1
|
Luft C, Haute GV, Wearick-Silva LE, Antunes KH, da Costa MS, de Oliveira JR, Donadio MVF. Prenatal stress and KCl-induced depolarization modulate cell death, hypothalamic-pituitary-adrenal axis genes, oxidative and inflammatory response in primary cortical neurons. Neurochem Int 2021; 147:105053. [PMID: 33961947 DOI: 10.1016/j.neuint.2021.105053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/01/2021] [Accepted: 04/24/2021] [Indexed: 12/27/2022]
Abstract
Maternal stress has been described as an important component in the offspring's cerebral development, altering the susceptibility to diseases in later life. Moreover, the postnatal period is essential for the development and integration of several peripheral and central systems related to the control of homeostasis. Thus, this study aimed to evaluate the effects of prenatal stress on the activation of cortical neurons, by performing experiments both under basal conditions and after KCl-induced depolarization. Female mice were divided in two groups: control and prenatal restraint stress. Cortical neurons from the offspring were obtained at gestational day 18. The effects of prenatal stress and KCl stimulations on cellular mortality, autophagy, gene expression, oxidative stress, and inflammation were evaluated. We found that neurons from PNS mice have decreased necrosis and autophagy after depolarization. Moreover, prenatal stress modulated the HPA axis, as observed by the increased GR and decreased 5HTr1 mRNA expression. The BDNF is an important factor for neuronal function and results demonstrated that KCl-induced depolarization increased the gene expression of BDNF I, BDNF IV, and TRκB. Furthermore, prenatal stress and KCl treatment induced significant alterations in oxidative and inflammatory markers. In conclusion, prenatal stress and stimulation with KCl may influence several markers related to neurodevelopment in cortical neurons from neonate mice, supporting the well-known long-term effects of maternal stress.
Collapse
Affiliation(s)
- Carolina Luft
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Gabriela Viegas Haute
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luís Eduardo Wearick-Silva
- Exercise, Behavior and Cognition Research Group, Psychology Department, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Krist Helen Antunes
- Laboratory of Clinical and Experimental Immunology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Mariana Severo da Costa
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| |
Collapse
|
2
|
Janthakhin Y, Rincel M, Costa AM, Darnaudéry M, Ferreira G. Maternal high-fat diet leads to hippocampal and amygdala dendritic remodeling in adult male offspring. Psychoneuroendocrinology 2017; 83:49-57. [PMID: 28595087 DOI: 10.1016/j.psyneuen.2017.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/07/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022]
Abstract
Early-life exposure to calorie-dense food, rich in fat and sugar, contributes to the increasing prevalence of obesity and its associated adverse cognitive and emotional outcomes at adulthood. It is thus critical to determine the impact of such nutritional environment on neurobehavioral development. In animals, maternal high-fat diet (HFD) consumption impairs hippocampal function in adult offspring, but its impact on hippocampal neuronal morphology is unknown. Moreover, the consequences of perinatal HFD exposure on the amygdala, another important structure for emotional and cognitive processes, remain to be established. In rats, we show that adult offspring from dams fed with HFD (45% from fat, throughout gestation and lactation) exhibit atrophy of pyramidal neuron dendrites in both the CA1 of the hippocampus and the basolateral amygdala (BLA). Perinatal HFD exposure also impairs conditioned odor aversion, a task highly dependent on BLA function, without affecting olfactory or malaise processing. Neuronal morphology and behavioral alterations elicited by perinatal HFD are not associated with body weight changes but with higher plasma leptin levels at postnatal day 15 and at adulthood. Taken together, our results suggest that perinatal HFD exposure alters hippocampal and amygdala neuronal morphology which could participate to memory alterations at adulthood.
Collapse
Affiliation(s)
- Yoottana Janthakhin
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Marion Rincel
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Anna-Maria Costa
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Muriel Darnaudéry
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France.
| | - Guillaume Ferreira
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France.
| |
Collapse
|
3
|
Temporal regulation of nuclear factor one occupancy by calcineurin/NFAT governs a voltage-sensitive developmental switch in late maturing neurons. J Neurosci 2013; 33:2860-72. [PMID: 23407945 DOI: 10.1523/jneurosci.3533-12.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dendrite and synapse development are critical for establishing appropriate neuronal circuits, and disrupted timing of these events can alter neural connectivity. Using microarrays, we have identified a nuclear factor I (NFI)-regulated temporal switch program linked to dendrite formation in developing mouse cerebellar granule neurons (CGNs). NFI function was required for upregulation of many synapse-related genes as well as downregulation of genes expressed in immature CGNs. Chromatin immunoprecipitation analysis revealed that a central feature of this program was temporally regulated NFI occupancy of late-expressed gene promoters. Developing CGNs undergo a hyperpolarizing shift in membrane potential, and depolarization inhibits their dendritic and synaptic maturation via activation of calcineurin (CaN) (Okazawa et al., 2009). Maintaining immature CGNs in a depolarized state blocked NFI temporal occupancy of late-expressed genes and the NFI switch program via activation of the CaN/nuclear factor of activated T-cells, cytoplasmic (NFATc) pathway and promotion of late-gene occupancy by NFATc4, and these mechanisms inhibited dendritogenesis. Conversely, inhibition of the CaN/NFATc pathway in CGNs maturing under physiological nondepolarizing conditions upregulated the NFI switch program, NFI temporal occupancy, and dendrite formation. NFATc4 occupied the promoters of late-expressed NFI program genes in immature mouse cerebellum, and its binding was temporally downregulated with development. Further, NFI temporal binding and switch gene expression were upregulated in the developing cerebellum of Nfatc4 (-/-) mice. These findings define a novel NFI switch and temporal occupancy program that forms a critical link between membrane potential/CaN and dendritic maturation in CGNs. CaN inhibits the program and NFI occupancy in immature CGNs by promoting NFATc4 binding to late-expressed genes. As maturing CGNs become more hyperpolarized, NFATc4 binding declines leading to onset of NFI temporal binding and the NFI switch program.
Collapse
|
4
|
Tan M, Ma S, Huang Q, Hu K, Song B, Li M. GSK-3α/β-mediated phosphorylation of CRMP-2 regulates activity-dependent dendritic growth. J Neurochem 2013; 125:685-97. [PMID: 23470087 DOI: 10.1111/jnc.12230] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/25/2013] [Accepted: 02/28/2013] [Indexed: 12/15/2022]
Abstract
Neuronal activity shapes the dendritic arbour; however, most of the molecular players in this process remain to be identified. We observed that depolarization-induced neuronal activity causes an increase in the phosphorylation of glycogen synthase kinase-3 (GSK-3)α/β on Ser21/9 in cerebellar granule neurons. Using several approaches, including gene knockdown and GSK-3α/β(S21A/S21A/S9A/S9A) double knockin mice, we demonstrated that both GSK-3β and GSK-3α mediate activity-dependent dendritic growth and that Ser21/9 phosphorylation of GSK-3α/β plays an important role in this process. Collapsin response mediator protein-2 (CRMP-2), which is crucial for axon development, is phosphorylated at Thr514 and inactivated by GSK-3. We found CRMP-2 was located mainly in the dendrites of cerebellar granule neurons, in contrast to the axonal distribution in hippocampal neurons. Over-expression of CRMP-2 promoted and knockdown of CRMP-2 impaired dendritic growth, suggesting that CRMP-2 is necessary and sufficient for activity-dependent dendritic development. Furthermore, silencing CRMP-2 completely blocked the dendritic growth-promoting effects of GSK-3 knockdown, and expression of Thr514 nonphosphorylated form of CRMP-2 counteracted the inhibitory effect of constitutively active GSK-3. This data indicate that CRMP-2 functions downstream of GSK-3. Together, these findings identify a novel GSK-3/CRMP-2 pathway that connects neuronal activity to dendritic growth.
Collapse
Affiliation(s)
- Minghui Tan
- Department of Pharmacology and the Proteomics Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
5
|
He XB, Yi SH, Rhee YH, Kim H, Han YM, Lee SH, Lee H, Park CH, Lee YS, Richardson E, Kim BW, Lee SH. Prolonged membrane depolarization enhances midbrain dopamine neuron differentiation via epigenetic histone modifications. Stem Cells 2012; 29:1861-73. [PMID: 21922608 DOI: 10.1002/stem.739] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding midbrain dopamine (DA) neuron differentiation is of importance, because of physiological and clinical implications of this neuronal subtype. We show that prolonged membrane depolarization induced by KCl treatment promotes DA neuron differentiation from neural precursor cells (NPCs) derived from embryonic ventral midbrain (VM). Interestingly, the depolarization-induced increase of DA neuron yields was not abolished by L-type calcium channel blockers, along with no depolarization-mediated change of intracellular calcium level in the VM-derived NPCs (VM-NPCs), suggesting that the depolarization effect is due to a calcium-independent mechanism. Experiments with labeled DA neuron progenitors indicate that membrane depolarization acts at the differentiation fate determination stage and promotes the expression of DA phenotype genes (tyrosine hydroxylase [TH] and DA transporter [DAT]). Recruitment of Nurr1, a transcription factor crucial for midbrain DA neuron development, to the promoter of TH gene was enhanced by depolarization, along with increases of histone 3 acetylation (H3Ac) and trimethylation of histone3 on lysine 4 (H3K4m3), and decreases of H3K9m3 and H3K27m3 in the consensus Nurr1 binding regions of TH promoter. Depolarization stimuli on differentiating VM-NPCs also induced dissociation of methyl CpG binding protein 2 and related repressor complex molecules (repressor element-1 silencing transcription factor corepressor and histone deacetylase 1) from the CpG sites of TH and DAT promoters. Based on these findings, we suggest that membrane depolarization promotes DA neuron differentiation by opening chromatin structures surrounding DA phenotype genes and inhibiting the binding of corepressors, thus allowing transcriptional activators such as Nurr1 to access DA neuron differentiation gene promoter regions.
Collapse
Affiliation(s)
- Xi-Biao He
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Schock SC, Jolin-Dahel KS, Schock PC, Theiss S, Arbuthnott GW, Garcia-Munoz M, Staines WA. Development of dissociated cryopreserved rat cortical neurons in vitro. J Neurosci Methods 2012; 205:324-33. [PMID: 22326618 DOI: 10.1016/j.jneumeth.2012.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/25/2012] [Indexed: 11/30/2022]
Abstract
Dissociated neuronal cultures of various brain regions are commonly used to study physiological and pathophysiological processes in vitro. The data derived from these studies are often viewed to have relevance to processes taking place in the mature brain. However, due to the practical challenges associated with lengthy neuronal culture, neurons are often kept for 14 days in vitro (DIV), or less, before being subject to experimentation. Non-proliferative cultures such as primary neuronal cultures can be maintained for more than 42 DIV if water evaporation from culture media is monitored and corrected. To determine appropriate time points corresponding to the stages of cortical development, we compared characteristics of cryopreserved cortical neurons in cultures at various DIV using immunofluorescence, biochemical measurements and multielectrode array recordings. Compared to 21 and 35 DIV, at 14 DIV, cultures are still undergoing developmental changes and are not representative of adult in vivo brain tissue. Specifically, we noted significant lack in immunoreactivity for synaptic markers such as synapsin, vesicular GABA transporter and vesicular glutamate transporter at 14 DIV, relative to 21 and 35 DIV. Moreover, multielectrode array analysis indicated an increase in network firing up to 46 DIV with patterned firing peaking at 35 DIV. Our results provide specific evidence of the maturational stages of neurons in culture that can be used to more successfully plan various types of in vitro experimentation.
Collapse
Affiliation(s)
- Sarah C Schock
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
AMPA receptor regulation at the mRNA and protein level in rat primary cortical cultures. PLoS One 2011; 6:e25350. [PMID: 21966506 PMCID: PMC3178644 DOI: 10.1371/journal.pone.0025350] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 09/01/2011] [Indexed: 11/19/2022] Open
Abstract
Ionotropic glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors are the major mediators of fast synaptic neurotransmission. In this work, we used primary cortical cultures from rats as a model system to study AMPA receptor regulation during in vitro cell maturation and after synaptic activity modifications. The levels of AMPA receptor mRNA and protein, along with the alternative splicing and RNA editing of the AMPA receptor subunit (GluR1-4) mRNAs, were analyzed in immature (DIV5) and mature (DIV26) rat neuronal cultures. We observed an increase in the expression of all four AMPA receptor subunits during in vitro neuronal maturation. This finding might be due to the formation of new synapses between neurons during the development of a complex neuronal network. We also analyzed the effects of stimulation (KCl and glutamate) and inhibition (APV/TTX) on rat mature neuronal cultures (DIV26): stimulation with KCl led to an overall down-regulation of GluR1 and GluR3 AMPA receptor subunits and an up-regulation of the GluR2 subunit. Similarly, glutamate treatment induced a significant down-regulation of GluR1 together with an up-regulation of GluR2. In contrast, the chronic blockade of neuronal activity that resulted from APV/TTX treatment up-regulated GluR1 and GluR3 with a parallel down-regulation of GluR2 and GluR4. RNA editing at the R/G site increased during neuronal cell maturation for all AMPA receptors (from 8–39% at DIV5 to 28–67% at DIV26). Unexpectedly, all the treatments tested induced a marked reduction (ranging from −9% to −52%) of R/G editing levels in mature neurons, primarily for the mRNA flip variant. In summary, we showed that cultured rat cortical neurons are able to vary the stoichiometric ratios of the AMPA receptor subunits and to control post-transcriptional processes to adapt fast synaptic transmission under different environmental conditions.
Collapse
|
8
|
Harrill JA, Robinette BL, Mundy WR. Use of high content image analysis to detect chemical-induced changes in synaptogenesis in vitro. Toxicol In Vitro 2011; 25:368-87. [DOI: 10.1016/j.tiv.2010.10.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 01/11/2023]
|
9
|
Avanzi R, Cavarsan C, Santos J, Hamani C, Mello L, Covolan L. Basal dendrites are present in newly born dentate granule cells of young but not aged pilocarpine-treated chronic epileptic rats. Neuroscience 2010; 170:687-91. [DOI: 10.1016/j.neuroscience.2010.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/29/2010] [Accepted: 08/01/2010] [Indexed: 01/23/2023]
|
10
|
Fasano C, Poirier A, DesGroseillers L, Trudeau LE. Chronic activation of the D2 dopamine autoreceptor inhibits synaptogenesis in mesencephalic dopaminergic neuronsin vitro. Eur J Neurosci 2008; 28:1480-90. [DOI: 10.1111/j.1460-9568.2008.06450.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Corner MA. Spontaneous neuronal burst discharges as dependent and independent variables in the maturation of cerebral cortex tissue cultured in vitro: a review of activity-dependent studies in live 'model' systems for the development of intrinsically generated bioelectric slow-wave sleep patterns. ACTA ACUST UNITED AC 2008; 59:221-44. [PMID: 18722470 DOI: 10.1016/j.brainresrev.2008.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 08/01/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
A survey is presented of recent experiments which utilize spontaneous neuronal spike trains as dependent and/or independent variables in developing cerebral cortex cultures when synaptic transmission is interfered with for varying periods of time. Special attention is given to current difficulties in selecting suitable preparations for carrying out biologically relevant developmental studies, and in applying spike-train analysis methods with sufficient resolution to detect activity-dependent age and treatment effects. A hierarchy of synchronized nested burst discharges which approximate early slow-wave sleep patterns in the intact organism is established as a stable basis for isolated cortex function. The complexity of reported long- and short-term homeostatic responses to experimental interference with synaptic transmission is reviewed, and the crucial role played by intrinsically generated bioelectric activity in the maturation of cortical networks is emphasized.
Collapse
Affiliation(s)
- Michael A Corner
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| |
Collapse
|