset and progression of decline are variable among older individuals. While many biological changes may contribute to this degree of variability, oxidative stress is a key mechanism of the aging process that can cause direct damage to cellular architecture within the brain. Oligodendrocytes are at a high risk for oxidative damage due to their role in myelin maintenance and production and limited repair mechanisms, suggesting that white matter may be particularly vulnerable to oxidative activity. Antioxidant defense enzymes within the brain, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione-S-transferase (GST), are crucial for breaking down the harmful end products of oxidative phosphorylation. Previous studies have revealed that allele variations of polymorphisms that encode these antioxidants are associated with abnormalities in SOD, CAT, GPx, and GST activity in the central nervous system. This review will focus on the role of oxidative stress in the aging brain and the impact of decreased antioxidant defense on brain integrity and cognitive function. Directions for future research investigations of antioxidant defense genes will also be discussed.
Collapse
Affiliation(s)
- Lauren E Salminen
- Department of Psychology, University of Missouri-Saint Louis, 1 University Boulevard, Stadler Hall 442 A, St. Louis, MO 63121, USA
| | - Robert H Paul
- Department of Psychology, University of Missouri-Saint Louis, 1 University Boulevard, Stadler Hall 442 A, St. Louis, MO 63121, USA
| |
Collapse
|
20
|
Barzilai A. The interrelations between malfunctioning DNA damage response (DDR) and the functionality of the neuro-glio-vascular unit. DNA Repair (Amst) 2013; 12:543-57. [DOI: 10.1016/j.dnarep.2013.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Mitochondrial matrix P53 sensitizes cells to oxidative stress. Mitochondrion 2013; 13:277-81. [PMID: 23499753 DOI: 10.1016/j.mito.2013.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 12/12/2022]
Abstract
A mitochondrial matrix-specific p53 construct (termed p53-290) in HepG2 cells was utilized to determine the impact of p53 in the mitochondrial matrix following oxidative stress. H₂O₂ exposure reduced cellular proliferation similarly in both p53-290 and vector cells, and p53-290 cells demonstrating decreased cell viability at 1mM H₂O₂ (~85% viable). Mitochondrial DNA (mtDNA) abundance was decreased in a dose-dependent manner in p53-290 cells while no change was observed in vector cells. Oximetric analysis revealed reduced maximal respiration and reserve capacity in p53-290 cells. Our results demonstrate that mitochondrial matrix p53 sensitizes cells to oxidative stress by reducing mtDNA abundance and mitochondrial function.
Collapse
|
22
|
Avila MF, Cabezas R, Torrente D, Gonzalez J, Morales L, Alvarez L, Capani F, Barreto GE. Novel interactions of GRP78: UPR and estrogen responses in the brain. Cell Biol Int 2013; 37:521-32. [DOI: 10.1002/cbin.10058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/22/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Marco Fidel Avila
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Ricardo Cabezas
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Daniel Torrente
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Janneth Gonzalez
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Ludis Morales
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Lisandro Alvarez
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), Facultad de Medicina, UBA-CONICET; Marcelo T. de Alvear 2270, C1122AAJ Buenos Aires; Argentina
| | - Francisco Capani
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), Facultad de Medicina, UBA-CONICET; Marcelo T. de Alvear 2270, C1122AAJ Buenos Aires; Argentina
| | - George E. Barreto
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| |
Collapse
|
23
|
Gebb SA, Decoux A, Waggoner A, Wilson GL, Gillespie MN. Mitochondrial DNA damage mediates hyperoxic dysmorphogenesis in rat fetal lung explants. Neonatology 2013; 103:91-7. [PMID: 23154780 PMCID: PMC3568246 DOI: 10.1159/000342632] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/14/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Numerous studies in cultured cells indicate that damage to mitochondrial DNA (mtDNA) dictates cellular responses to oxidant stress, yet the consequences of mtDNA damage have not been studied directly in the preterm lung. OBJECTIVE We sought to determine whether hyperoxia-induced fetal lung dysmorphogenesis is linked to mtDNA damage and establish mtDNA repair as a potential therapeutic approach for treating lung dysplasia in the preterm neonate. METHODS Hyperoxia-induced mtDNA damage was assessed by quantitative alkaline gel electrophoresis in normoxic (3% O2) and hyperoxic (21% O2) fetal rat lung explants. A fusion protein construct targeting the DNA repair enzyme endonuclease III (Endo III) to the mitochondria was used to augment mtDNA repair. Fetal lung branching and surfactant protein C (SFPTC) were assessed in these tissues. RESULTS Hyperoxia induced mtDNA damage in lung explants and was accompanied by impaired branching morphogenesis and decreased SFPTC mRNA expression. Treatment of lung explants with Endo III fusion protein prevented hyperoxia-induced mtDNA damage and restored normal branching morphogenesis and SFPTC mRNA expression. CONCLUSION These findings support the concept that mtDNA governs cellular responses to oxidant stress in the fetal lung and suggest that modulation of mtDNA repair is a potential pharmacologic strategy in the prevention of hyperoxic lung injury.
Collapse
Affiliation(s)
- Sarah A Gebb
- Department of Cell Biology and Neuroscience, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| | | | | | | | | |
Collapse
|
24
|
Mitochondrial Genetics of Retinal Disease. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Neuroprotective potential of epigallo catechin-3-gallate in PC-12 cells. Neurochem Res 2012; 38:486-93. [DOI: 10.1007/s11064-012-0940-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/05/2012] [Accepted: 11/23/2012] [Indexed: 12/15/2022]
|
26
|
Eldridge A, Fan M, Woloschak G, Grdina DJ, Chromy BA, Li JJ. Manganese superoxide dismutase interacts with a large scale of cellular and mitochondrial proteins in low-dose radiation-induced adaptive radioprotection. Free Radic Biol Med 2012; 53:1838-47. [PMID: 23000060 PMCID: PMC3494792 DOI: 10.1016/j.freeradbiomed.2012.08.589] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/24/2012] [Accepted: 08/28/2012] [Indexed: 11/18/2022]
Abstract
The cellular adaptive response to certain low-level genotoxic stresses, including exposure to low-dose ionizing radiation (LDIR), shows promise as a tool to enhance radioprotection in normal cells but not in tumor cells. Manganese superoxide dismutase (MnSOD), a fundamental mitochondrial antioxidant in mammalian cells, plays a key role in the LDIR-induced adaptive response. In this study, we aimed to elucidate the signaling network associated with MnSOD-induced radiation protection. A MnSOD-interacting protein profile was established in LDIR-treated human skin cells. Human skin keratinocytes (HK18) were irradiated with a single dose of LDIR (10 cGy X-ray) and the cell lysates were immunoprecipitated using α-MnSOD and applied to two different gel-based proteomic experiments followed by mass spectrometry for protein identification. Analysis of the profiles of MnSOD-interacting partners before and after LDIR detected various patterns of MnSOD protein-protein interactions in response to LDIR. Interestingly, many of the MnSOD-interacting proteins are known to have functions related to mitochondrial regulation of cell metabolism, apoptosis, and DNA repair. These results provide evidence indicating that in addition to the enzymatic action of detoxifying superoxide, the antioxidant MnSOD may function as a signaling regulator in stress-induced adaptive protection through cell survival pathways.
Collapse
Affiliation(s)
- Angela Eldridge
- Department of Radiation Oncology, University of California at Davis School of Medicine, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
27
|
Marques-Aleixo I, Oliveira PJ, Moreira PI, Magalhães J, Ascensão A. Physical exercise as a possible strategy for brain protection: Evidence from mitochondrial-mediated mechanisms. Prog Neurobiol 2012; 99:149-62. [DOI: 10.1016/j.pneurobio.2012.08.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 07/14/2012] [Accepted: 08/17/2012] [Indexed: 01/01/2023]
|
28
|
Kagias K, Nehammer C, Pocock R. Neuronal responses to physiological stress. Front Genet 2012; 3:222. [PMID: 23112806 PMCID: PMC3481051 DOI: 10.3389/fgene.2012.00222] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/05/2012] [Indexed: 12/15/2022] Open
Abstract
Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, due to an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level.
Collapse
Affiliation(s)
- Konstantinos Kagias
- Biotech Research and Innovation Centre, University of Copenhagen Copenhagen, Denmark
| | | | | |
Collapse
|
29
|
Hunter SE, Gustafson MA, Margillo KM, Lee SA, Ryde IT, Meyer JN. In vivo repair of alkylating and oxidative DNA damage in the mitochondrial and nuclear genomes of wild-type and glycosylase-deficient Caenorhabditis elegans. DNA Repair (Amst) 2012; 11:857-63. [PMID: 22959841 DOI: 10.1016/j.dnarep.2012.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/04/2012] [Accepted: 08/06/2012] [Indexed: 12/28/2022]
Abstract
Base excision repair (BER) is an evolutionarily conserved DNA repair pathway that is critical for repair of many of the most common types of DNA damage generated both by endogenous metabolic pathways and exposure to exogenous stressors such as pollutants. Caenorhabditis elegans is an increasingly important model organism for the study of DNA damage-related processes including DNA repair, genotoxicity, and apoptosis, but BER is not well understood in this organism, and has not previously been measured in vivo. We report robust BER in the nuclear genome and slightly slower damage removal from the mitochondrial genome; in both cases the removal rates are comparable to those observed in mammals. However we could detect no deficiency in BER in the nth-1 strain, which carries a deletion in the only glycosylase yet described in C. elegans that repairs oxidative DNA damage. We also failed to detect increased lethality or growth inhibition in nth-1 nematodes after exposure to oxidative or alkylating damage, suggesting the existence of at least one additional as-yet undetected glycosylase.
Collapse
Affiliation(s)
- Senyene E Hunter
- Nicholas School of the Environment and Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC 27708-0328, USA
| | | | | | | | | | | |
Collapse
|
30
|
Cabezas R, El-Bachá RS, González J, Barreto GE. Mitochondrial functions in astrocytes: neuroprotective implications from oxidative damage by rotenone. Neurosci Res 2012; 74:80-90. [PMID: 22902554 DOI: 10.1016/j.neures.2012.07.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 12/21/2022]
Abstract
Mitochondria are critical for cell survival and normal development, as they provide energy to the cell, buffer intracellular calcium, and regulate apoptosis. They are also major targets of oxidative stress, which causes bioenergetics failure in astrocytes through the activation of different mechanisms and production of oxidative molecules. This review provides an insightful overview of the recent discoveries and strategies for mitochondrial protection in astrocytes. We also discuss the importance of rotenone as an experimental approach for assessing oxidative stress in the brain and delineate some molecular strategies that enhance mitochondrial function in astrocytes as a promising strategy against brain damage.
Collapse
Affiliation(s)
- Ricardo Cabezas
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | | | | | | |
Collapse
|
31
|
Li M, Vascotto C, Xu S, Dai N, Qing Y, Zhong Z, Tell G, Wang D. Human AP endonuclease/redox factor APE1/ref-1 modulates mitochondrial function after oxidative stress by regulating the transcriptional activity of NRF1. Free Radic Biol Med 2012; 53:237-48. [PMID: 22580151 DOI: 10.1016/j.freeradbiomed.2012.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/06/2012] [Accepted: 04/06/2012] [Indexed: 12/11/2022]
Abstract
Maintenance of mitochondrial functionality largely depends on nuclear transcription because most mitochondrial proteins are encoded by the nuclear genome and transported to the mitochondria. Nuclear respiration factor 1 (NRF1) plays a crucial role in regulating the expression of a broad range of mitochondrial genes in the nucleus in response to cellular oxidative stress. However, little is known about the redox regulatory mechanism of the transcriptional activity of NRF1. In this study, we show that the human apurinic/apyrimidinic endonuclease/redox factor (APE1/Ref-1) is involved in mitochondrial function regulation by modulating the DNA-binding activity of NRF1. Our results show that both APE1 expression level and its redox activity are essential for maintenance of the mitochondrial function after tert-butylhydroperoxide-induced oxidative stress. Upon knocking down or redox mutation of APE1, NRF1 DNA-binding activity was impaired and, consequently, the expression of its downstream genes, including Tfam, Cox6c, and Tomm22, was significantly reduced. NRF1 knockdown blocked the restoration of mitochondrial function by APE1 overexpression, which further suggests APE1 regulates mitochondrial function through an NRF1-dependent pathway. Taken together, our results reveal APE1 as a new coactivator of NRF1, which highlights an additional regulatory role of APE1 in maintenance of mitochondrial functionality.
Collapse
Affiliation(s)
- Mengxia Li
- Cancer Center and Department of Pathology, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Mao P, Gallagher P, Nedungadi S, Manczak M, shirendeb UP, Kohama SG, Ferguson B, Park BS, Reddy PH. Mitochondrial DNA deletions and differential mitochondrial DNA content in Rhesus monkeys: implications for aging. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1822:111-9. [PMID: 22056405 PMCID: PMC3249524 DOI: 10.1016/j.bbadis.2011.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 10/19/2011] [Accepted: 10/19/2011] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to determine the relationship between mitochondrial DNA (mtDNA) deletions, mtDNA content and aging in rhesus monkeys. Using 2 sets of specific primers, we amplified an 8 kb mtDNA fragment covering a common 5.7 kb deletion and the entire 16.5 kb mitochondrial genome in the brain and buffy-coats of young and aged monkeys. We studied a total of 66 DNA samples: 39 were prepared from a buffy-coat and 27 were prepared from occipital cortex tissues. The mtDNA data were assessed using a permutation test to identify differences in mtDNA, in the different monkey groups. Using real-time RT-PCR strategy, we also assessed both mtDNA and nuclear DNA levels for young, aged and male and female monkeys. We found a 5.7 kb mtDNA deletion in 81.8% (54 of 66) of the total tested samples. In the young group of buffy-coat DNA, we found 5.7 kb deletions in 7 of 17 (41%), and in the aged group, we found 5.7 kb deletions in 12 of 22 (54%), suggesting that the prevalence of mtDNA deletions is related to age. We found decreased mRNA levels of mtDNA in aged monkeys relative to young monkeys. The increases in mtDNA deletions and mtDNA levels in aged rhesus monkeys suggest that damaged DNA accumulates as rhesus monkeys age and these altered mtDNA changes may have physiological relevance to compensate decreased mitochondrial function.
Collapse
Affiliation(s)
- Peizhong Mao
- Neuroscience Division, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006
| | - Patience Gallagher
- Neuroscience Division, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006
| | - Samira Nedungadi
- Neuroscience Division, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006
| | - Maria Manczak
- Neuroscience Division, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006
| | - Ulziibat P. shirendeb
- Neuroscience Division, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006
| | - Steven G. Kohama
- Neuroscience Division, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006
| | - Betsy Ferguson
- Neuroscience Division, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006
| | - Byung S. Park
- Byung S. Park, Division of Biostatistics, Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR 97239
| | - P. Hemachandra Reddy
- Neuroscience Division, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97201
| |
Collapse
|
33
|
Abstract
Genome walking is a molecular procedure for the direct identification of nucleotide sequences from purified genomes. The only requirement is the availability of a known nucleotide sequence from which to start. Several genome walking methods have been developed in the last 20 years, with continuous improvements added to the first basic strategies, including the recent coupling with next generation sequencing technologies. This review focuses on the use of genome walking strategies in several aspects of the study of eukaryotic genomes. In a first part, the analysis of the numerous strategies available is reported. The technical aspects involved in genome walking are particularly intriguing, also because they represent the synthesis of the talent, the fantasy and the intelligence of several scientists. Applications in which genome walking can be employed are systematically examined in the second part of the review, showing the large potentiality of this technique, including not only the simple identification of nucleotide sequences but also the analysis of large collections of mutants obtained from the insertion of DNA of viral origin, transposons and transfer DNA (T-DNA) constructs. The enormous amount of data obtained indicates that genome walking, with its large range of applicability, multiplicity of strategies and recent developments, will continue to have much to offer for the rapid identification of unknown sequences in several fields of genomic research.
Collapse
Affiliation(s)
- Claudia Leoni
- Department of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | | | | | | | | |
Collapse
|
34
|
Abstract
DNA strand break repair is essential for the prevention of multiple human diseases, particularly those which feature neuropathology. To further understand the pathogenesis of these syndromes, we recently developed animal models in which the DNA single-strand break repair (SSBR) components, XRCC1 and DNA Ligase III (LIG3), were inactivated in the developing nervous system. Although biochemical evidence suggests that inactivation of XRCC1 and LIG3 should share common biological defects, we found profound phenotypic differences between these two models, implying distinct biological roles for XRCC1 and LIG3 during DNA repair. Rather than a key role in nuclear DNA repair, we found LIG3 function was central to mitochondrial DNA maintenance. Instead, our data indicate that DNA Ligase 1 is the main DNA ligase for XRCC1-mediated DNA repair. These studies refine our understanding of DNA SSBR and the etiology of neurological disease.
Collapse
Affiliation(s)
- Sachin Katyal
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN USA
| | | |
Collapse
|
35
|
Svilar D, Goellner EM, Almeida KH, Sobol RW. Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal 2011; 14:2491-507. [PMID: 20649466 PMCID: PMC3096496 DOI: 10.1089/ars.2010.3466] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nuclear and mitochondrial genomes are under continuous assault by a combination of environmentally and endogenously derived reactive oxygen species, inducing the formation and accumulation of mutagenic, toxic, and/or genome-destabilizing DNA lesions. Failure to resolve these lesions through one or more DNA-repair processes is associated with genome instability, mitochondrial dysfunction, neurodegeneration, inflammation, aging, and cancer, emphasizing the importance of characterizing the pathways and proteins involved in the repair of oxidative DNA damage. This review focuses on the repair of oxidative damage-induced lesions in nuclear and mitochondrial DNA mediated by the base excision repair (BER) pathway in mammalian cells. We discuss the multiple BER subpathways that are initiated by one of 11 different DNA glycosylases of three subtypes: (a) bifunctional with an associated β-lyase activity; (b) monofunctional; and (c) bifunctional with an associated β,δ-lyase activity. These three subtypes of DNA glycosylases all initiate BER but yield different chemical intermediates and hence different BER complexes to complete repair. Additionally, we briefly summarize alternate repair events mediated by BER proteins and the role of BER in the repair of mitochondrial DNA damage induced by ROS. Finally, we discuss the relation of BER and oxidative DNA damage in the onset of human disease.
Collapse
Affiliation(s)
- David Svilar
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
36
|
Lin H, Xu H, Liang FQ, Liang H, Gupta P, Havey AN, Boulton ME, Godley BF. Mitochondrial DNA damage and repair in RPE associated with aging and age-related macular degeneration. Invest Ophthalmol Vis Sci 2011; 52:3521-9. [PMID: 21273542 DOI: 10.1167/iovs.10-6163] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mitochondrial DNA (mtDNA) damage may be associated with age-related diseases, such as age-related macular degeneration (AMD). The present study was designed to test whether the frequency of mtDNA damage, heteroplasmic mtDNA mutations, and repair capacity correlate with progression of AMD. METHODS Macular and peripheral RPE cells were isolated and cultured from human donor eyes with and without AMD. The stages of AMD were graded according to the Minnesota Grading System. Confluent primary RPE cells were used to test the frequency of endogenous mtDNA damage by quantitative PCR. Mutation detection kits were used to detect heteroplasmic mtDNA mutation. To test the mtDNA repair capacity, cultured RPE cells were allowed to recover for 3 and 6 hours after exposure to H(2)O(2), and repair was assessed by quantitative PCR. The levels of human OGG1 protein, which is associated with mtDNA repair, were analyzed by Western blot. RESULTS This study showed that mtDNA damage increased with aging and that more lesions occurred in RPE cells from the macular region than the periphery. Furthermore, mtDNA repair capacity decreased with aging, with less mtDNA repair capacity in the macular region compared with the periphery in samples from aged subjects. Most interestingly, the mtDNA damage was positively correlated with the grading level of AMD, whereas repair capacity was negatively correlated. In addition, more mitochondrial heteroplasmic mutations were detected in eyes with AMD. CONCLUSIONS These data show macula-specific increases in mtDNA damage, heteroplasmic mutations, and diminished repair that are associated with aging and AMD severity.
Collapse
Affiliation(s)
- Haijiang Lin
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas 77555-1106, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Germann MW, Johnson CN, Spring AM. Recognition of Damaged DNA: Structure and Dynamic Markers. Med Res Rev 2010; 32:659-83. [DOI: 10.1002/med.20226] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Markus W. Germann
- Department of Chemistry; Georgia State University; Atlanta Georgia 30302
- Department of Biology and the Neuroscience Institute; Georgia State University; Atlanta Georgia 30302
| | | | | |
Collapse
|
38
|
Abstract
Deoxyribonucleic acid (DNA) damage has been implicated in ageing and neurodegenerative disorders including Alzheimer's disease (AD) for a few decades. Although it is an established finding, yet there are limited studies on DNA damage. In both nucleus and mitochondria, DNA damage is primarily free radical mediated. It has been proven that mitochondrial DNA is more vulnerable to damage compared to the nuclear DNA. A few studies summarized in this review throw light on the mechanisms of free radical mediated DNA damage and impairment of DNA repair mechanisms in AD. There is a growing need to initiate studies on DNA damage and repair and unravel the molecular underpinnings entailed in the etiopathogenesis of the disease. The outcome of such studies substantiates the corner stone streamlined to employ therapeutic strategies.
Collapse
Affiliation(s)
- M Obulesu
- Department of Biotechnology, Srikrishnadevaraya University, Anantapur, Andhra Pradesh, India
| | | |
Collapse
|
39
|
|
40
|
Zhang Y, Zhang L, Zhang L, Bai J, Ge H, Liu P. Expression changes in DNA repair enzymes and mitochondrial DNA damage in aging rat lens. Mol Vis 2010; 16:1754-63. [PMID: 20808729 PMCID: PMC2929939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 08/24/2010] [Indexed: 12/04/2022] Open
Abstract
PURPOSE To determine if there is increased mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) damage with age in the lenses of rats. We also explored the immunolocalization of 8-oxoguanine DNA glycosylase 1 (OGG1) and AP endonuclease 1 (APE1) in the lens and studied three of the predominant base excision repair (BER) enzymes: OGG1, APE1, and DNA polymerase gamma (Polgamma). METHODS The methods used by this study include the selection of twenty-six male Wistar rats in each group (2 months old and 26 months old) and fourteen male Wistar rats in the 16 months old group. The total DNA of lenses were isolated and the DNA genome was amplified by a long extension-polymerase chain reaction (LX-PCR). We examined mtDNA and nDNA damage with a quantitative polymerase chain reaction (QPCR) assay that was combined with EvaGreen. We also studied the gene expression of mRNA and protein in these key BER enzymes with real time-polymerase chain reaction (RT-PCR) and western blot analysis. RESULTS There was an increase in oxidative DNA damage, which exists primarily in the mtDNA. The amount of 8-hydroxy-2'-deoxy-guanosine (8-OHdG) in DNA was significantly increased with age. Our experiments demonstrated that the gene expression of mRNA and protein in these key BER enzymes decreased with age. OGG1 and APE1 were localized by immunohistochemistry within lens epithelial cells (LECs) and superficial fiber cells. CONCLUSIONS The gene expression of mRNA and protein in these key BER enzymes decreased with age, which caused a decrease in the repairing capability of the mtDNA and the accumulation of mtDNA damage. The increased mtDNA damage and decreased expression of BER enzymes may cause a "vicious cycle" of oxidative stress that contributes to the accumulation of mtDNA mutations and age-related cataract pathogenesis.
Collapse
Affiliation(s)
- Yi Zhang
- Eye hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lu Zhang
- Eye hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lan Zhang
- Cardiovascular medicine, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jie Bai
- Eye hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - HongYan Ge
- Eye hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ping Liu
- Eye hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
41
|
|
42
|
Mitochondrial base excision repair pathway failed to respond to status epilepticus induced by pilocarpine. Neurosci Lett 2010; 474:22-5. [DOI: 10.1016/j.neulet.2010.02.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 12/11/2022]
|
43
|
Mao P, Reddy PH. Is multiple sclerosis a mitochondrial disease? BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:66-79. [PMID: 19607913 PMCID: PMC2790545 DOI: 10.1016/j.bbadis.2009.07.002] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is a relatively common and etiologically unknown disease with no cure. It is the leading cause of neurological disability in young adults, affecting over two million people worldwide. Traditionally, MS has been considered a chronic, inflammatory disorder of the central white matter in which ensuing demyelination results in physical disability. Recently, MS has become increasingly viewed as a neurodegenerative disorder in which axonal injury, neuronal loss, and atrophy of the central nervous system leads to permanent neurological and clinical disability. In this article, we discuss the latest developments on MS research, including etiology, pathology, genetic association, EAE animal models, mechanisms of neuronal injury and axonal transport, and therapeutics. In this article, we also focus on the mechanisms of mitochondrial dysfunction that are involved in MS, including mitochondrial DNA defects, and mitochondrial structural/functional changes.
Collapse
Affiliation(s)
- Peizhong Mao
- Neurogenetics Laboratory, Neuroscience Division, Oregon National Primate Research Center, West Campus, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - P. Hemachandra Reddy
- Neurogenetics Laboratory, Neuroscience Division, Oregon National Primate Research Center, West Campus, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
44
|
Waldbaum S, Patel M. Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res 2010; 88:23-45. [PMID: 19850449 PMCID: PMC3236664 DOI: 10.1016/j.eplepsyres.2009.09.020] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/18/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
Abstract
Mitochondrial oxidative stress and dysfunction are contributing factors to various neurological disorders. Recently, there has been increasing evidence supporting the association between mitochondrial oxidative stress and epilepsy. Although certain inherited epilepsies are associated with mitochondrial dysfunction, little is known about its role in acquired epilepsies such as temporal lobe epilepsy (TLE). Mitochondrial oxidative stress and dysfunction are emerging as key factors that not only result from seizures, but may also contribute to epileptogenesis. The occurrence of epilepsy increases with age, and mitochondrial oxidative stress is a leading mechanism of aging and age-related degenerative disease, suggesting a further involvement of mitochondrial dysfunction in seizure generation. Mitochondria have critical cellular functions that influence neuronal excitability including production of adenosine triphosphate (ATP), fatty acid oxidation, control of apoptosis and necrosis, regulation of amino acid cycling, neurotransmitter biosynthesis, and regulation of cytosolic Ca(2+) homeostasis. Mitochondria are the primary site of reactive oxygen species (ROS) production making them uniquely vulnerable to oxidative stress and damage which can further affect cellular macromolecule function, the ability of the electron transport chain to produce ATP, antioxidant defenses, mitochondrial DNA stability, and synaptic glutamate homeostasis. Oxidative damage to one or more of these cellular targets may affect neuronal excitability and increase seizure susceptibility. The specific targeting of mitochondrial oxidative stress, dysfunction, and bioenergetics with pharmacological and non-pharmacological treatments may be a novel avenue for attenuating epileptogenesis.
Collapse
Affiliation(s)
- Simon Waldbaum
- Department of Pharmaceutical Sciences University of Colorado Denver School of Pharmacy Aurora, CO 80045 U.S.A
| | - Manisha Patel
- Department of Pharmaceutical Sciences University of Colorado Denver School of Pharmacy Aurora, CO 80045 U.S.A
| |
Collapse
|
45
|
Mangialasche F, Polidori MC, Monastero R, Ercolani S, Camarda C, Cecchetti R, Mecocci P. Biomarkers of oxidative and nitrosative damage in Alzheimer's disease and mild cognitive impairment. Ageing Res Rev 2009; 8:285-305. [PMID: 19376275 DOI: 10.1016/j.arr.2009.04.002] [Citation(s) in RCA: 349] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly. Products of oxidative and nitrosative stress (OS and NS, respectively) accumulate with aging, which is the main risk factor for AD. This provides the basis for the involvement of OS and NS in AD pathogenesis. OS and NS occur in biological systems due to the dysregulation of the redox balance, caused by a deficiency of antioxidants and/or the overproduction of free radicals. Free radical attack against lipids, proteins, sugars and nucleic acids leads to the formation of bioproducts whose detection in fluids and tissues represents the currently available method for assessing oxidative/nitrosative damage. Post-mortem and in-vivo studies have demonstrated an accumulation of products of free radical damage in the central nervous system and in the peripheral tissues of subjects with AD or mild cognitive impairment (MCI). In addition to their individual role, biomarkers for OS and NS in AD are associated with altered bioenergetics and amyloid-beta (Abeta) metabolism. In this review we discuss the main results obtained in the field of biomarkers of oxidative/nitrosative stress in AD and MCI in humans, in addition to their potential role as a tool for diagnosis, prognosis and treatment efficacy in AD.
Collapse
|
46
|
Rothfuss O, Fischer H, Hasegawa T, Maisel M, Leitner P, Miesel F, Sharma M, Bornemann A, Berg D, Gasser T, Patenge N. Parkin protects mitochondrial genome integrity and supports mitochondrial DNA repair. Hum Mol Genet 2009; 18:3832-50. [PMID: 19617636 DOI: 10.1093/hmg/ddp327] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations in the parkin gene are the most common cause of recessive familial Parkinson disease (PD). Parkin has been initially characterized as an ubiquitin E3 ligase, but the pathological relevance of this activity remains uncertain. Recently, an impressive amount of evidence has accumulated that parkin is involved in the maintenance of mitochondrial function and biogenesis. We used a human neuroblastoma cell line as a model to study the influence of endogenous parkin on mitochondrial genomic integrity. Using an unbiased chromatin immunoprecipitation approach, we found that parkin is associated physically with mitochondrial DNA (mtDNA) in proliferating as well as in differentiated SH-SY5Y cells. In vivo, the association of parkin with mtDNA could be confirmed in brain tissue of mouse and human origin. Replication and transcription of mtDNA were enhanced in SH-SY5Y cells over-expressing the parkin gene. The ability of parkin to support mtDNA-metabolism was impaired by pathogenic parkin point mutations. Most importantly, we show that parkin protects mtDNA from oxidative damage and stimulates mtDNA repair. Moreover, higher susceptibility of mtDNA to reactive oxygen species and reduced mtDNA repair capacity was observed in parkin-deleted fibroblasts of a PD patient. Our data indicate a novel role for parkin in directly supporting mitochondrial function and protecting mitochondrial genomic integrity from oxidative stress.
Collapse
Affiliation(s)
- Oliver Rothfuss
- Department for Neurodegenerative Diseases, Center of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ye W, Sangaiah R, Degen DE, Gold A, Jayaraj K, Koshlap KM, Boysen G, Williams J, Tomer KB, Mocanu V, Dicheva N, Parker CE, Schaaper RM, Ball LM. Iminohydantoin lesion induced in DNA by peracids and other epoxidizing oxidants. J Am Chem Soc 2009; 131:6114-23. [PMID: 19354244 PMCID: PMC2690081 DOI: 10.1021/ja8090752] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The oxidation of guanine to 5-carboxamido-5-formamido-2-iminohydantoin (2-Ih) is shown to be a major transformation in the oxidation of the single-stranded DNA 5-mer d(TTGTT) by m-chloroperbenzoic acid (m-CPBA) and dimethyldioxirane (DMDO) as a model for peracid oxidants and in the oxidation of the 5-base pair duplex d[(TTGTT).(AACAA)] with DMDO. 2-Ih has not been reported as an oxidative lesion at the level of single/double-stranded DNA or at the nucleoside/nucleotide level. The lesion is stable to DNA digestion and chromatographic purification, suggesting that 2-Ih may be a stable biomarker in vivo. The oxidation products have been structurally characterized and the reaction mechanism has been probed by oxidation of the monomeric species dGuo, dGMP, and dGTP. DMDO selectively oxidizes the guanine moiety of dGuo, dGMP, and dGTP to 2-Ih, and both peracetic and m-chloroperbenzoic acids exhibit the same selectivity. The presence of the glycosidic bond results in the stereoselective induction of an asymmetric center at the spiro carbon to give a mixture of diastereomers, with each diastereomer in equilibrium with a minor conformer through rotation about the formamido C-N bond. Labeling studies with [(18)O(2)]-m-CPBA and H(2)(18)O to determine the source of the added oxygen atoms have established initial epoxidation of the guanine 4-5 bond with pyrimidine ring contraction by an acyl 1,2-migration of guanine carbonyl C6 to form a transient dehydrodeoxyspiroiminodihydantoin followed by hydrolytic ring-opening of the imidazolone ring. Consistent with the proposed mechanism, no 8-oxoguanine was detected as a product of the oxidations of the oligonucleotides or monomeric species mediated by DMDO or the peracids. The 2-Ih base thus appears to be a pathway-specific lesion generated by peracids and possibly other epoxidizing agents and holds promise as a potential biomarker.
Collapse
Affiliation(s)
- Wenjie Ye
- Department of Environmental Sciences and Engineering CB7431, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431
| | - R. Sangaiah
- Department of Environmental Sciences and Engineering CB7431, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431
| | - Diana E. Degen
- Department of Environmental Sciences and Engineering CB7431, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431
| | - Avram Gold
- Department of Environmental Sciences and Engineering CB7431, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431
| | - K. Jayaraj
- Department of Environmental Sciences and Engineering CB7431, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431
| | - Karl M. Koshlap
- School of Pharmacy CB7360, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360
| | - Gunnar Boysen
- Department of Environmental Sciences and Engineering CB7431, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431
| | - Jason Williams
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, MD F0-03, Research Triangle Park, NC 27709, USA
| | - Kenneth B. Tomer
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, MD F0-03, Research Triangle Park, NC 27709, USA
| | - Viorel Mocanu
- UNC-Duke Proteomics Center, Program in Molecular Biology and Biotechnology, The University of North Carolina at Chapel Hill,Chapel Hill, North Carolina 27599
| | - Nedyalka Dicheva
- UNC-Duke Proteomics Center, Program in Molecular Biology and Biotechnology, The University of North Carolina at Chapel Hill,Chapel Hill, North Carolina 27599
| | - Carol E. Parker
- UNC-Duke Proteomics Center, Program in Molecular Biology and Biotechnology, The University of North Carolina at Chapel Hill,Chapel Hill, North Carolina 27599
| | - Roel M. Schaaper
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, MD E3-01, ResearchTriangle Park, NC 27709, USA
| | - Louise M. Ball
- Department of Environmental Sciences and Engineering CB7431, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431
| |
Collapse
|
48
|
Torraco A, Diaz F, Vempati UD, Moraes CT. Mouse models of oxidative phosphorylation defects: powerful tools to study the pathobiology of mitochondrial diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:171-80. [PMID: 18601959 PMCID: PMC2652735 DOI: 10.1016/j.bbamcr.2008.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/28/2008] [Accepted: 06/04/2008] [Indexed: 01/14/2023]
Abstract
Defects in the oxidative phosphorylation system (OXPHOS) are responsible for a group of extremely heterogeneous and pleiotropic pathologies commonly known as mitochondrial diseases. Although many mutations have been found to be responsible for OXPHOS defects, their pathogenetic mechanisms are still poorly understood. An important contribution to investigate the in vivo function of several mitochondrial proteins and their role in mitochondrial dysfunction, has been provided by mouse models. Thanks to their genetic and physiologic similarity to humans, mouse models represent a powerful tool to investigate the impact of pathological mutations on metabolic pathways. In this review we discuss the main mouse models of mitochondrial disease developed, focusing on the ones that directly affect the OXPHOS system.
Collapse
Affiliation(s)
- Alessandra Torraco
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Uma D. Vempati
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Carlos T. Moraes
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| |
Collapse
|
49
|
Abstract
Oxidative stress is considered a major contributor to the etiology of both "normal" senescence and severe pathologies with serious public health implications. Several cellular sources, including mitochondria, are known to produce significant amounts of reactive oxygen species (ROS) that may contribute to intracellular oxidative stress. Mitochondria possess at least 10 known sites that are capable of generating ROS, but they also feature a sophisticated multilayered ROS defense system that is much less studied. This review summarizes the current knowledge about major components involved in mitochondrial ROS metabolism and factors that regulate ROS generation and removal at the level of mitochondria. An integrative systemic approach is applied to analysis of mitochondrial ROS metabolism, which is "dissected" into ROS generation, ROS emission, and ROS scavenging. The in vitro ROS-producing capacity of several mitochondrial sites is compared in the metabolic context and the role of mitochondria in ROS-dependent intracellular signaling is discussed.
Collapse
|
50
|
Tadros SF, D’Souza M, Zhu X, Frisina RD. Apoptosis-related genes change their expression with age and hearing loss in the mouse cochlea. Apoptosis 2008; 13:1303-21. [PMID: 18839313 PMCID: PMC2829878 DOI: 10.1007/s10495-008-0266-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To understand possible causative roles of apoptosis gene regulation in age-related hearing loss (presbycusis), apoptotic gene expression patterns in the CBA mouse cochlea of four different age and hearing loss groups were compared, using GeneChip and real-time (qPCR) microarrays. GeneChip transcriptional expression patterns of 318 apoptosis-related genes were analyzed. Thirty eight probes (35 genes) showed significant differences in expression. The significant gene families include Caspases, B-cell leukemia/lymphoma2 family, P53, Calpains, Mitogen activated protein kinase family, Jun oncogene, Nuclear factor of kappa light chain gene enhancer in B-cells inhibitor-related and tumor necrosis factor-related genes. The GeneChip results of 31 genes were validated using the new TaqMan Low Density Array (TLDA). Eight genes showed highly correlated results with the GeneChip data. These genes are: activating transcription factor3, B-cell leukemia/lymphoma2, Bcl2-like1, caspase4 apoptosis-related cysteine protease 4, Calpain2, dual specificity phosphatase9, tumor necrosis factor receptor superfamily member12a, and Tumor necrosis factor superfamily member13b, suggesting they may play critical roles in inner ear aging.
Collapse
Affiliation(s)
- Sherif F. Tadros
- Department of Physiology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mary D’Souza
- International Center for Hearing & Speech Research, National Technical Institute for the Deaf, Rochester Institute of Technology, 52 Lomb Memorial Drive, Rochester, NY 14623, USA
- Department of Otolaryngology, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642-8629, USA
| | - Xiaoxia Zhu
- International Center for Hearing & Speech Research, National Technical Institute for the Deaf, Rochester Institute of Technology, 52 Lomb Memorial Drive, Rochester, NY 14623, USA
- Department of Otolaryngology, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642-8629, USA
| | - Robert D. Frisina
- International Center for Hearing & Speech Research, National Technical Institute for the Deaf, Rochester Institute of Technology, 52 Lomb Memorial Drive, Rochester, NY 14623, USA
- Department of Otolaryngology, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642-8629, USA
| |
Collapse
|